1
|
Li MR, Lu LQ, Zhang YY, Yao BF, Tang C, Dai SY, Luo XJ, Peng J. Sonic hedgehog signaling facilitates pyroptosis in mouse heart following ischemia/reperfusion via enhancing the formation of CARD10-BCL10-MALT1 complex. Eur J Pharmacol 2024; 984:177019. [PMID: 39343081 DOI: 10.1016/j.ejphar.2024.177019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Pyroptosis has been found to contribute to myocardial ischemia/reperfusion (I/R) injury, but the exact mechanisms that initiate myocardial pyroptosis are not fully elucidated. Sonic hedgehog (SHH) signaling is activated in heart suffered I/R, and intervention of SHH signaling has been demonstrated to protect heart from I/R injury. Caspase recruitment domain-containing protein 10 (CARD10)-B cell lymphoma 10 (BCL10)-mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) (CBM) complex could transduce signals from the membrane and induce inflammatory pathways in non-hematopoietic cells, which could be a downstream effector of SHH signaling pathway. This study aims to explore the role of SHH signaling in I/R-induced myocardial pyroptosis and its relationship with the CBM complex. C57BL/6J mice were subjected to 45 min-ischemia followed by 24 h-reperfusion to establish a myocardial I/R model, and H9c2 cells underwent hypoxia/reoxygenation (H/R) to mimic myocardial I/R model in vitro. Firstly, SHH signaling was significantly activated in heart suffered I/R in an autocrine- or paracrine-dependent manner via its receptor PTCH1, and inhibition of SHH signaling decreased myocardial injury via reducing caspase-11-dependent pyroptosis, concomitant with attenuating CBM complex formation. Secondly, suppression of SHH signaling decreased protein kinase C α (PKCα) level, but inhibition of PKCα attenuated CBM complex formation without impacting the protein levels of SHH and PTCH1. Finally, disruption of the CBM complex prevented MALT1 from recruiting of TRAF6, which was believed to trigger the caspase-11-dependent pyroptosis. Based on these results, we conclude that inhibition of SHH signaling suppresses pyroptosis via attenuating PKCα-mediated CARD10-BCL10-MALT1 complex formation in mouse heart suffered I/R.
Collapse
Affiliation(s)
- Ming-Rui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Li-Qun Lu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Bi-Feng Yao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Can Tang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Shu-Yan Dai
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
2
|
Chiba Y, Doi T, Obayashi K, Sumida K, Nagasaka S, Wang KY, Yamasaki K, Masago K, Matsushita H, Kuroda H, Yatera K, Endo M. Caspase-4 promotes metastasis and interferon-γ-induced pyroptosis in lung adenocarcinoma. Commun Biol 2024; 7:699. [PMID: 38849594 PMCID: PMC11161495 DOI: 10.1038/s42003-024-06402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Caspase-4 (CASP4) is a member of the inflammatory caspase subfamily and promotes inflammation. Here, we report that CASP4 in lung adenocarcinoma cells contributes to both tumor progression via angiogenesis and tumor hyperkinesis and tumor cell killing in response to high interferon (IFN)-γ levels. We observe that elevated CASP4 expression in the primary tumor is associated with cancer progression in patients with lung adenocarcinoma. Further, CASP4 knockout attenuates tumor angiogenesis and metastasis in subcutaneous tumor mouse models. CASP4 enhances the expression of genes associated with angiogenesis and cell migration in lung adenocarcinoma cell lines through nuclear factor kappa-light chain-enhancer of activated B cell signaling without stimulation by lipopolysaccharide or tumor necrosis factor. CASP4 is induced by endoplasmic reticulum stress or IFN-γ via signal transducer and activator of transcription 1. Most notably, lung adenocarcinoma cells with high CASP4 expression are more prone to IFN-γ-induced pyroptosis than those with low CASP4 expression. Our findings indicate that the CASP4 level in primary lung adenocarcinoma can predict metastasis and responsiveness to high-dose IFN-γ therapy due to cancer cell pyroptosis.
