1
|
Ye R, Li S, Li Y, Shi K, Li L. Revealing the role of regulatory b cells in cancer: development, function and treatment significance. Cancer Immunol Immunother 2025; 74:125. [PMID: 39998678 PMCID: PMC11861783 DOI: 10.1007/s00262-025-03973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
B cells are essential components of the immune response, primarily recognized for their ability to produce antibodies. However, emerging research reveals their important roles in regulating immune responses and influencing tumor development, independent of antibodies. The connection between tumor progression and alterations in the tumor microenvironment is well-established, as immune infiltrating cells can enhance the survival of tumor cells by modifying their surroundings. Despite this, the majority of studies have focused on T cells and macrophages, creating a gap in our understanding of B cells. Regulatory B cells (Bregs) represent a crucial subpopulation that plays a significant role in maintaining immune balance. They may have a substantial impact on tumor immunity by negatively regulating tumor-infiltrating immune cells. This paper reviews the existing literature on Bregs, examining their development, phenotypes, functions, and the mechanisms through which they exert their regulatory effects. Furthermore, we highlight their potential interventional roles and prognostic significance in cancer therapy. By addressing the current gaps in knowledge regarding Bregs within tumors, we hope to inspire further research that could lead to innovative cancer treatments and improved outcomes for patients.
Collapse
Affiliation(s)
- Ruyu Ye
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Sijia Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yuxiao Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Kaixin Shi
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Li Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
2
|
Zhang H, Felthaus O, Eigenberger A, Klein S, Prantl L. Treg Cell Therapeutic Strategies for Breast Cancer: Holistic to Local Aspects. Cells 2024; 13:1526. [PMID: 39329710 PMCID: PMC11429654 DOI: 10.3390/cells13181526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Regulatory T cells (Tregs) play a key role in maintaining immune homeostasis and preventing autoimmunity through their immunosuppressive function. There have been numerous reports confirming that high levels of Tregs in the tumor microenvironment (TME) are associated with a poor prognosis, highlighting their role in promoting an immunosuppressive environment. In breast cancer (BC), Tregs interact with cancer cells, ultimately leading to the suppression of immune surveillance and promoting tumor progression. This review discusses the dual role of Tregs in breast cancer, and explores the controversies and therapeutic potential associated with targeting these cells. Researchers are investigating various strategies to deplete or inhibit Tregs, such as immune checkpoint inhibitors, cytokine antagonists, and metabolic inhibition. However, the heterogeneity of Tregs and the variable precision of treatments pose significant challenges. Understanding the functional diversity of Tregs and the latest advances in targeted therapies is critical for the development of effective therapies. This review highlights the latest approaches to Tregs for BC treatment that both attenuate Treg-mediated immunosuppression in tumors and maintain immune tolerance, and advocates precise combination therapy strategies to optimize breast cancer outcomes.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany (L.P.)
| | | | | | | | | |
Collapse
|
3
|
Song JY, Han MG, Kim Y, Kim MJ, Kang MH, Jeon SH, Kim IA. Combination of local radiotherapy and anti-glucocorticoid-induced tumor necrosis factor receptor (GITR) therapy augments PD-L1 blockade-mediated anti-tumor effects in murine breast cancer model. Radiother Oncol 2024; 190:109981. [PMID: 37925106 DOI: 10.1016/j.radonc.2023.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
PURPOSE In this study, we investigated whether local radiotherapy (RT) and an anti-glucocorticoid-induced tumor necrosis factor receptor (GITR) agonist could increase the efficacy of PD-L1 blockade. METHODS AND MATERIALS We analyzed a breast cancer dataset from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) to determine the role of GITR in breast cancer. We used the 4T1 murine TNBC model (primary and secondary tumors) to investigate the efficacy of PD-L1 blockade, local RT, anti-GITR agonist, and their combinations. We assessed tumor growth by tumor volume measurements, in vivo bioluminescence imaging, and metastatic lung nodule counts to evaluate the effects of these treatments. Flow cytometry and immunohistochemistry determined the proportions and phenotypes of CD8+ T-cells and regulatory T-cells (Tregs) in the tumors and spleen. Plasma cytokine levels were measured by enzyme-linked immunosorbent assay. RESULTS In the METABRIC cohort, patients with high expression of TNFRSF18, which encodes GITR, had significantly better survival than those with low expression. Adding local RT or anti-GITR agonist to PD-L1 blockade did not significantly augment efficacy compared to PD-L1 blockade alone; however, adding both to PD-L1 blockade significantly reduced tumor growth and lung metastasis. The benefits of the triple combination were accompanied by increased CD8+ T-cells and decreased Tregs in the tumor microenvironment and spleen. CONCLUSIONS The combination of local RT and an anti-GITR agonist significantly enhanced the anti-tumor immune responses induced by PD-L1 blockade. These results provide the preclinical rationale for the combination of therapy.
Collapse
Affiliation(s)
- Jun Yeong Song
- Department of Radiation Oncology, Seoul National University School of Medicine, Republic of Korea.
| | - Min Guk Han
- Medical Science Research Institute, Seoul National University Bundang Hospital, Republic of Korea
| | - Yoomin Kim
- Department of Tumor Biology, Graduate School of Medicine & Cancer Research Institute, Seoul National University, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Republic of Korea
| | - Min Ji Kim
- Department of Tumor Biology, Graduate School of Medicine & Cancer Research Institute, Seoul National University, Republic of Korea
| | - Mi Hyun Kang
- Medical Science Research Institute, Seoul National University Bundang Hospital, Republic of Korea
| | - Seung Hyuck Jeon
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Republic of Korea
| | - In Ah Kim
- Department of Radiation Oncology, Seoul National University School of Medicine, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Republic of Korea; Department of Tumor Biology, Graduate School of Medicine & Cancer Research Institute, Seoul National University, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Republic of Korea.
| |
Collapse
|
4
|
Rocco D, Della Gravara L, Ragone A, Sapio L, Naviglio S, Gridelli C. Prognostic Factors in Advanced Non-Small Cell Lung Cancer Patients Treated with Immunotherapy. Cancers (Basel) 2023; 15:4684. [PMID: 37835378 PMCID: PMC10571734 DOI: 10.3390/cancers15194684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Taking into account the huge epidemiologic impact of lung cancer (in 2020, lung cancer accounted for 2,206,771 of the cases and for 1,796,144 of the cancer-related deaths, representing the second most common cancer in female patients, the most common cancer in male patients, and the second most common cancer in male and female patients) and the current lack of recommendations in terms of prognostic factors for patients selection and management, this article aims to provide an overview of the current landscape in terms of currently available immunotherapy treatments and the most promising assessed prognostic biomarkers, highlighting the current state-of-the-art and hinting at future challenges.
Collapse
Affiliation(s)
- Danilo Rocco
- Department of Pulmonary Oncology, AORN dei Colli Monaldi, 80131 Naples, Italy;
| | - Luigi Della Gravara
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.G.); (L.S.); (S.N.)
| | - Angela Ragone
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany;
| | - Luigi Sapio
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.G.); (L.S.); (S.N.)
| | - Silvio Naviglio
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.G.); (L.S.); (S.N.)
| | - Cesare Gridelli
- Division of Medical Oncology, “S.G. Moscati” Hospital, Contrada Amoretta, 83100 Avellino, Italy
| |
Collapse
|
5
|
Ji Y, Madrasi K, Knee DA, Gruenbaum L, Apgar JF, Burke JM, Gomes B. Quantitative systems pharmacology model of GITR-mediated T cell dynamics in tumor microenvironment. CPT Pharmacometrics Syst Pharmacol 2023; 12:413-424. [PMID: 36710369 PMCID: PMC10014051 DOI: 10.1002/psp4.12925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/31/2023] Open
Abstract
T cell interaction in the tumor microenvironment is a key component of immuno-oncology therapy. Glucocorticoid-induced tumor necrosis factor receptor (TNFR)-related protein (GITR) is expressed on immune cells including regulatory T cells (Tregs) and effector T cells (Teffs). Preclinical data suggest that agonism of GITR in combination with Fc-γ receptor-mediated depletion of Tregs results in increased intratumoral Teff:Treg ratio and tumor shrinkage. A novel quantitative systems pharmacology (QSP) model was developed for the murine anti-GITR agonist antibody, DTA-1.mIgG2a, to describe the kinetics of intratumoral Tregs and Teffs in Colon26 and A20 syngeneic mouse tumor models. It adequately captured the time profiles of intratumoral Treg and Teff and serum DTA-1.mIgG2a and soluble GITR concentrations in both mouse models, and described the response differences between the two models. The QSP model provides a quantitative understanding of the trade-off between maximizing Treg depletion versus Teff agonism, and offers insights to optimize drug design and dose regimen.
Collapse
Affiliation(s)
- Yan Ji
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | - Deborah A Knee
- Novartis Institutes for Biomedical Research, San Diego, California, USA
| | - Lore Gruenbaum
- Therapy Acceleration Program, The Leukemia & Lymphoma Society, Rye Brook, New York, USA
| | | | - John M Burke
- Applied Biomath LLC, Concord, Massachusetts, USA
| | - Bruce Gomes
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Ji Y, Knee D, Chen X, Dang A, Mataraza J, Wolf B, Sy SKB. Model-informed drug development for immuno-oncology agonistic anti-GITR antibody GWN323: Dose selection based on MABEL and biologically active dose. Clin Transl Sci 2022; 15:2218-2229. [PMID: 35731955 PMCID: PMC9468570 DOI: 10.1111/cts.13355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023] Open
Abstract
GWN323, an agonistic human anti-GITR (glucocorticoid-induced TNFR-related protein) IgG1 antibody, was studied clinically as an immuno-oncology therapeutic agent. A model-based minimum anticipated biological effect level (MABEL) approach integrating in vitro and in vivo data informed dose selection for the first-in-human (FIH) study. Data evaluated included pharmacokinetics (PK) of DTA-1.mIgG2a (mouse surrogate GITR antibody for GWN323), target-engagement pharmacodynamic (PD) marker soluble GITR (sGITR), tumor shrinkage in Colon26 syngeneic mice administered with DTA-1.mIgG2a, cytokine release of GWN323 in human peripheral blood mononuclear cells, and GITR binding affinity. A PK model was developed to describe DTA-1.mIgG2a PK, and its relationship with sGITR was also modeled. Human GWN323 PK was predicted by allometric scaling of mouse PK. Based on the totality of PK/PD modeling and in vitro and in vivo pharmacology and toxicology data, MABEL was estimated to be 3-10 mg once every 3 weeks (Q3W), which informed the starting dose selection of the FIH study. Based on tumor kinetic PK/PD modeling of tumor inhibition by DTA-1.mIgG2a in Colon26 mice and the predicted human PK of GWN323, the biologically active dose of GWN323 was predicted to be 350 mg Q3W, which informed the dose escalation of the FIH study. GWN323 PK from the FIH study was described by a population PK model; the relationship with ex vivo interleukin-2 release, a target-engagement marker, was also modeled. The clinical PK/PD modeling data supported the biological active dose projected from the translational PK/PD modeling in a "learn and confirm" paradigm of model-informed drug development of GWN323.
Collapse
Affiliation(s)
- Yan Ji
- Novartis Pharmaceuticals CorporationEast HanoverNew JerseyUSA
| | - Deborah Knee
- Novartis Institutes for BioMedical ResearchSan DiegoCaliforniaUSA
| | - Xinhui Chen
- Novartis Pharmaceuticals CorporationEast HanoverNew JerseyUSA
| | - Anhthu Dang
- Novartis Institutes for BioMedical ResearchCambridgeMassachusettsUSA
| | - Jennifer Mataraza
- Novartis Institutes for BioMedical ResearchCambridgeMassachusettsUSA
| | - Babette Wolf
- Novartis Institutes for BioMedical ResearchBaselSwitzerland
| | | |
Collapse
|
7
|
Seth A, Kar S. Host-directed antileishmanial interventions: Harvesting unripe fruits to reach fruition. Int Rev Immunol 2022; 42:217-236. [PMID: 35275772 DOI: 10.1080/08830185.2022.2047670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Leishmaniasis is an exemplary paradigm of immune evasion, fraught with the perils of limited clinical assistance, escalating costs of treatment and made worse with the lack of suitable vaccine. While drugs remain central to large-scale disease control, the growing emergence of parasite resistance necessitates the need for combination therapy involving host-directed immunological agents. Also, since prolonged disease progression is associated with strong immune suppression of the host, augmentation of host immunity via restoration of the immunoregulatory circuit involving antigen-presenting cells and T-cells, activation of macrophage function and/or CD4+ T helper 1 cell differentiation may serve as an ideal approach to resolve severe cases of leishmaniasis. As such, therapies that embody a synergistic approach that involve direct killing of the parasite in addition to elevating host immunity are likely to pave the way for widespread elimination of leishmaniasis in the future. With this review, we aim to recapitulate the various immunotherapeutic agents found to hold promise in antileishmanial treatment both in vitro and in vivo. These include parasite-specific antigens, dendritic cell-targeted therapy, recombinant inhibitors of various components intrinsic to immune cell signaling and agonists or antagonists to immune cells and cytokines. We also summarize their abilities to direct therapeutic skewing of the host cell-immune response and review their potential to combat the disease either alone, or as adjunct modalities.
Collapse
Affiliation(s)
- Anuradha Seth
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Susanta Kar
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
8
|
He C, Maniyar RR, Avraham Y, Zappasodi R, Rusinova R, Newman W, Heath H, Wolchok JD, Dahan R, Merghoub T, Meyerson JR. Therapeutic antibody activation of the glucocorticoid-induced TNF receptor by a clustering mechanism. SCIENCE ADVANCES 2022; 8:eabm4552. [PMID: 35213218 PMCID: PMC8880771 DOI: 10.1126/sciadv.abm4552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/12/2022] [Indexed: 05/11/2023]
Abstract
GITR is a TNF receptor, and its activation promotes immune responses and drives antitumor activity. The receptor is activated by the GITR ligand (GITRL), which is believed to cluster receptors into a high-order array. Immunotherapeutic agonist antibodies also activate the receptor, but their mechanisms are not well characterized. We solved the structure of full-length mouse GITR bound to Fabs from the antibody DTA-1. The receptor is a dimer, and each subunit binds one Fab in an orientation suggesting that the antibody clusters receptors. Binding experiments with purified proteins show that DTA-1 IgG and GITRL both drive extensive clustering of GITR. Functional data reveal that DTA-1 and the anti-human GITR antibody TRX518 activate GITR in their IgG forms but not as Fabs. Thus, the divalent character of the IgG agonists confers an ability to mimic GITRL and cluster and activate GITR. These findings will inform the clinical development of this class of antibodies for immuno-oncology.
Collapse
Affiliation(s)
- Changhao He
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Rachana R. Maniyar
- Ludwig Collaborative and Swim Across America Laboratory, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yahel Avraham
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Roberta Zappasodi
- Ludwig Collaborative and Swim Across America Laboratory, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Radda Rusinova
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | | | | | - Jedd D. Wolchok
- Ludwig Collaborative and Swim Across America Laboratory, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rony Dahan
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joel R. Meyerson
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
9
|
Bosmans LA, Shami A, Atzler D, Weber C, Gonçalves I, Lutgens E. Glucocorticoid induced TNF receptor family-related protein (GITR) - A novel driver of atherosclerosis. Vascul Pharmacol 2021; 139:106884. [PMID: 34102305 DOI: 10.1016/j.vph.2021.106884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is a lipid-driven, chronic inflammatory disease. In spite of efficient lipid lowering treatments, such as statins and PCSK9 inhibitors, patients, especially those with elevated inflammatory biomarkers, still have a significant residual cardiovascular disease risk. Novel drugs targeting inflammatory mediators are needed to further reduce this residual risk. Agonistic immune checkpoint proteins, including CD86, CD40L and CD40, have been shown to be drivers of atherosclerosis. Recently, glucocorticoid-induced tumour necrosis factor receptor family-related protein (GITR), a co-stimulatory immune checkpoint protein, was identified to be pivotal in cardiovascular disease. Cardiovascular patients have elevated soluble GITR plasma levels compared to healthy controls. Furthermore, in human carotid endarterectomy plaques, GITR expression was higher in plaques from symptomatic compared to asymptomatic patients and correlated with features of plaque vulnerability. Moreover, depleting GITR reduced atherosclerotic plaque development in mice. GITR-deficient monocytes and macrophages exhibited less inflammatory potential and reduced migratory capacity. In this review, we discuss GITR's effects on various immune cells, mechanisms, signalling pathways and finally GITR's potential as a novel drug target in atherosclerosis.
Collapse
Affiliation(s)
- Laura A Bosmans
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, the Netherlands
| | - Annelie Shami
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Dorothee Atzler
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität (LMU Munich), Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians Universität (LMU Munich), Munich, Germany
| | - Christian Weber
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität (LMU Munich), Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, the Netherlands
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, Malmö, Sweden; Department of Cardiology, Skåne University Hospital, Sweden
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, the Netherlands; Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität (LMU Munich), Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
10
|
Sun Q, Yang Z, Lin M, Peng Y, Wang R, Du Y, Zhou Y, Li J, Qi X. Phototherapy and anti-GITR antibody-based therapy synergistically reinvigorate immunogenic cell death and reject established cancers. Biomaterials 2021; 269:120648. [PMID: 33445099 DOI: 10.1016/j.biomaterials.2020.120648] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022]
Abstract
Phototherapy and immunogenic cell death (ICD) are powerful strategies to fight cancer. However, their therapeutic outcomes are diminished by immunosuppressive and hypoxia microenvironment. Herein, a photo-based, immunomodulating and hypoxia-alleviated nanosystem, PDA-ICG@CAT-DTA-1, is proposed to achieve the synergism between phototherapy and immunotherapy. Catalase (CAT) and anti-GITR antibody (DTA-1) are loaded to photothermal agent and photosensitizer composed PDA-ICG nanoparticles. The PDA-ICG@CAT-DTA-1 exhibits intrinsic local hyperthermia and enhanced ROS generation in tumor, and abrogates tumor immune suppression. It results in reduction of intratumoral FOXP3+ regulatory T cells (4.3-fold) and increase of CD4+ effector T cells (1.5-fold) compare with the control, and promotes damage associated molecular patterns generation to reinvigorate ICD effect. The potent antitumor of PDA-ICG@CAT-DTA-1 is proved in 4T1 bilateral tumor-bearing mice, with inhibition ratio of 95.1% for primary cancers and 68.7% for abscopal cancers. Our findings highlight great promise of the constructed versatility nanosystem to fix bottlenecks for cancer therapy.
Collapse
Affiliation(s)
- Qi Sun
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Zhenzhen Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Meng Lin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Yiwei Peng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Rudong Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Yitian Du
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Yu Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Jiajia Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xianrong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
11
|
Huang YW, Lin CW, Pan P, Shan T, Echeveste CE, Mo YY, Wang HT, Aldakkak M, Tsai S, Oshima K, Yearsley M, Xiao J, Cao H, Sun C, Du M, Bai W, Yu J, Wang LS. Black Raspberries Suppress Colorectal Cancer by Enhancing Smad4 Expression in Colonic Epithelium and Natural Killer Cells. Front Immunol 2020; 11:570683. [PMID: 33424832 PMCID: PMC7793748 DOI: 10.3389/fimmu.2020.570683] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/19/2020] [Indexed: 02/05/2023] Open
Abstract
Innate immune cells in the tumor microenvironment have been proposed to control the transition from benign to malignant stages. In many cancers, increased infiltration of natural killer (NK) cells associates with good prognosis. Although the mechanisms that enable NK cells to restrain colorectal cancer (CRC) are unclear, the current study suggests the involvement of Smad4. We found suppressed Smad4 expression in circulating NK cells of untreated metastatic CRC patients. Moreover, NK cell-specific Smad4 deletion promoted colon adenomas in DSS-treated ApcMin/+ mice and adenocarcinomas in AOM/DSS-treated mice. Other studies have shown that Smad4 loss or weak expression in colonic epithelium associates with poor survival in CRC patients. Therefore, targeting Smad4 in both colonic epithelium and NK cells could provide an excellent opportunity to manage CRC. Toward this end, we showed that dietary intervention with black raspberries (BRBs) increased Smad4 expression in colonic epithelium in patients with FAP or CRC and in the two CRC mouse models. Also, benzoate metabolites of BRBs, such as hippurate, upregulated Smad4 and Gzmb expression that might enhance the cytotoxicity of primary human NK cells. Of note, increased levels of hippurate is a metabolomic marker of a healthy gut microbiota in humans, and hippurate also has antitumor effects. In conclusion, our study suggests a new mechanism for the action of benzoate metabolites derived from plant-based foods. This mechanism could be exploited clinically to upregulate Smad4 in colonic epithelium and NK cells, thereby delaying CRC progression.
Collapse
Affiliation(s)
- Yi-Wen Huang
- Department of Obstetrics & Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pan Pan
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tianjiao Shan
- Department of Obstetrics & Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Carla Elena Echeveste
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yue Yang Mo
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Hsin-Tzu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mohammed Aldakkak
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kiyoko Oshima
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Martha Yearsley
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, Macau
| | - Hui Cao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, Macau
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, United States
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
12
|
Rocco D, Gregorc V, Della Gravara L, Lazzari C, Palazzolo G, Gridelli C. New immunotherapeutic drugs in advanced non-small cell lung cancer (NSCLC): from preclinical to phase I clinical trials. Expert Opin Investig Drugs 2020; 29:1005-1023. [PMID: 32643447 DOI: 10.1080/13543784.2020.1793956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The development of immune checkpoint inhibitors (ICI) has represented a revolution in the treatment of non-small cell lung cancer (NSCLC) and has established a new standard of care for different settings. However, through adaptive changes, cancer cells can develop resistance mechanisms to these drugs, hence the necessity for novel immunotherapeutic agents. AREAS COVERED This paper explores the immunotherapeutics currently under investigation in phase I clinical trials for the treatment of NSCLC as monotherapies and combination therapies. It provides two comprehensive tables of phase I agents which are listed according to target, drug, drug class, mechanism of action, setting, trial identifier, and trial status. A comprehensive literature search was carried out to identify eligible studies from MEDLINE/PubMed and ClinicalTrials.gov. EXPERT OPINION A key hurdle to success in this field is our limited understanding of the synergic interactions of the immune targets in the context of the TME. While we can recognize the links between inhibitors and some particularly promising new targets such as TIM-3 and LAG3, we continue to develop approaches to exploit their interactions to enhance the immune response of the patient to tumor cells.