Collapse
Affiliation(s)
- Yosuke Chiba
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Tomomitsu Doi
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Kunie Obayashi
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Kazuhiro Sumida
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Shohei Nagasaka
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Ke-Yong Wang
- Shared-Use Research Center, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Kei Yamasaki
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Katsuhiro Masago
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hiroaki Kuroda
- Department of Surgery, Teikyo University Mizonokuchi Hospital, Kawasaki, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan.
| |
Collapse
|
3
|
Sumida K, Doi T, Obayashi K, Chiba Y, Nagasaka S, Ogino N, Miyagawa K, Baba R, Morimoto H, Hara H, Terabayashi T, Ishizaki T, Harada M, Endo M. Caspase-4 has a role in cell division in epithelial cells through actin depolymerization. Biochem Biophys Res Commun 2024; 695:149394. [PMID: 38157629 DOI: 10.1016/j.bbrc.2023.149394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
In addition to its role in pyroptosis and inflammatory cytokine maturation, caspase-4 (CASP4) also contributes to the fusion of phagosomes with lysosomes and cell migration. However, its role in cell division remains elusive. In this study, we demonstrate that CASP4 is indispensable for proper cell division in epithelial cells. Knockout of CASP4 (CASP4 KO) in HepG2 cells led to delayed cell proliferation, increased cell size, and increased multinucleation. In mitosis, CASP4 KO cells showed multipolar spindles, asymmetric spindle positioning, and chromosome segregation errors, ultimately increasing DNA content and chromosome number. We also found that phalloidin, a marker of filamentous actin, increased in CASP4 KO cells owing to suppressed actin depolymerization. Moreover, the levels of actin polymerization-related proteins, including Rho-associated protein kinase1 (ROCK1), LIM kinase1 (LIMK1), and phosphorylated cofilin, significantly increased in CASP4 KO cells. These results suggest that CASP4 contributes to proper cell division through actin depolymerization.
Collapse
Affiliation(s)
- Kazuhiro Sumida
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tomomitsu Doi
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kunie Obayashi
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yosuke Chiba
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shohei Nagasaka
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Noriyoshi Ogino
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Koichiro Miyagawa
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ryoko Baba
- Department of Anatomy, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroyuki Morimoto
- Department of Anatomy, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideki Hara
- Department of Infectious Diseases, Division of Microbiology and Immunochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Takeshi Terabayashi
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Toshimasa Ishizaki
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan.
| |
Collapse
|
4
|
Sahoo G, Samal D, Khandayataray P, Murthy MK. A Review on Caspases: Key Regulators of Biological Activities and Apoptosis. Mol Neurobiol 2023; 60:5805-5837. [PMID: 37349620 DOI: 10.1007/s12035-023-03433-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Caspases are proteolytic enzymes that belong to the cysteine protease family and play a crucial role in homeostasis and programmed cell death. Caspases have been broadly classified by their known roles in apoptosis (caspase-3, caspase-6, caspase-7, caspase-8, and caspase-9 in mammals) and in inflammation (caspase-1, caspase-4, caspase-5, and caspase-12 in humans, and caspase-1, caspase-11, and caspase-12 in mice). Caspases involved in apoptosis have been subclassified by their mechanism of action as either initiator caspases (caspase-8 and caspase-9) or executioner caspases (caspase-3, caspase-6, and caspase-7). Caspases that participate in apoptosis are inhibited by proteins known as inhibitors of apoptosis (IAPs). In addition to apoptosis, caspases play a role in necroptosis, pyroptosis, and autophagy, which are non-apoptotic cell death processes. Dysregulation of caspases features prominently in many human diseases, including cancer, autoimmunity, and neurodegenerative disorders, and increasing evidence shows that altering caspase activity can confer therapeutic benefits. This review covers the different types of caspases, their functions, and their physiological and biological activities and roles in different organisms.