Collapse
Affiliation(s)
- Danilo Rocco
- Department of Pulmonary Oncology, AORN Dei Colli Monaldi , Naples, Italy
| | - Vanesa Gregorc
- Department of Oncology, Division of Experimental Medicine, IRCCS San Raffaele , Milan, Italy
| | - Luigi Della Gravara
- Department of Experimental Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli" , Caserta, Italy
| | - Chiara Lazzari
- Department of Oncology, Division of Experimental Medicine, IRCCS San Raffaele , Milan, Italy
| | | | - Cesare Gridelli
- Division of Medical Oncology, "S.G. Moscati" Hospital , Avellino, Italy
| |
Collapse
|
13
|
Koh CH, Kim IK, Shin KS, Jeon I, Song B, Lee JM, Bae EA, Seo H, Kang TS, Kim BS, Chung Y, Kang CY. GITR Agonism Triggers Antitumor Immune Responses through IL21-Expressing Follicular Helper T Cells. Cancer Immunol Res 2020; 8:698-709. [PMID: 32122993 DOI: 10.1158/2326-6066.cir-19-0748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 02/25/2020] [Indexed: 11/16/2022]
Abstract
Although treatment with the glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) agonistic antibody (DTA-1) has shown antitumor activity in various tumor models, the underlying mechanism is not fully understood. Here, we demonstrate that interleukin (IL)-21-producing follicular helper T (Tfh) cells play a crucial role in DTA-1-induced tumor inhibition. The administration of DTA-1 increased IL21 expression by Tfh cells in an antigen-specific manner, and this activation led to enhanced antitumor cytotoxic T lymphocyte (CTL) activity. Mice treated with an antibody that neutralizes the IL21 receptor exhibited decreased antitumor activity when treated with DTA-1. Tumor growth inhibition by DTA-1 was abrogated in Bcl6 fl/fl Cd4 Cre mice, which are genetically deficient in Tfh cells. IL4 was required for optimal induction of IL21-expressing Tfh cells by GITR costimulation, and c-Maf mediated this pathway. Thus, our findings identify GITR costimulation as an inducer of IL21-expressing Tfh cells and provide a mechanism for the antitumor activity of GITR agonism.
Collapse
Affiliation(s)
- Choong-Hyun Koh
- Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Il-Kyu Kim
- Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.,Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Kwang-Soo Shin
- Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Insu Jeon
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Boyeong Song
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Mi Lee
- Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun-Ah Bae
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Hyungseok Seo
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Tae-Seung Kang
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Byung-Seok Kim
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Chang-Yuil Kang
- Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea. .,Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Patel JM, Cui Z, Wen ZF, Dinh CT, Hu HM. Peritumoral administration of DRibbles-pulsed antigen-presenting cells enhances the antitumor efficacy of anti-GITR and anti-PD-1 antibodies via an antigen presenting independent mechanism. J Immunother Cancer 2019; 7:311. [PMID: 31747946 PMCID: PMC6865022 DOI: 10.1186/s40425-019-0786-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023] Open
Abstract
Background TNF receptor family agonists and checkpoint blockade combination therapies lead to minimal tumor clearance of poorly immunogenic tumors. Therefore, a need to enhance the efficacy of this combination therapy arises. Antigen-presenting cells (APCs) present antigen to T cells and steer the immune response through chemokine and cytokine secretion. DRibbles (DR) are tumor-derived autophagosomes containing tumor antigens and innate inflammatory adjuvants. Methods Using preclinical murine lung and pancreatic cancer models, we assessed the triple combination therapy of GITR agonist and PD-1 blocking antibodies with peritumoral injections of DRibbles-pulsed-bone marrow cells (BMCs), which consisted mainly of APCs, or CD103+ cross-presenting dendritic cells (DCs). Immune responses were assessed by flow cytometry. FTY720 was used to prevent T-cell egress from lymph nodes to assess lymph node involvement, and MHC-mismatched-BMCs were used to assess the necessity of antigen presentation by the peritumorally-injected DR-APCs. Results Tritherapy increased survival and cures in tumor-bearing mice compared to combined antibody therapy or peritumoral DR-BMCs alone. Peritumorally-injected BMCs remained within the tumor for at least 14 days and tritherapy efficacy was dependent on both CD4+ and CD8+ T cells. Although the overall percent of tumor-infiltrating T cells remained similar, tritherapy increased the ratio of effector CD4+ T cells-to-regulatory T cells, CD4+ T-cell cytokine production and proliferation, and CD8+ T-cell cytolytic activity in the tumor. Despite tritherapy-induced T-cell activation and cytolytic activity in lymph nodes, this T-cell activation was not required for tumor regression and enhanced survival. Replacement of DR-BMCs with DR-pulsed-DCs in the tritherapy led to similar antitumor effects, whereas replacement with DRibbles was less effective but delayed tumor growth. Interestingly, peritumoral administration of DR-pulsed MHC-mismatched-APCs in the tritherapy led to similar antitumor effects as MHC-matched-APCs, indicating that the observed enhanced antitumor effect was mediated independently of antigen presentation by the administered APCs. Conclusions Overall, these results demonstrate that peritumoral DR-pulsed-BMC/DC administration synergizes with GITR agonist and PD-1 blockade to locally modulate and sustain tumor effector T-cell responses independently of T cell priming and perhaps through innate inflammatory modulations mediated by the DRibbles adjuvant. We offer a unique approach to modify the tumor microenvironment to benefit T-cell-targeted immunotherapies.
Collapse
Affiliation(s)
- Jaina M Patel
- Laboratory of Cancer Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, 4805 NE Glisan Street, Portland, OR, 97213, USA
| | - Zhihua Cui
- Laboratory of Cancer Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, 4805 NE Glisan Street, Portland, OR, 97213, USA
| | - Zhi-Fa Wen
- Laboratory of Cancer Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, 4805 NE Glisan Street, Portland, OR, 97213, USA.,Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| | - Catherine T Dinh
- Laboratory of Cancer Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, 4805 NE Glisan Street, Portland, OR, 97213, USA
| | - Hong-Ming Hu
- Laboratory of Cancer Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, 4805 NE Glisan Street, Portland, OR, 97213, USA.
| |
Collapse
|
15
|
Vence L, Bucktrout SL, Fernandez Curbelo I, Blando J, Smith BM, Mahne AE, Lin JC, Park T, Pascua E, Sai T, Chaparro-Riggers J, Subudhi SK, Scutti JB, Higa MG, Zhao H, Yadav SS, Maitra A, Wistuba II, Allison JP, Sharma P. Characterization and Comparison of GITR Expression in Solid Tumors. Clin Cancer Res 2019; 25:6501-6510. [PMID: 31358539 DOI: 10.1158/1078-0432.ccr-19-0289] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/16/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Determine the differential effect of a FcγR-binding, mIgG2a anti-GITR antibody in mouse tumor models, and characterize the tumor microenvironment for the frequency of GITR expression in T-cell subsets from seven different human solid tumors.Experimental Design: For mouse experiments, wild-type C57BL/6 mice were subcutaneously injected with MC38 cells or B16 cells, and BALB/c mice were injected with CT26 cells. Mice were treated with the anti-mouse GITR agonist antibody 21B6, and tumor burden and survival were monitored. GITR expression was evaluated at the single-cell level using flow cytometry (FC). A total of 213 samples were evaluated for GITR expression by IHC, 63 by FC, and 170 by both in seven human solid tumors: advanced hepatocellular carcinoma, non-small cell lung cancer (NSCLC), renal cell carcinoma, pancreatic carcinoma, head and neck carcinoma, melanoma, and ovarian carcinoma. RESULTS The therapeutic benefit of 21B6 was greatest in CT26 followed by MC38, and was least in the B16 tumor model. The frequency of CD8 T cells and effector CD4 T cells within the immune infiltrate correlated with response to treatment with GITR antibody. Analysis of clinical tumor samples showed that NSCLC, renal cell carcinoma, and melanoma had the highest proportions of GITR-expressing cells and highest per-cell density of GITR expression on CD4+ Foxp3+ T regulatory cells. IHC and FC data showed similar trends with a good correlation between both techniques. CONCLUSIONS Human tumor data suggest that NSCLC, renal cell carcinoma, and melanoma should be the tumor subtypes prioritized for anti-GITR therapy development.
Collapse
Affiliation(s)
- Luis Vence
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samantha L Bucktrout
- Cancer Immunology Discovery Unit, South San Francisco, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Irina Fernandez Curbelo
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jorge Blando
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bevin M Smith
- Cancer Immunology Discovery Unit, South San Francisco, California
| | - Ashley E Mahne
- Cancer Immunology Discovery Unit, South San Francisco, California
| | - John C Lin
- Cancer Immunology Discovery Unit, South San Francisco, California.,Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Terrence Park
- Cancer Immunology Discovery Unit, South San Francisco, California
| | - Edward Pascua
- Cancer Immunology Discovery Unit, South San Francisco, California
| | - Tao Sai
- Cancer Immunology Discovery Unit, South San Francisco, California
| | | | - Sumit K Subudhi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jorge B Scutti
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria G Higa
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hao Zhao
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shalini S Yadav
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James P Allison
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Padmanee Sharma
- The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
16
|
Expression of costimulatory and inhibitory receptors in FoxP3 + regulatory T cells within the tumor microenvironment: Implications for combination immunotherapy approaches. Adv Cancer Res 2019; 144:193-261. [PMID: 31349899 DOI: 10.1016/bs.acr.2019.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The unprecedented success of immune checkpoint inhibitors has given rise to a rapidly growing number of immuno-oncology agents undergoing preclinical and clinical development and an exponential increase in possible combinations. Defining a clear rationale for combinations by identifying synergies between immunomodulatory pathways has therefore become a high priority. Immunosuppressive regulatory T cells (Tregs) within the tumor microenvironment (TME) represent a major roadblock to endogenous and therapeutic tumor immunity. However, Tregs are also essential for the maintenance of immunological self-tolerance, and share many molecular pathways with conventional T cells including cytotoxic T cells, the primary mediators of tumor immunity. Hence the inability to specifically target and neutralize Tregs within the TME of cancer patients without globally compromising self-tolerance poses a significant challenge. Here we review recent advances in the characterization of tumor-infiltrating Tregs with a focus on costimulatory and inhibitory receptors. We discuss receptor expression patterns, their functional role in Treg biology and mechanistic insights gained from targeting these receptors in preclinical models to evaluate their potential as clinical targets. We further outline a framework of parameters that could be used to refine the assessment of Tregs in cancer patients and increase their value as predictive biomarkers. Finally, we propose modalities to integrate our increasing knowledge on Treg phenotype and function for the rational design of checkpoint inhibitor-based combination therapies. Such combinations have great potential for synergy, as they could concomitantly enhance cytotoxic T cells and inhibit Tregs within the TME, thereby increasing the efficacy of current cancer immunotherapies.
Collapse
|
17
|
Beha N, Harder M, Ring S, Kontermann RE, Müller D. IL15-Based Trifunctional Antibody-Fusion Proteins with Costimulatory TNF-Superfamily Ligands in the Single-Chain Format for Cancer Immunotherapy. Mol Cancer Ther 2019; 18:1278-1288. [PMID: 31040163 DOI: 10.1158/1535-7163.mct-18-1204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/08/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022]
Abstract
IL15 and costimulatory receptors of the tumor necrosis superfamily (TNFRSF) have shown great potential to support and drive an antitumor immune response. However, their efficacy as monotherapy is limited. Here, we present the development of a novel format for a trifunctional antibody-fusion protein that combines and focuses the activity of IL15/TNFSF-ligand in a targeting-mediated manner to the tumor site. The previously reported format consisted of a tumor-directed antibody (scFv), IL15 linked to an IL15Rα-fragment (RD), and the extracellular domain of 4-1BBL, where noncovalent trimerization of 4-1BBL into its functional unit led to a homotrimeric molecule with 3 antibody and 3 IL15-RD units. To reduce the size and complexity of the molecule, we have now designed a second format, where 4-1BBL is introduced as single-chain (sc), that is 3 consecutively linked 4-1BBL ectodomains. Thus, a monomeric trifunctional fusion protein presenting only 1 functional unit of each component was generated. Interestingly, the in vitro activity on T-cell stimulation was conserved or even enhanced for the soluble and target-bound molecule, respectively. Also, in a lung tumor mouse model, comparable antitumor effects were observed. Furthermore, corroborating the concept, OX40L and GITRL were also successfully incorporated into the novel single-chain format and the advantage of target-bound trifunctional versus corresponding combined bifunctional fusion proteins demonstrated by measuring T-cell proliferation and cytotoxic potential in vitro and antitumor effects of RD_IL15_scFv_scGITRL in a lung tumor mouse model in vivo Thus, the trifunctional antibody-fusion protein single-chain format constitutes a promising innovative platform for further therapeutic developments.
Collapse
Affiliation(s)
- Nadine Beha
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Markus Harder
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Sarah Ring
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
18
|
Orlova A, Sirotkina M, Smolina E, Elagin V, Kovalchuk A, Turchin I, Subochev P. Raster-scan optoacoustic angiography of blood vessel development in colon cancer models. PHOTOACOUSTICS 2019; 13:25-32. [PMID: 30555784 PMCID: PMC6275215 DOI: 10.1016/j.pacs.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 05/03/2023]
Abstract
Raster-scan optoacoustic angiography at 532 nm wavelength with 50 μm lateral resolution at 2 mm diagnostic depth was used for quantitative characterization of neoangiogenesis in colon cancer models. Two tumor models of human colon adenocarcinoma (HT-29) and murine colon carcinoma (CT26) different in their histology and vascularization were compared. Tumors of both origins showed an inhomogeneous distribution of areas with high and low vascularization. Rapidly growing CT26 tumor demonstrated a higher rate of vessel growth from the periphery to the center. Peculiarities of the vascularity of tumor models revealed by optoacoustic imaging were confirmed by fluorescent microscopy with FITC-dextran and morphological analysis. The obtained results may be important for the investigation of tumor development and for improvement of colon cancer treatment strategies.
Collapse
Affiliation(s)
- Anna Orlova
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
- Corresponding author.
| | - Marina Sirotkina
- Privolzhsky Medical Research University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
| | - Ekaterina Smolina
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Vadim Elagin
- Privolzhsky Medical Research University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
| | - Andrey Kovalchuk
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Ilya Turchin
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Pavel Subochev
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| |
Collapse
|
19
|
Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochim Biophys Acta Rev Cancer 2018; 1871:199-224. [PMID: 30605718 DOI: 10.1016/j.bbcan.2018.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023]
Abstract
Initially understood for its physiological maintenance of self-tolerance, the immune checkpoint molecule has recently been recognized as a promising anti-cancer target. There has been considerable interest in the biology and the action mechanism of the immune checkpoint therapy, and their incorporation with other therapeutic regimens. Recently the small-molecule inhibitor (SMI) has been identified as an attractive combination partner for immune checkpoint inhibitors (ICIs) and is becoming a novel direction for the field of combination drug design. In this review, we provide a systematic discussion of the biology and function of major immune checkpoint molecules, and their interactions with corresponding targeting agents. With both preclinical studies and clinical trials, we especially highlight the ICI + SMI combination, with its recent advances as well as its application challenges.
Collapse
|
20
|
Sabharwal SS, Rosen DB, Grein J, Tedesco D, Joyce-Shaikh B, Ueda R, Semana M, Bauer M, Bang K, Stevenson C, Cua DJ, Zúñiga LA. GITR Agonism Enhances Cellular Metabolism to Support CD8+ T-cell Proliferation and Effector Cytokine Production in a Mouse Tumor Model. Cancer Immunol Res 2018; 6:1199-1211. [DOI: 10.1158/2326-6066.cir-17-0632] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/11/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022]
|
21
|
Han X, Vesely MD. Stimulating T Cells Against Cancer With Agonist Immunostimulatory Monoclonal Antibodies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 342:1-25. [PMID: 30635089 DOI: 10.1016/bs.ircmb.2018.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Elimination of cancer cells through antitumor immunity has been a long-sought after goal since Sir F. Macfarlane Burnet postulated the theory of immune surveillance against tumors in the 1950s. Finally, the use of immunotherapeutics against established cancer is becoming a reality in the past 5years. Most notable are the monoclonal antibodies (mAbs) directed against inhibitory T-cell receptors cytotoxic T lymphocyte antigen-4 and programmed death-1. The next generation of mAbs targeting T cells is designed to stimulate costimulatory receptors on T cells. Here we review the recent progress on these immunostimulatory agonist antibodies against the costimulatory receptors CD137, GITR, OX40, and CD27.
Collapse
Affiliation(s)
- Xue Han
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Matthew D Vesely
- Department of Dermatology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
22
|
Acúrcio RC, Scomparin A, Conniot J, Salvador JAR, Satchi-Fainaro R, Florindo HF, Guedes RC. Structure–Function Analysis of Immune Checkpoint Receptors to Guide Emerging Anticancer Immunotherapy. J Med Chem 2018; 61:10957-10975. [DOI: 10.1021/acs.jmedchem.8b00541] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - João Conniot
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, and Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
23
|
The promise and challenges of immune agonist antibody development in cancer. Nat Rev Drug Discov 2018; 17:509-527. [PMID: 29904196 DOI: 10.1038/nrd.2018.75] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immune cell functions are regulated by co-inhibitory and co-stimulatory receptors. The first two generations of cancer immunotherapy agents consist primarily of antagonist antibodies that block negative immune checkpoints, such as programmed cell death protein 1 (PD1) and cytotoxic T lymphocyte protein 4 (CTLA4). Looking ahead, there is substantial promise in targeting co-stimulatory receptors with agonist antibodies, and a growing number of these agents are making their way through various stages of development. This Review discusses the key considerations and potential pitfalls of immune agonist antibody design and development, their differentiating features from antagonist antibodies and the landscape of agonist antibodies in clinical development for cancer treatment.
Collapse
|
24
|
Zhang D, Whitaker B, Derebe MG, Chiu ML. FcγRII-binding Centyrins mediate agonism and antibody-dependent cellular phagocytosis when fused to an anti-OX40 antibody. MAbs 2018; 10:463-475. [PMID: 29359992 PMCID: PMC5916553 DOI: 10.1080/19420862.2018.1424611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Immunostimulatory antibodies against the tumor necrosis factor receptors (TNFR) are emerging as promising cancer immunotherapies. The agonism activity of such antibodies depends on crosslinking to Fc gamma RIIB receptor (FcγRIIB) to enable the antibody multimerization that drives TNFR activation. Previously, Fc engineering was used to enhance the binding of such antibodies to Fcγ receptors. Here, we report the identification of Centyrins as alternative scaffold proteins with binding affinities to homologous FcγRIIB and FcγRIIA, but not to other types of Fcγ receptors. One Centyrin, S29, was engineered at distinct positions of an anti-OX40 SF2 antibody to generate bispecific and tetravalent molecules named as mAbtyrins. Regardless of the position of S29 on the SF2 antibody, SF2-S29 mAbtyrins could bind FcγRIIB and FcγRIIA specifically while maintaining binding to OX40 receptors. In a NFκB reporter assay, attachment of S29 Centyrin molecules at the C-termini, but not the N-termini, resulted in SF2 antibodies with increased agonism owing to FcγRIIB crosslinking. The mAbtyrins also showed agonism in T-cell activation assays with immobilized FcγRIIB and FcγRIIA, but this activity was confined to mAbtyrins with S29 specifically at the C-termini of antibody heavy chains. Furthermore, regardless of the position of the molecule, S29 Centyrin could equip an otherwise Fc-silent antibody with antibody-dependent cellular phagocytosis activity without affecting the antibody's intrinsic antibody-dependent cell-meditated cytotoxicity and complement-dependent cytotoxicity. In summary, the appropriate adoption FcγRII-binding Centyrins as functional modules represents a novel strategy to engineer therapeutic antibodies with improved functionalities.
Collapse
Affiliation(s)
- Di Zhang
- a Department of Biologics Research , Janssen R&D, LLC, Spring House , PA , USA
| | - Brian Whitaker
- a Department of Biologics Research , Janssen R&D, LLC, Spring House , PA , USA
| | - Mehabaw G Derebe
- a Department of Biologics Research , Janssen R&D, LLC, Spring House , PA , USA
| | - Mark L Chiu
- a Department of Biologics Research , Janssen R&D, LLC, Spring House , PA , USA
| |
Collapse
|
25
|
Co-stimulation Agonists via CD137, OX40, GITR, and CD27 for Immunotherapy of Cancer. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
26
|
Dougan M. Checkpoint Blockade Toxicity and Immune Homeostasis in the Gastrointestinal Tract. Front Immunol 2017; 8:1547. [PMID: 29230210 PMCID: PMC5715331 DOI: 10.3389/fimmu.2017.01547] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
Monoclonal antibodies targeting the regulatory immune "checkpoint" receptors CTLA-4, PD-1, and PD-L1 are now standard therapy for diverse malignancies including melanoma, lung cancer, and renal cell carcinoma. Although effective in many patients and able to induce cures in some, targeting these regulatory pathways has led to a new class of immune-related adverse events. In many respects, these immune toxicities resemble idiopathic autoimmune diseases, such as inflammatory bowel disease, autoimmune hepatitis, rheumatoid arthritis, and vitiligo. Understanding the pathogenesis of these immune toxicities will have implications not only for care of patients receiving checkpoint blockade but may also provide critical insights into autoimmune disease. The gastrointestinal (GI) mucosa is arguably the most complex barrier in the body, host to a diverse commensal microflora and constantly challenged by ingested foreign proteins both of which must be tolerated. At the same time, the GI mucosa must defend against pathogenic microorganisms while maintaining sufficient permeability to absorb nutrients. For these reasons, regulatory cells and receptors are likely to play a central role in maintaining the gut barrier and GI toxicities, such as colitis and hepatitis are indeed among the most common side effects of CTLA-4 blockade and to a lesser extent blockade of PD-1 and PD-L1. High-dose corticosteroids are typically effective for management of both checkpoint colitis and hepatitis, although a fraction of patients will require additional immune suppression such as infliximab. Prompt recognition and treatment of these toxicities is essential to prevent more serious complications.