Collapse
Affiliation(s)
- Gayatri Sahoo
- Department of Zoology, PSSJ College, Banarpal, 759128, Odisha, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Academy of Management and Information Technology (AMIT, affiliated to Utkal University), Khurda, 752057, Odisha, India
| | | | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
5
|
Sparks NRL, Walker LM, Sera SR, Madrid JV, Hanna M, Dominguez EC, zur Nieden NI. Sidestream Smoke Extracts from Harm-Reduction and Conventional Camel Cigarettes Inhibit Osteogenic Differentiation via Oxidative Stress and Differential Activation of intrinsic Apoptotic Pathways. Antioxidants (Basel) 2022; 11:2474. [PMID: 36552682 PMCID: PMC9774253 DOI: 10.3390/antiox11122474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Epidemiological studies suggest cigarette smoking as a probable environmental factor for a variety of congenital anomalies, including low bone mass, increased fracture risk and poor skeletal health. Human and animal in vitro models have confirmed hypomineralization of differentiating cell lines with sidestream smoke being more harmful to developing cells than mainstream smoke. Furthermore, first reports are emerging to suggest a differential impact of conventional versus harm-reduction tobacco products on bone tissue as it develops in the embryo or in vitro. To gather first insight into the molecular mechanism of such differences, we assessed the effect of sidestream smoke solutions from Camel (conventional) and Camel Blue (harm-reduction) cigarettes using a human embryonic stem cell osteogenic differentiation model. Sidestream smoke from the conventional Camel cigarettes concentration-dependently inhibited in vitro calcification triggered by high levels of mitochondrially generated oxidative stress, loss of mitochondrial membrane potential, and reduced ATP production. Camel sidestream smoke also induced DNA damage and caspase 9-dependent apoptosis. Camel Blue-exposed cells, in contrast, invoked only intermediate levels of reactive oxygen species insufficient to activate caspase 3/7. Despite the absence of apoptotic gene activation, damage to the mitochondrial phenotype was still noted concomitant with activation of an anti-inflammatory gene signature and inhibited mineralization. Collectively, the presented findings in differentiating pluripotent stem cells imply that embryos may exhibit low bone mineral density if exposed to environmental smoke during development.
Collapse
Affiliation(s)
- Nicole R. L. Sparks
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Lauren M. Walker
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Steven R. Sera
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, USA
- Cell, Molecular and Developmental Biology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Joseph V. Madrid
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Michael Hanna
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Edward C. Dominguez
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Nicole I. zur Nieden
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
- Cell, Molecular and Developmental Biology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
6
|
Kantrong N, Buranaphatthana W, Hormdee D, Suwannarong W, Chaichit R, Pattanaporn K, Klanrit P, Krisanaprakornkit S. Expression of human caspase-4 in the gingival epithelium affected with periodontitis: Its involvement in Porphyromonas gingivalis-challenged gingival epithelial cells. Arch Oral Biol 2022; 140:105466. [DOI: 10.1016/j.archoralbio.2022.105466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/05/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022]
|
7
|
Smith AP, Creagh EM. Caspase-4 and -5 Biology in the Pathogenesis of Inflammatory Bowel Disease. Front Pharmacol 2022; 13:919567. [PMID: 35712726 PMCID: PMC9194562 DOI: 10.3389/fphar.2022.919567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease of the gastrointestinal tract, associated with high levels of inflammatory cytokine production. Human caspases-4 and -5, and their murine ortholog caspase-11, are essential components of the innate immune pathway, capable of sensing and responding to intracellular lipopolysaccharide (LPS), a component of Gram-negative bacteria. Following their activation by LPS, these caspases initiate potent inflammation by causing pyroptosis, a lytic form of cell death. While this pathway is essential for host defence against bacterial infection, it is also negatively associated with inflammatory pathologies. Caspases-4/-5/-11 display increased intestinal expression during IBD and have been implicated in chronic IBD inflammation. This review discusses the current literature in this area, identifying links between inflammatory caspase activity and IBD in both human and murine models. Differences in the expression and functions of caspases-4, -5 and -11 are discussed, in addition to mechanisms of their activation, function and regulation, and how these mechanisms may contribute to the pathogenesis of IBD.