Collapse
Affiliation(s)
- Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
27
|
Sakakibara K, Sato T, Kufe DW, VonHoff DD, Kawabe T. CBP501 induces immunogenic tumor cell death and CD8 T cell infiltration into tumors in combination with platinum, and increases the efficacy of immune checkpoint inhibitors against tumors in mice. Oncotarget 2017; 8:78277-78288. [PMID: 29108228 PMCID: PMC5663279 DOI: 10.18632/oncotarget.20968] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/26/2017] [Indexed: 12/22/2022] Open
Abstract
CBP501, a calmodulin-binding peptide, is an anti-cancer drug candidate and functions as an enhancer of platinum uptake into cancer cells. Here we show that CBP501 promotes immunogenic cell death (ICD) in combination with platinum agents. CBP501 enhanced a clinically relevant low dose of cisplatin (CDDP) in vitro as evidenced by upregulation of ICD markers, including cell surface calreticulin exposure and release of high-mobility group protein box-1. Synergistic induction of ICD by CDDP plus CBP501 as compared to CDDP alone was confirmed in the well-established vaccination assay. Furthermore, cotreatment of CDDP plus CBP501 significantly reduced the tumor growth and upregulated the percentage of tumor infiltrating CD8+ T cell in vivo. Importantly, the antitumor effect of CDDP plus CBP501 was significantly reduced by anti-CD8 antibody treatment. Based on this novel effect of CBP501, we analyzed the combination treatment with immune checkpoint inhibitors in vivo. Mice treated with CBP501 in combination with CDDP and anti-PD-1 or anti-PD-L1 showed an additive antitumor effect. These results support the conclusion that CBP501 enhances CDDP-induced ICD in vitro and in vivo. The findings also support the further clinical development of the CBP501 for enhancing the antitumor activity of immune checkpoint inhibitors in combination with CDDP.
Collapse
Affiliation(s)
| | | | - Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel D VonHoff
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | | |
Collapse
|
28
|
Shrimali R, Ahmad S, Berrong Z, Okoev G, Matevosyan A, Razavi GSE, Petit R, Gupta S, Mkrtichyan M, Khleif SN. Agonist anti-GITR antibody significantly enhances the therapeutic efficacy of Listeria monocytogenes-based immunotherapy. J Immunother Cancer 2017; 5:64. [PMID: 28807056 PMCID: PMC5557467 DOI: 10.1186/s40425-017-0266-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/12/2017] [Indexed: 01/07/2023] Open
Abstract
Background We previously demonstrated that in addition to generating an antigen-specific immune response, Listeria monocytogenes (Lm)-based immunotherapy significantly reduces the ratio of regulatory T cells (Tregs)/CD4+ and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. Since Lm-based immunotherapy is able to inhibit the immune suppressive environment, we hypothesized that combining this treatment with agonist antibody to a co-stimulatory receptor that would further boost the effector arm of immunity will result in significant improvement of anti-tumor efficacy of treatment. Methods Here we tested the immune and therapeutic efficacy of Listeria-based immunotherapy combination with agonist antibody to glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) in TC-1 mouse tumor model. We evaluated the potency of combination on tumor growth and survival of treated animals and profiled tumor microenvironment for effector and suppressor cell populations. Results We demonstrate that combination of Listeria-based immunotherapy with agonist antibody to GITR synergizes to improve immune and therapeutic efficacy of treatment in a mouse tumor model. We show that this combinational treatment leads to significant inhibition of tumor-growth, prolongs survival and leads to complete regression of established tumors in 60% of treated animals. We determined that this therapeutic benefit of combinational treatment is due to a significant increase in tumor infiltrating effector CD4+ and CD8+ T cells along with a decrease of inhibitory cells. Conclusion To our knowledge, this is the first study that exploits Lm-based immunotherapy combined with agonist anti-GITR antibody as a potent treatment strategy that simultaneously targets both the effector and suppressor arms of the immune system, leading to significantly improved anti-tumor efficacy. We believe that our findings depicted in this manuscript provide a promising and translatable strategy that can enhance the overall efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Rajeev Shrimali
- Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Shamim Ahmad
- Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Zuzana Berrong
- Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Grigori Okoev
- Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Adelaida Matevosyan
- Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | | | - Robert Petit
- Advaxis Immunotherapies, Princeton, NJ, 08540, USA
| | - Seema Gupta
- Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Mikayel Mkrtichyan
- Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Samir N Khleif
- Augusta University, Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
29
|
Durham NM, Holoweckyj N, MacGill RS, McGlinchey K, Leow CC, Robbins SH. GITR ligand fusion protein agonist enhances the tumor antigen-specific CD8 T-cell response and leads to long-lasting memory. J Immunother Cancer 2017. [PMID: 28649380 PMCID: PMC5477245 DOI: 10.1186/s40425-017-0247-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The expansion of antigen-specific CD8 T cells is important in generating an effective and long-lasting immune response to tumors and viruses. Glucocorticoid-induced tumor necrosis factor receptor family-related receptor (GITR) is a co-stimulatory receptor that binds the GITR ligand (GITRL). Agonism of GITR can produce important signals that drive expansion of effector T cell populations. METHODS We explored two separate murine tumor models, CT26 and TC-1, for responsiveness to GITR Ligand Fusion Protein(GITRL-FP) monotherapy. In TC-1, GITRL-FP was also combined with concurrent administration of an E7-SLP vaccine. We evaluated tumor growth inhibition by tumor volume measurements as well as changes in CD8 T cell populations and function including cytokine production using flow cytometry. Additionally, we interrogated how these therapies resulted in tumor antigen-specific responses using MHC-I dextramer staining and antigen-specific restimulations. RESULTS In this study, we demonstrate that a GITR ligand fusion protein (GITRL-FP) is an effective modulator of antigen-specific CD8 T cells. In a CT26 mouse tumor model, GITRL-FP promoted expansion of antigen-specific T cells, depletion of regulatory T cells (Tregs), and generation of long-lasting CD8 T cell memory. This memory expansion was dependent on the dose of GITRL-FP and resulted in complete tumor clearance and protection from tumor rechallenge. In contrast, in TC-1 tumor-bearing mice, GITRL-FP monotherapy could not prime an antigen-specific CD8 T cell response and was unable to deplete Tregs. However, when combined with a vaccine targeting E7, treatment with GITRL-FP resulted in an augmentation of the vaccine-induced antigen-specific CD8 T cells, the depletion of Tregs, and a potent antitumor immune response. In both model systems, GITR levels on antigen-specific CD8 T cells were higher than on all other CD8 T cells, and GITRL-FP interacted directly with primed antigen-specific CD8 T cells. CONCLUSIONS When taken together, our results demonstrate that the delivery of GITRL-FP as a therapeutic can promote anti-tumor responses in the presence of tumor-specific CD8 T cells. These findings support further study into combination partners for GITRL-FP that may augment CD8 T-cell priming as well as provide hypotheses that can be tested in human clinical trials exploring GITR agonists including GITRL-FP.
Collapse
Affiliation(s)
- Nick M Durham
- Department of Translational Medicine, MedImmune, One Medimmune Way, Gaithersburg, MD 20878 USA
| | - Nick Holoweckyj
- Department of Translational Medicine, MedImmune, One Medimmune Way, Gaithersburg, MD 20878 USA
| | - Randall S MacGill
- Department of Infectious Disease and Vaccines, MedImmune, One Medimmune Way, Gaithersburg, MD 20878 USA
| | - Kelly McGlinchey
- Department of Oncology, MedImmune, One Medimmune Way, Gaithersburg, MD 20878 USA
| | - Ching Ching Leow
- Department of Translational Medicine, MedImmune, One Medimmune Way, Gaithersburg, MD 20878 USA
| | - Scott H Robbins
- Department of Infectious Disease and Vaccines, MedImmune, One Medimmune Way, Gaithersburg, MD 20878 USA
| |
Collapse
|
30
|
Sukumar S, Wilson DC, Yu Y, Wong J, Naravula S, Ermakov G, Riener R, Bhagwat B, Necheva AS, Grein J, Churakova T, Mangadu R, Georgiev P, Manfra D, Pinheiro EM, Sriram V, Bailey WJ, Herzyk D, McClanahan TK, Willingham A, Beebe AM, Sadekova S. Characterization of MK-4166, a Clinical Agonistic Antibody That Targets Human GITR and Inhibits the Generation and Suppressive Effects of T Regulatory Cells. Cancer Res 2017; 77:4378-4388. [DOI: 10.1158/0008-5472.can-16-1439] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 11/21/2016] [Accepted: 06/06/2017] [Indexed: 11/16/2022]
|
31
|
Belmar NA, Chan SW, Fox MI, Samayoa JA, Stickler MM, Tran NN, Akamatsu Y, Hollenbaugh D, Harding FA, Alvarez HM. Murinization and H Chain Isotype Matching of the Anti-GITR Antibody DTA-1 Reduces Immunogenicity-Mediated Anaphylaxis in C57BL/6 Mice. THE JOURNAL OF IMMUNOLOGY 2017; 198:4502-4512. [PMID: 28446565 DOI: 10.4049/jimmunol.1601512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/27/2017] [Indexed: 11/19/2022]
Abstract
Recent advances in immuno-oncology have shown that the immune system can be activated to induce long-term, durable antitumor responses. For immuno-oncology drug development, immune activation is often explored using rat Abs in immunocompetent mouse models. Although these models can be used to show efficacy, antidrug immune responses to experimental protein-based therapeutics can arise. Immunogenicity of surrogate Abs may therefore represent an important obstacle to the evaluation of the antitumor efficacy of immunomodulator Abs in syngeneic models. A recent publication has shown that anti-glucocorticoid-induced TNFR family-related protein agonistic Ab DTA-1 (rat or murinized IgG2a) can induce the development of anaphylaxis in C57BL/6 mice upon repeated i.p. dosing because of an anti-idiotypic anti-drug Ab immune response. This study was undertaken to address the impact of the immunogenicity derived from the Fc and variable domains. To this end, chimerized (rat V domains/mouse constant regions) and murinized (95% mouse sequence) DTA-1-based surrogate Abs with a murine IgG2c H chain isotype were created. Chimerization and murinization of DTA-1 did not affect receptor binding and glucocorticoid-induced TNFR family-related protein-induced T cell agonistic properties. Similar in vivo antitumor efficacy and intratumoral CD8+/regulatory T cells were also observed. Finally, treatment of C57BL/6 mice with the chimerized and murinized DTA-1 Abs on a C57BL/6-matched IgG2c isotype resulted in reduced development and severity of anaphylaxis as measured by decline of body temperature, behavioral effects, serum IL-4, IgE, and anti-drug Ab levels. These results suggest that careful murinization and selection of a strain-matched H chain isotype are critical to generate ideal surrogate Abs for testing immuno-oncology mechanisms in vivo.