Collapse
Affiliation(s)
| | - Emma M. Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Wang S, Moreau F, Chadee K. The colonic pathogen Entamoeba histolytica activates caspase-4/1 that cleaves the pore-forming protein gasdermin D to regulate IL-1β secretion. PLoS Pathog 2022; 18:e1010415. [PMID: 35303042 PMCID: PMC8967020 DOI: 10.1371/journal.ppat.1010415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/30/2022] [Accepted: 03/03/2022] [Indexed: 12/14/2022] Open
Abstract
A hallmark of Entamoeba histolytica (Eh) invasion in the gut is acute inflammation dominated by the secretion of pro-inflammatory cytokines TNF-α and IL-1β. This is initiated when Eh in contact with macrophages in the lamina propria activates caspase-1 by recruiting the NLRP3 inflammasome complex in a Gal-lectin and EhCP-A5-dependent manner resulting in the maturation and secretion of IL-1β and IL-18. Here, we interrogated the requirements and mechanisms for Eh-induced caspase-4/1 activation in the cleavage of gasdermin D (GSDMD) to regulate bioactive IL-1β release in the absence of cell death in human macrophages. Unlike caspase-1, caspase-4 activation occurred as early as 10 min that was dependent on Eh Gal-lectin and EhCP-A5 binding to macrophages. By utilizing CRISPR-Cas9 gene edited CASP4/1, NLRP3 KO and ASC-def cells, caspase-4 activation was found to be independent of the canonical NLRP3 inflammasomes. In CRISPR-Cas9 gene edited CASP1 macrophages, caspase-4 activation was significantly up regulated that enhanced the enzymatic cleavage of GSDMD at the same cleavage site as caspase-1 to induce GSDMD pore formation and sustained bioactive IL-1β secretion. Eh-induced IL-1β secretion was independent of pyroptosis as revealed by pharmacological blockade of GSDMD pore formation and in CRISPR-Cas9 gene edited GSDMD KO macrophages. This was in marked contrast to the potent positive control, lipopolysaccharide + Nigericin that induced high expression of predominantly caspase-1 that efficiently cleaved GSDMD with high IL-1β secretion/release associated with massive cell pyroptosis. These results reveal that Eh triggered “hyperactivated macrophages” allowed caspase-4 dependent cleavage of GSDMD and IL-1β secretion to occur in the absence of pyroptosis that may play an important role in disease pathogenesis. A unique feature of Entamoeba histolytica (Eh) infection is the capability to cause symptoms in only a limited subset of individuals. This occurs when Eh breaches intestinal innate host defences and comes in contact with the colonic epithelium and immune cells in the lamina propria to elicit a pro-inflammatory response critical in disease pathogenesis. Macrophages are considered among the first responders that Eh comes in direct contact with to activate caspase-1 by initiating the assembly of the NLRP3 inflammasome complex in a Gal-lectin and EhCP-A5-dependent manner, resulting in processing and release of IL-1β. In this study, we showed that inflammatory caspase-4 was activated earlier than caspase-1 when Eh contacts macrophages independent of the NLRP3 inflammasome complex. More importantly, Eh-induced caspase-4 was essential in regulating bioactive IL-1β secretion in the absence of cell death (pyroptosis) that was induced primarily by the activation of caspase-1. Mechanistically, we reveal that Eh-induced caspase-4 activation was critically important in regulating a measured amount of gasdermin D (GSDMD) cleavage resulting in GSDMD pore formation that facilitated sustained IL-1β secretion from macrophages. This was in marked contrast to LPS + Nigericin stimulated macrophages that robustly activated casapase-1 via the NLRP3 inflammasome that resulted in almost complete cleavage of GSDMD with pore-forming proteins that caused massive pyroptosis. Our study provides new insights on how Eh in contact with macrophages fine tune macrophage responses via the activation of caspase-4/1 to allow the cell to regulate IL-1β release by keeping the cells alive. We believe this mechanism of activating macrophages (termed hyperactivation) is a critically overlooked response in the biology of Eh that may play a major role in disease pathogenesis and host defence.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