Collapse
Affiliation(s)
- Nicole A Belmar
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| | - Sarah W Chan
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| | - Melvin I Fox
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| | - Josue A Samayoa
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| | - Marcia M Stickler
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| | - Ninian N Tran
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| | - Yoshiko Akamatsu
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| | - Diane Hollenbaugh
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| | - Fiona A Harding
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| | - Hamsell M Alvarez
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| |
Collapse
|
32
|
Liu Z, Hao X, Zhang Y, Zhang J, Carey CD, Falo LD, Storkus WJ, You Z. Intratumoral delivery of tumor antigen-loaded DC and tumor-primed CD4 + T cells combined with agonist α-GITR mAb promotes durable CD8 + T-cell-dependent antitumor immunity. Oncoimmunology 2017; 6:e1315487. [PMID: 28680744 DOI: 10.1080/2162402x.2017.1315487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 01/09/2023] Open
Abstract
The progressive tumor microenvironment (TME) coordinately supports tumor cell expansion and metastasis, while it antagonizes the survival and (poly-)functionality of antitumor T effector cells. There remains a clear need to develop novel therapeutic strategies that can transform the TME into a pro-inflammatory niche that recruits and sustains protective immune cell populations. While intravenous treatment with tumor-primed CD4+ T cells combined with intraperitoneal delivery of agonist anti-glucocorticoid-induced TNF receptor (α-GITR) mAb results in objective antitumor responses in murine early stage disease models, this approach is ineffective against more advanced tumors. Further subcutaneous co-administration of a vaccine consisting of tumor antigen-loaded dendritic cells (DC) failed to improve the antitumor efficacy of this approach. Remarkably, these same three therapeutic agents elicited significant antitumor benefits when the antitumor CD4+ T cells and tumor antigen-loaded DC were co-injected directly into tumors along with intratumoral or intraperitoneal delivery of α-GITR mAb. This latter protocol induced the production of an array of antitumor cytokines and chemokines within the TME, supporting increased tumor-infiltration by antitumor CD8+ T cells capable of mediating tumor regression and extended overall survival.
Collapse
Affiliation(s)
- Zuqiang Liu
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Xingxing Hao
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yi Zhang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,The 3rd Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Jiying Zhang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cara D Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Walter J Storkus
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhaoyang You
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Leyland R, Watkins A, Mulgrew KA, Holoweckyj N, Bamber L, Tigue NJ, Offer E, Andrews J, Yan L, Mullins S, Oberst MD, Coates Ulrichsen J, Leinster DA, McGlinchey K, Young L, Morrow M, Hammond SA, Mallinder P, Herath A, Leow CC, Wilkinson RW, Stewart R. A Novel Murine GITR Ligand Fusion Protein Induces Antitumor Activity as a Monotherapy That Is Further Enhanced in Combination with an OX40 Agonist. Clin Cancer Res 2017; 23:3416-3427. [DOI: 10.1158/1078-0432.ccr-16-2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/14/2016] [Accepted: 01/02/2017] [Indexed: 11/16/2022]
|
34
|
Zhang D, Chen Z, Wang DC, Wang X. Regulatory T cells and potential inmmunotherapeutic targets in lung cancer. Cancer Metastasis Rev 2016; 34:277-90. [PMID: 25962964 DOI: 10.1007/s10555-015-9566-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lung cancer and metastasis are two of the most lethal diseases globally and seldom have effective therapies. Immunotherapy is considered as one of the powerful alternatives. Regulatory T cells (Tregs) can suppress the activation of the immune system, maintain immune tolerance to self-antigens, and contribute to immunosuppression of antitumor immunity, which is critical for tumor immune evasion in epithelial malignancies, including lung cancer. The present review gives an overview of the biological functions and regulations of Tregs associated with the development of lung cancer and metastasis and explores the potentials of Treg-oriented therapeutic targets. Subsets and features of Tregs mainly include naturally occurring Tregs (nTregs) (CD4(+) nTregs and CD8(+) nTregs) and adaptive/induced Tregs (CD4(+) iTregs and CD8(+) iTregs). Tregs, especially in circulation or regional lymph nodes, play an important role in the progress and metastasis of lung cancer and are considered as therapeutic targets and biomarkers to predict the survival length and recurrence of lung cancer. Increasing understanding of Tregs' functional mechanisms will lead to a number of clinical trials on the discovery and development of Treg-oriented new therapies. Tregs play important roles in lung cancer and metastasis, and the understanding of Tregs becomes more critical for clinical applications and therapies. Thus, Tregs and associated factors can be potential therapeutic targets for lung cancer immunotherapy.
Collapse
Affiliation(s)
- Ding Zhang
- Minhang Hospital, Zhongshan Hospital, Fudan University, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai, China
| | | | | | | |
Collapse
|
35
|
Mahne AE, Mauze S, Joyce-Shaikh B, Xia J, Bowman EP, Beebe AM, Cua DJ, Jain R. Dual Roles for Regulatory T-cell Depletion and Costimulatory Signaling in Agonistic GITR Targeting for Tumor Immunotherapy. Cancer Res 2016; 77:1108-1118. [DOI: 10.1158/0008-5472.can-16-0797] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/14/2016] [Accepted: 09/27/2016] [Indexed: 11/16/2022]
|
36
|
Knee DA, Hewes B, Brogdon JL. Rationale for anti-GITR cancer immunotherapy. Eur J Cancer 2016; 67:1-10. [PMID: 27591414 DOI: 10.1016/j.ejca.2016.06.028] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/18/2022]
Abstract
Over the past decade, our understanding of cancer immunotherapy has evolved from assessing peripheral responses in the blood to monitoring changes in the tumour microenvironment. Both preclinical and clinical experience has taught us that modulation of the tumour microenvironment has significant implications to generating robust antitumour immunity. Clinical benefit has been well documented to correlate with a tumour microenvironment that contains a dense infiltration of CD8+CD45RO+ T effectors and a high ratio of CD8+ T cells to FoxP3+ regulatory T cells (Tregs). In preclinical tumour models, modulation of the Glucocorticoid induced TNF receptor (GITR)/GITR ligand (GITRL) axis suggests this pathway may provide the desired biological outcome of inhibiting Treg function while activating CD8+ T effector cells. This review will focus on the scientific rationale and considerations for the therapeutic targeting of GITR for cancer immunotherapy and will discuss possible combination strategies to enhance clinical benefit.
Collapse
Affiliation(s)
- Deborah A Knee
- Department of Cancer Immunotherapeutics, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA.
| | - Becker Hewes
- Department of Translational & Clinical Oncology, Novartis Institute for Biomedical Research, 220 Massachusetts Ave, Cambridge, MA, USA.
| | - Jennifer L Brogdon
- Department of Exploratory Immuno-Oncology, Novartis Institute for Biomedical Research, 250 Massachusetts Ave, Cambridge, MA, USA.
| |
Collapse
|
37
|
Vilgelm AE, Johnson DB, Richmond A. Combinatorial approach to cancer immunotherapy: strength in numbers. J Leukoc Biol 2016; 100:275-90. [PMID: 27256570 PMCID: PMC6608090 DOI: 10.1189/jlb.5ri0116-013rr] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
Immune-checkpoint blockade therapy with antibodies targeting CTLA-4 and PD-1 has revolutionized melanoma treatment by eliciting responses that can be remarkably durable and is now advancing to other malignancies. However, not all patients respond to immune-checkpoint inhibitors. Extensive preclinical evidence suggests that combining immune-checkpoint inhibitors with other anti-cancer treatments can greatly improve the therapeutic benefit. The first clinical success of the combinatorial approach to cancer immunotherapy was demonstrated using a dual-checkpoint blockade with CTLA-4 and PD-1 inhibitors, which resulted in accelerated FDA approval of this therapeutic regimen. In this review, we discuss the combinations of current and emerging immunotherapeutic agents in clinical and preclinical development and summarize the insights into potential mechanisms of synergistic anti-tumor activity gained from animal studies. These promising combinatorial partners for the immune-checkpoint blockade include therapeutics targeting additional inhibitory receptors of T cells, such as TIM-3, LAG-3, TIGIT, and BTLA, and agonists of T cell costimulatory receptors 4-1BB, OX40, and GITR, as well as agents that promote cancer cell recognition by the immune system, such as tumor vaccines, IDO inhibitors, and agonists of the CD40 receptor of APCs. We also review the therapeutic potential of regimens combining the immune-checkpoint blockade with therapeutic interventions that have been shown to enhance immunogenicity of cancer cells, including oncolytic viruses, RT, epigenetic therapy, and senescence-inducing therapy.
Collapse
Affiliation(s)
- Anna E Vilgelm
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and
| | - Douglas B Johnson
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and
| |
Collapse
|
38
|
Mercadante ER, Lorenz UM. Breaking Free of Control: How Conventional T Cells Overcome Regulatory T Cell Suppression. Front Immunol 2016; 7:193. [PMID: 27242798 PMCID: PMC4870238 DOI: 10.3389/fimmu.2016.00193] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/02/2016] [Indexed: 01/10/2023] Open
Abstract
Conventional T (Tcon) cells are crucial in shaping the immune response, whether it is protection against a pathogen, a cytotoxic attack on tumor cells, or an unwanted response to self-antigens in the context of autoimmunity. In each of these immune settings, regulatory T cells (Tregs) can potentially exert control over the Tcon cell response, resulting in either suppression or activation of the Tcon cells. Under physiological conditions, Tcon cells are able to transiently overcome Treg-imposed restraints to mount a protective response against an infectious threat, achieving clonal expansion, differentiation, and effector function. However, evidence has accumulated in recent years to suggest that Tcon cell resistance to Treg-mediated suppression centrally contributes to the pathogenesis of autoimmune disease. Tipping the balance too far in the other direction, cancerous tumors utilize Tregs to establish an overly suppressive microenvironment, preventing antitumor Tcon cell responses. Given the wide-ranging clinical importance of the Tcon/Treg interaction, this review aims to provide a better understanding of what determines whether a Tcon cell is susceptible to Treg-mediated suppression and how perturbations to this finely tuned balance play a role in pathological conditions. Here, we focus in detail on the complex array of factors that confer Tcon cells with resistance to Treg suppression, which we have divided into two categories: (1) extracellular factor-mediated signaling and (2) intracellular signaling molecules. Further, we explore the therapeutic implications of manipulating the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway, which is proposed to be the convergence point of signaling pathways that mediate Tcon resistance to suppression. Finally, we address important unresolved questions on the timing and location of acquisition of resistance, and the stability of the “Treg-resistant” phenotype.