9
|
Human Renal Fibroblasts, but Not Renal Epithelial Cells, Induce IL-1β Release during a Uropathogenic Escherichia coli Infection In Vitro. Cells 2021; 10:cells10123522. [PMID: 34944029 PMCID: PMC8700040 DOI: 10.3390/cells10123522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding how uropathogenic Escherichia coli (UPEC) modulates the immune response in the kidney is essential to prevent UPEC from reaching the bloodstream and causing urosepsis. The purpose of this study was to elucidate if renal fibroblasts can release IL-1β during a UPEC infection and to investigate the mechanism behind the IL-1β release. We found that the UPEC strain CFT073 induced an increased IL-1β and LDH release from renal fibroblasts, but not from renal epithelial cells. The UPEC-induced IL-1β release was found to be NLRP3, caspase-1, caspase-4, ERK 1/2, cathepsin B and serine protease dependent in renal fibroblasts. We also found that the UPEC virulence factor α-hemolysin was necessary for IL-1β release. Conditioned medium from caspase-1, caspase-4 and NLRP3-deficient renal fibroblasts mediated an increased reactive oxygen species production from neutrophils, but reduced UPEC phagocytosis. Taken together, our study demonstrates that renal fibroblasts, but not renal epithelial cells, release IL-1β during a UPEC infection. This suggest that renal fibroblasts are vital immunoreactive cells and not only structural cells that produce and regulate the extracellular matrix.
Collapse
|
10
|
Hans CP, Sharma N, Sen S, Zeng S, Dev R, Jiang Y, Mahajan A, Joshi T. Transcriptomics Analysis Reveals New Insights into the Roles of Notch1 Signaling on Macrophage Polarization. Sci Rep 2019; 9:7999. [PMID: 31142802 PMCID: PMC6541629 DOI: 10.1038/s41598-019-44266-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/29/2019] [Indexed: 12/24/2022] Open
Abstract
Naïve macrophages (Mφ) polarize in response to various environmental cues to a spectrum of cells that have distinct biological functions. The extreme ends of the spectrum are classified as M1 and M2 macrophages. Previously, we demonstrated that Notch1 deficiency promotes Tgf-β2 dependent M2-polarization in a mouse model of abdominal aortic aneurysm. The present studies aimed to characterize the unique set of genes regulated by Notch1 signaling in macrophage polarization. Bone marrow derived macrophages isolated from WT or Notch1+/- mice (n = 12) were differentiated to Mφ, M1 or M2-phenotypes by 24 h exposure to vehicle, LPS/IFN-γ or IL4/IL13 respectively and total RNA was subjected to RNA-Sequencing (n = 3). Bioinformatics analyses demonstrated that Notch1 haploinsufficiency downregulated the expression of 262 genes at baseline level, 307 genes with LPS/IFN-γ and 254 genes with IL4/IL13 treatment. Among these, the most unique genes downregulated by Notch1 haploinsufficiency included fibromodulin (Fmod), caspase-4, Has1, Col1a1, Alpl and Igf. Pathway analysis demonstrated that extracellular matrix, macrophage polarization and osteogenesis were the major pathways affected by Notch1 haploinsufficiency. Gain and loss-of-function studies established a strong correlation between Notch1 haploinsufficiency and Fmod in regulating Tgf-β signaling. Collectively, our studies suggest that Notch1 haploinsufficiency increases M2 polarization through these newly identified genes.
Collapse
Affiliation(s)
- Chetan P Hans
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA.
- Medical Pharmacology and Physiology, University of Missouri, Columbia, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA.
| | - Neekun Sharma
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA
| | - Sidharth Sen
- MU Informatics Institute, University of Missouri, Columbia, USA
| | - Shuai Zeng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, USA
| | - Rishabh Dev
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA
| | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, USA
| | - Advitiya Mahajan
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA
| | - Trupti Joshi
- MU Informatics Institute, University of Missouri, Columbia, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, USA
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, USA
| |
Collapse
|
11
|
Skirecki T, Cavaillon JM. Inner sensors of endotoxin - implications for sepsis research and therapy. FEMS Microbiol Rev 2019; 43:239-256. [PMID: 30844058 DOI: 10.1093/femsre/fuz004] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/24/2019] [Indexed: 01/05/2025] Open
Abstract
Despite great efforts and numerous clinical trials, there is still a major need for effective therapies for sepsis. Neutralization or elimination of bacterial toxins remains a promising approach. The understanding of the interaction of the endotoxin (lipopolysaccharide, LPS) of Gram-negative bacteria with its cellular receptor, namely the CD14/TLR4/MD2 complex, was a major breakthrough. Unfortunately, clinical trials for sepsis on the neutralization of LPS or on the inhibition of TLR4 signaling failed whereas those on LPS removal remain controversial. Recent discoveries of another class of LPS receptors localized within the cytoplasm, namely caspase-11 in mice and caspases-4/5 in humans, have renewed interest in the field. These provide new potential targets for intervention in sepsis pathogenesis. Since cytoplasmic recognition of LPS induces non-canonical inflammasome pathway, a potentially harmful host response, it is conceivable to therapeutically target this mechanism. However, a great deal of care should be used in the translation of research on the non-canonical inflammasome inhibition due to multiple inter-species differences. In this review, we summarize the knowledge on endotoxin sensing in sepsis with special focus on the intracellular sensing. We also highlight the murine versus human differences and discuss potential therapeutic approaches addressing the newly discovered pathways.
Collapse
Affiliation(s)
- Tomasz Skirecki
- Laboratory of Flow Cytometry and Department of Anesthesiology and Intensive Care Medicine, Centre of Postgraduate Medical Education, Marymoncka 99/103 Street, 01-813 Warsaw, Poland
| | - Jean-Marc Cavaillon
- Experimental Neuropathology Unit, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France
| |
Collapse
|
12
|
Quach J, Moreau F, Sandall C, Chadee K. Entamoeba histolytica-induced IL-1β secretion is dependent on caspase-4 and gasdermin D. Mucosal Immunol 2019; 12:323-339. [PMID: 30361535 DOI: 10.1038/s41385-018-0101-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 02/04/2023]
Abstract
During invasion, Entamoeba histolytica (Eh) encounter macrophages and activate them to elicit tissue damaging pro-inflammatory responses. When Eh binds macrophages via the Gal-lectin, surface EhCP-A5 RGD sequence ligates α5β1 integrin to activate caspase-1 in a complex known as the NLRP3 inflammasome. In this study, we investigated Eh requirements underlying macrophage caspase-4 and -1 activation and the role caspase-4 and gasdermin D (GSDMD) play in augmenting pro-inflammatory cytokine responses. Caspase-4 activation was similar to caspase-1 requiring live Eh attachment via the Gal-lectin and EhCP-A5. However, unlike caspase-1, caspase-4 activation was independent of ASC and NLRP3. Using CRISPR/Cas9 gene editing of caspase-4 and -1 and GSDMD, we determined that caspase-1 and bioactive IL-1β release was highly dependent on caspase-4 activation and cleavage of GSDMD in response to Eh. Formaldehyde cross-linking to stabilize protein-protein interactions in transfected COS-7 cells stimulated with Eh revealed that caspase-4 specifically interacted with caspase-1 in a protein complex that enhanced the cleavage of caspase-1 CARD domains to augment IL-1β release. Activated caspase-4 and -1 cleaved GSDMD liberating the N-terminal p30 pore-forming fragment that caused the secretion of IL-1β. These findings reveal a novel role for caspase-4 as a sensor molecule to amplify pro-inflammatory responses when macrophage encounters Eh.