Collapse
Affiliation(s)
- Emily R Mercadante
- Department of Microbiology Immunology and Cancer Biology, Beirne Carter Center for Immunology Research, University of Virginia , Charlottesville, VA , USA
| | - Ulrike M Lorenz
- Department of Microbiology Immunology and Cancer Biology, Beirne Carter Center for Immunology Research, University of Virginia , Charlottesville, VA , USA
| |
Collapse
|
39
|
Zhu X, Lang J. The significance and therapeutic potential of PD-1 and its ligands in ovarian cancer: A systematic review. Gynecol Oncol 2016; 142:184-189. [PMID: 27063803 DOI: 10.1016/j.ygyno.2016.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023]
Abstract
Surgery, radiotherapy and chemotherapy are the mainstay of malignant cancer treatments. However, with the development of immunology, the emerging immunotherapy represents a rational and alternative approach for the treatment of human cancer, including ovarian cancer (OC). Based on a body of evidence and the clinical success of immunotherapy in many malignancies, it is confirmed that blocking the programmed death 1 (PD-1) and its ligands in OC is feasible and valid both in animal models and patients. Immunotherapy may play a significant role in the future clinical management and improve the prognosis of OC. This review will focus on the biological functions, treatment response, toxicity and viable target of PD-1 and its ligands in OC. Recognition of the multiple functions of PD-1 and its ligands in ovarian cancer will serve to deepen our understanding of the nature of OC, develop novel immunotherapy approaches and discover possible diagnostic and prognostic biomarkers in future clinical decisions.
Collapse
Affiliation(s)
- Xinxin Zhu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
40
|
Brunn ND, Mauze S, Gu D, Wiswell D, Ueda R, Hodges D, Beebe AM, Zhang S, Escandón E. The Role of Anti-Drug Antibodies in the Pharmacokinetics, Disposition, Target Engagement, and Efficacy of a GITR Agonist Monoclonal Antibody in Mice. J Pharmacol Exp Ther 2016; 356:574-86. [PMID: 26669426 DOI: 10.1124/jpet.115.229864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/14/2015] [Indexed: 03/08/2025] Open
Abstract
Administration of biologics to enhance T-cell function is part of a rapidly growing field of cancer immunotherapy demonstrated by the unprecedented clinical success of several immunoregulatory receptor targeting antibodies. While these biologic agents confer significant anti-tumor activity through targeted immune response modulation, they can also elicit broad immune responses potentially including the production of anti-drug antibodies (ADAs). DTA-1, an agonist monoclonal antibody against GITR, is a highly effective anti-tumor treatment in preclinical models. We demonstrate that repeated dosing with murinized DTA-1 (mDTA-1) generates ADAs with corresponding reductions in drug exposure and engagement of GITR on circulating CD3(+) CD4(+) T cells, due to rapid hepatic drug uptake and catabolism. Mice implanted with tumors after induction of preexisting mDTA-1 ADA show no anti-tumor efficacy when given 3 mg/kg mDTA-1, an efficacious dose in naive mice. Nonetheless, increasing mDTA-1 treatment to 30 mg/kg in ADA-positive mice restores mDTA-1 exposure and GITR engagement on circulating CD3(+) CD4(+) T cells, thereby partially restoring anti-tumor efficacy. Formation of anti-mDTA-1 antibodies and changes in drug exposure and disposition does not occur in GITR(-/-) mice, consistent with a role for GITR agonism in humoral immunity. Finally, the administration of muDX400, a murinized monoclonal antibody against the checkpoint inhibitor PD-1, dosed alone or combined with mDTA-1 did not result in reduced muDX400 exposure, nor did it change the nature of the anti-mDTA-1 response. This indicates that anti-GITR immunogenicity may not necessarily impact the pharmacology of coadministered monoclonal antibodies, supporting combination immunomodulatory strategies.
Collapse
Affiliation(s)
- Nicholas D Brunn
- Biologics DMPK and Disposition (N.D.B., D.W., D.H., E.E.), Immuno-oncology (S.M., D.G., R.U., A.M.B.), and Bioanalytics Department (S.Z.), Merck Research Laboratories, Merck & Co. Inc., Palo Alto, California
| | - Smita Mauze
- Biologics DMPK and Disposition (N.D.B., D.W., D.H., E.E.), Immuno-oncology (S.M., D.G., R.U., A.M.B.), and Bioanalytics Department (S.Z.), Merck Research Laboratories, Merck & Co. Inc., Palo Alto, California
| | - Danling Gu
- Biologics DMPK and Disposition (N.D.B., D.W., D.H., E.E.), Immuno-oncology (S.M., D.G., R.U., A.M.B.), and Bioanalytics Department (S.Z.), Merck Research Laboratories, Merck & Co. Inc., Palo Alto, California
| | - Derek Wiswell
- Biologics DMPK and Disposition (N.D.B., D.W., D.H., E.E.), Immuno-oncology (S.M., D.G., R.U., A.M.B.), and Bioanalytics Department (S.Z.), Merck Research Laboratories, Merck & Co. Inc., Palo Alto, California
| | - Roanna Ueda
- Biologics DMPK and Disposition (N.D.B., D.W., D.H., E.E.), Immuno-oncology (S.M., D.G., R.U., A.M.B.), and Bioanalytics Department (S.Z.), Merck Research Laboratories, Merck & Co. Inc., Palo Alto, California
| | - Douglas Hodges
- Biologics DMPK and Disposition (N.D.B., D.W., D.H., E.E.), Immuno-oncology (S.M., D.G., R.U., A.M.B.), and Bioanalytics Department (S.Z.), Merck Research Laboratories, Merck & Co. Inc., Palo Alto, California
| | - Amy M Beebe
- Biologics DMPK and Disposition (N.D.B., D.W., D.H., E.E.), Immuno-oncology (S.M., D.G., R.U., A.M.B.), and Bioanalytics Department (S.Z.), Merck Research Laboratories, Merck & Co. Inc., Palo Alto, California
| | - Shuli Zhang
- Biologics DMPK and Disposition (N.D.B., D.W., D.H., E.E.), Immuno-oncology (S.M., D.G., R.U., A.M.B.), and Bioanalytics Department (S.Z.), Merck Research Laboratories, Merck & Co. Inc., Palo Alto, California
| | - Enrique Escandón
- Biologics DMPK and Disposition (N.D.B., D.W., D.H., E.E.), Immuno-oncology (S.M., D.G., R.U., A.M.B.), and Bioanalytics Department (S.Z.), Merck Research Laboratories, Merck & Co. Inc., Palo Alto, California
| |
Collapse
|
41
|
Kim YH, Shin SM, Choi BK, Oh HS, Kim CH, Lee SJ, Kim KH, Lee DG, Park SH, Kwon BS. Authentic GITR Signaling Fails To Induce Tumor Regression unless Foxp3+ Regulatory T Cells Are Depleted. THE JOURNAL OF IMMUNOLOGY 2015; 195:4721-9. [DOI: 10.4049/jimmunol.1403076] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 09/08/2015] [Indexed: 12/22/2022]
|
42
|
Yu N, Fu S, Xu Z, Liu Y, Hao J, Zhang A, Wang B. Synergistic antitumor responses by combined GITR activation and sunitinib in metastatic renal cell carcinoma. Int J Cancer 2015; 138:451-62. [PMID: 26239999 DOI: 10.1002/ijc.29713] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/09/2015] [Accepted: 07/21/2015] [Indexed: 12/18/2022]
Abstract
Sunitinib, a multitargeted tyrosine kinase inhibitor, is the frontline therapy for renal and gastrointestinal cancers. In view of its well-documented proapoptotic and immunoadjuvant properties, we speculate that combination of Sunitinib and immunotherapy would provide a synergistic antitumor effect. Here, we report that a remarkably synergistic antitumor responses elicited by the combined treatment of Sunitinib and an agonistic antibody against glucocorticoid-induced TNFR related protein (GITR) in a model of metastatic renal cell carcinoma. Sunitinib significantly increased the infiltration, activation, and proliferation and/or cytotoxicity of CD8(+) T cells and NK cells in liver metastatic foci when combined with the anti (α)-GITR agonist, which was associated with treatment-induced prominent upregulation of Th1-biased immune genes in the livers from mice receiving combined therapy versus single treatment. Sunitinib/α-GITR treatment also markedly promoted the maturation, activation and cytokine production of liver-resident macrophages and DCs compared with that achieved by α-GITR or Sunitinib treatment alone in mice. Cell depletion experiments demonstrated that CD8(+) T cells, NK cells and macrophage infiltrating liver metastatic foci all contribute to the antitumor effect induced by combined treatment. Furthermore, mechanistic investigation revealed that Sunitinib treatment reprograms tumor-associated macrophages toward classically activated or "M1" polarization upon GITR stimulation and consequently mounts an antitumor CD8(+) T and NK cell response via inhibiting STAT3 activity. Thus, our findings provide a proof of concept that Sunitinib can synergize with α-GITR treatment to remodel the tumor immune microenvironment to trigger regressions of an established metastatic cancer.
Collapse
Affiliation(s)
- Nengwang Yu
- Department of Urology, General Hospital of Jinan Military Command, Jinan, Shandong, China
| | - Shuai Fu
- Shandong Cancer Hospital & Institute, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zhonghua Xu
- Department of Urology, Qilu Hospital, Jinan, Shandong, China
| | - Yi Liu
- Department of Urology, General Hospital of Jinan Military Command, Jinan, Shandong, China
| | - Junwen Hao
- Department of Urology, General Hospital of Jinan Military Command, Jinan, Shandong, China
| | - Aimin Zhang
- Department of Urology, General Hospital of Jinan Military Command, Jinan, Shandong, China
| | - Baocheng Wang
- Department of Oncology, General Hospital of Jinan Military Command, Jinan, Shandong, China
| |
Collapse
|
43
|
Glucocorticoid-induced tumor necrosis factor receptor-related protein co-stimulation facilitates tumor regression by inducing IL-9-producing helper T cells. Nat Med 2015; 21:1010-7. [PMID: 26280119 DOI: 10.1038/nm.3922] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/13/2015] [Indexed: 12/12/2022]
Abstract
T cell stimulation via glucocorticoid-induced tumor necrosis factor receptor (TNFR)-related protein (GITR) elicits antitumor activity in various tumor models; however, the underlying mechanism of action remains unclear. Here we demonstrate a crucial role for interleukin (IL)-9 in antitumor immunity generated by the GITR agonistic antibody DTA-1. IL-4 receptor knockout (Il4ra(-/-)) mice, which have reduced expression of IL-9, were resistant to tumor growth inhibition by DTA-1. Notably, neutralization of IL-9 considerably impaired tumor rejection induced by DTA-1. In particular, DTA-1-induced IL-9 promoted tumor-specific cytotoxic T lymphocyte (CTL) responses by enhancing the function of dendritic cells in vivo. Furthermore, GITR signaling enhanced the differentiation of IL-9-producing CD4(+) T-helper (TH9) cells in a TNFR-associated factor 6 (TRAF6)- and NF-κB-dependent manner and inhibited the generation of induced regulatory T cells in vitro. Our findings demonstrate that GITR co-stimulation mediates antitumor immunity by promoting TH9 cell differentiation and enhancing CTL responses and thus provide a mechanism of action for GITR agonist-mediated cancer immunotherapies.
Collapse
|
44
|
Melero I, Berman DM, Aznar MA, Korman AJ, Pérez Gracia JL, Haanen J. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer 2015. [PMID: 26205340 DOI: 10.1038/nrc3973] [Citation(s) in RCA: 519] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunotherapy has now been clinically validated as an effective treatment for many cancers. There is tremendous potential for synergistic combinations of immunotherapy agents and for combining immunotherapy agents with conventional cancer treatments. Clinical trials combining blockade of cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) may serve as a paradigm to guide future approaches to immuno-oncology combination therapy. In this Review, we discuss progress in the synergistic design of immune-targeting combination therapies and highlight the challenges involved in tailoring such strategies to provide maximal benefit to patients.
Collapse
Affiliation(s)
- Ignacio Melero
- Centro de Investigación Médica Aplicada (CIMA) and Clínica Universitaria, Avenida Pío XII, 55 E-31008, Universidad de Navarra, Pamplona, Spain
| | - David M Berman
- Bristol-Myers Squibb, 3551 Lawrenceville Princeton, New Jersey 08648, USA
| | - M Angela Aznar
- Centro de Investigación Médica Aplicada (CIMA) and Clínica Universitaria, Avenida Pío XII, 55 E-31008, Universidad de Navarra, Pamplona, Spain
| | - Alan J Korman
- Bristol-Myers Squibb Biologics Discovery California, 700 Bay Road, Redwood City, California 94063, USA
| | - José Luis Pérez Gracia
- Centro de Investigación Médica Aplicada (CIMA) and Clínica Universitaria, Avenida Pío XII, 55 E-31008, Universidad de Navarra, Pamplona, Spain
| | - John Haanen
- The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
45
|
Sanmamed MF, Pastor F, Rodriguez A, Perez-Gracia JL, Rodriguez-Ruiz ME, Jure-Kunkel M, Melero I. Agonists of Co-stimulation in Cancer Immunotherapy Directed Against CD137, OX40, GITR, CD27, CD28, and ICOS. Semin Oncol 2015; 42:640-55. [PMID: 26320067 DOI: 10.1053/j.seminoncol.2015.05.014] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
T and natural killer (NK) lymphocytes are considered the main effector players in the immune response against tumors. Full activation of T and NK lymphocytes requires the coordinated participation of several surface receptors that meet their cognate ligands through structured transient cell-to-cell interactions known as immune synapses. In the case of T cells, the main route of stimulation is driven by antigens as recognized in the form of short polypeptides associated with major histocompatibility complex (MHC) antigen-presenting molecules. However, the functional outcome of T-cell stimulation towards clonal expansion and effector function acquisition is contingent on the contact of additional surface receptor-ligand pairs and on the actions of cytokines in the milieu. While some of those interactions are inhibitory, others are activating and are collectively termed co-stimulatory receptors. The best studied belong to either the immunoglobulin superfamily or the tumor necrosis factor-receptor (TNFR) family. Co-stimulatory receptors include surface moieties that are constitutively expressed on resting lymphocytes such as CD28 or CD27 and others whose expression is induced upon recent previous antigen priming, ie, CD137, GITR, OX40, and ICOS. Ligation of these glycoproteins with agonist antibodies actively conveys activating signals to the lymphocyte. Those signals, acting through a potentiation of the cellular immune response, give rise to anti-tumor effects in mouse models. Anti-CD137 antibodies are undergoing clinical trials with evidence of clinical activity and anti-OX40 monoclonal antibodies (mAbs) induce interesting immunomodulation effects in humans. Antibodies anti-CD27 and GITR have recently entered clinical trials. The inherent dangers of these immunomodulation strategies are the precipitation of excessive systemic inflammation or/and invigorating silent autoimmunity. Agonist antibodies, recombinant forms of the natural ligands, and polynucleotide-based aptamers constitute the pharmacologic tools to manipulate such receptors. Preclinical data suggest that the greatest potential of these agents is achieved in combined treatment strategies.
Collapse
Affiliation(s)
- Miguel F Sanmamed
- Department of Immunobiology, Yale School of Medicine, New Haven, CT.
| | - Fernando Pastor
- Centro de investigación médica aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Alfonso Rodriguez
- Centro de investigación médica aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | | | | | | | - Ignacio Melero
- Centro de investigación médica aplicada (CIMA), Universidad de Navarra, Pamplona, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
46
|
Glucocorticoid-induced tumour necrosis factor receptor-related protein: a key marker of functional regulatory T cells. J Immunol Res 2015; 2015:171520. [PMID: 25961057 PMCID: PMC4413981 DOI: 10.1155/2015/171520] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/18/2015] [Indexed: 12/18/2022] Open
Abstract
Glucocorticoid-induced tumour necrosis factor receptor-related protein (GITR, TNFRSF18, and CD357) is expressed at high levels in activated T cells and regulatory T cells (Tregs). In this review, we present data from mouse and human studies suggesting that GITR is a crucial player in the differentiation of thymic Tregs (tTregs), and expansion of both tTregs and peripheral Tregs (pTregs). The role of GITR in Treg expansion is confirmed by the association of GITR expression with markers of memory T cells. In this context, it is not surprising that GITR appears to be a marker of active Tregs, as suggested by the association of GITR expression with other markers of Treg activation or cytokines with suppressive activity (e.g., IL-10 and TGF-β), the presence of GITR(+) cells in tissues where Tregs are active (e.g., solid tumours), or functional studies on Tregs. Furthermore, some Treg subsets including Tr1 cells express either low or no classical Treg markers (e.g., FoxP3 and CD25) and do express GITR. Therefore, when evaluating changes in the number of Tregs in human diseases, GITR expression must be evaluated. Moreover, GITR should be considered as a marker for isolating Tregs.
Collapse
|
47
|
Abstract
Conventional therapy for malignant glioma (MG) fails to specifically eliminate tumor cells, resulting in toxicity that limits therapeutic efficacy. In contrast, antibody-based immunotherapy uses the immune system to eliminate tumor cells with exquisite specificity. Increased understanding of the pathobiology of MG and the profound immunosuppression present among patients with MG has revealed several biologic targets amenable to antibody-based immunotherapy. Novel antibody engineering techniques allow for the production of fully human antibodies or antibody fragments with vastly reduced antigen-binding dissociation constants, increasing safety when used clinically as therapeutics. In this report, we summarize the use of antibody-based immunotherapy for MG. Approaches currently under investigation include the use of antibodies or antibody fragments to: (1) redirect immune effector cells to target tumor mutations, (2) inhibit immunosuppressive signals and thereby stimulate an immunological response against tumor cells, and (3) provide costimulatory signals to evoke immunologic targeting of tumor cells. These approaches demonstrate highly compelling safety and efficacy for the treatment of MG, providing a viable adjunct to current standard-of-care therapy for MG.
Collapse
Affiliation(s)
- Patrick C Gedeon
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC; Department of Biomedical Engineering, Duke University, Durham, NC; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC.
| | - Katherine A Riccione
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC; Department of Biomedical Engineering, Duke University, Durham, NC; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC
| | - Peter E Fecci
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - John H Sampson
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC; Department of Biomedical Engineering, Duke University, Durham, NC; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC
| |
Collapse
|
48
|
Clouthier DL, Watts TH. Cell-specific and context-dependent effects of GITR in cancer, autoimmunity, and infection. Cytokine Growth Factor Rev 2014; 25:91-106. [DOI: 10.1016/j.cytogfr.2013.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 12/19/2022]
|
49
|
Abstract
Immunotherapy for cancer using antibodies to enhance T-cell function has been successful in recent clinical trials. Many molecules that improve activation and effector function of T cells have been investigated as potential new targets for immunomodulatory antibodies, including the tumor necrosis factor receptor superfamily members GITR and OX40. Antibodies engaging GITR or OX40 result in significant tumor protection in preclinical models. In this study, we observed that the GITR agonist antibody DTA-1 causes anaphylaxis in mice upon repeated intraperitoneal dosing. DTA-1-induced anaphylaxis requires GITR, CD4(+) T cells, B cells, and interleukin-4. Transfer of serum antibodies from DTA-1-treated mice, which contain high levels of DTA-1-specific immunoglobulin G1 (IgG1), can induce anaphylaxis in naive mice upon administration of an additional dose of DTA-1, suggesting that anaphylaxis results from anti-DTA-1 antibodies. Depletion of basophils and blockade of platelet-activating factor, the key components of the IgG1 pathway of anaphylaxis, rescues the mice from DTA-1-induced anaphylaxis. These results demonstrate a previously undescribed lethal side effect of repetitive doses of an agonist immunomodulatory antibody as well as insight into the mechanism of toxicity, which may offer a means of preventing adverse effects in future clinical trials using anti-GITR or other agonist antibodies as immunotherapies.
Collapse
|
50
|
Lu L, Xu X, Zhang B, Zhang R, Ji H, Wang X. Combined PD-1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs. J Transl Med 2014; 12:36. [PMID: 24502656 PMCID: PMC4104995 DOI: 10.1186/1479-5876-12-36] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/04/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The coinhibitory receptor Programmed Death-1 (PD-1) inhibits effector functions of activated T cells and prevents autoimmunity, however, cancer hijack this pathway to escape from immune attack. The costimulatory receptor glucocorticoid-induced TNFR related protein (GITR) is up-regulated on activated T cells and increases their proliferation, activation and cytokine production. We hypothesize that concomitant PD-1 blockade and GITR triggering would synergistically improve the effector functions of tumor-infiltrating T cells and increase the antitumor immunity. In present study, we evaluated the antitumor effects and mechanisms of combined PD-1 blockade and GITR triggering in a clinically highly relevant murine ID8 ovarian cancer model. METHODS Mice with 7 days-established peritoneal ID8 ovarian cancer were treated intraperitoneally (i.p.) with either control, anti-PD-1, anti-GITR or anti-PD-1/GITR monoclonal antibody (mAb) and their survival was evaluated; the phenotype and function of tumor-associated immune cells in peritoneal cavity of treated mice was analyzed by flow cytometry, and systemic antigen-specific immune response was evaluated by ELISA and cytotoxicity assay. RESULTS Combined anti-PD-1/GITR mAb treatment remarkably inhibited peritoneal ID8 tumor growth with 20% of mice tumor free 90 days after tumor challenge while treatment with either anti-PD-1 or anti-GITR mAb alone exhibited little antitumor effect. The durable antitumor effect was associated with a memory immune response and conferred by CD4⁺ cells and CD8⁺ T cells. The treatment of anti-PD-1/GITR mAb increased the frequencies of interferon-γ-producing effector T cells and decreased immunosuppressive regulatory T cells and myeloid-derived suppressor cells, shifting an immunosuppressive tumor milieu to an immunostimulatory state in peritoneal cavity. In addition, combined treatment of anti-PD-1/GITR mAb mounted an antigen-specific immune response as evidenced by antigen-specific IFN-γ production and cytolytic activity of spleen cells from treated mice. More importantly, combined treatment of anti-PD-1/GITR mAb and chemotherapeutic drugs (cisplatin or paclitaxel) further increased the antitumor efficacy with 80% of mice obtaining tumor-free long-term survival in murine ID8 ovarian cancer and 4 T1 breast cancer models. CONCLUSIONS Combined anti-PD-1/GITR mAb treatment induces a potent antitumor immunity, which can be further promoted by chemotherapeutic drugs. A combined strategy of anti-PD-1/GITR mAb plus cisplatin or paclitaxel should be considered translation into clinic.
Collapse
Affiliation(s)
| | | | | | | | - Hongzan Ji
- Department of Surgical Oncology, Jindu Hospital, Nanjing 210002, China.
| | | |
Collapse
|