Collapse
Affiliation(s)
- Jeanie Quach
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Christina Sandall
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
13
|
Sharifi S, Pakdel A, Ebrahimi M, Reecy JM, Fazeli Farsani S, Ebrahimie E. Integration of machine learning and meta-analysis identifies the transcriptomic bio-signature of mastitis disease in cattle. PLoS One 2018; 13:e0191227. [PMID: 29470489 PMCID: PMC5823400 DOI: 10.1371/journal.pone.0191227] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022] Open
Abstract
Gram-negative bacteria such as Escherichia coli (E. coli) are assumed to be among the main agents that cause severe mastitis disease with clinical signs in dairy cattle. Rapid detection of this disease is so important in order to prevent transmission to other cows and helps to reduce inappropriate use of antibiotics. With the rapid progress in high-throughput technologies, and accumulation of various kinds of '-omics' data in public repositories, there is an opportunity to retrieve, integrate, and reanalyze these resources to improve the diagnosis and treatment of different diseases and to provide mechanistic insights into host resistance in an efficient way. Meta-analysis is a relatively inexpensive option with good potential to increase the statistical power and generalizability of single-study analysis. In the current meta-analysis research, six microarray-based studies that investigate the transcriptome profile of mammary gland tissue after induced mastitis by E. coli infection were used. This meta-analysis not only reinforced the findings in individual studies, but also several novel terms including responses to hypoxia, response to drug, anti-apoptosis and positive regulation of transcription from RNA polymerase II promoter enriched by up-regulated genes. Finally, in order to identify the small sets of genes that are sufficiently informative in E. coli mastitis, the differentially expressed gene introduced by meta-analysis were prioritized by using ten different attribute weighting algorithms. Twelve meta-genes were detected by the majority of attribute weighting algorithms (with weight above 0.7) as most informative genes including CXCL8 (IL8), NFKBIZ, HP, ZC3H12A, PDE4B, CASP4, CXCL2, CCL20, GRO1(CXCL1), CFB, S100A9, and S100A8. Interestingly, the results have been demonstrated that all of these genes are the key genes in the immune response, inflammation or mastitis. The Decision tree models efficiently discovered the best combination of the meta-genes as bio-signature and confirmed that some of the top-ranked genes -ZC3H12A, CXCL2, GRO, CFB- as biomarkers for E. coli mastitis (with the accuracy 83% in average). This research properly indicated that by combination of two novel data mining tools, meta-analysis and machine learning, increased power to detect most informative genes that can help to improve the diagnosis and treatment strategies for E. coli associated with mastitis in cattle.
Collapse
Affiliation(s)
- Somayeh Sharifi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Abbas Pakdel
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | - James M. Reecy
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | | | - Esmaeil Ebrahimie
- School of Medicine, The University of Adelaide, Adelaide, Australia
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- Division of Information Technology, Engineering and the Environment, School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, South Australia, Australia
- School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Pillon NJ, Chan KL, Zhang S, Mejdani M, Jacobson MR, Ducos A, Bilan PJ, Niu W, Klip A. Saturated fatty acids activate caspase-4/5 in human monocytes, triggering IL-1β and IL-18 release. Am J Physiol Endocrinol Metab 2016; 311:E825-E835. [PMID: 27624102 DOI: 10.1152/ajpendo.00296.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/11/2016] [Indexed: 12/14/2022]
Abstract
Obesity is associated with metabolic tissue infiltration by monocyte-derived macrophages. Saturated fatty acids contribute to proinflammatory gene induction in tissue-embedded immune cells. However, it is unknown how circulating monocytes, the macrophage precursors, react to high-fat environments. In macrophages, saturated fatty acids activate inflammatory pathways and, notably, prime caspase-associated inflammasomes. Inflammasome-activated IL-1β contributes to type 2 diabetes. We hypothesized that 1) human monocytes from obese patients show caspase activation, and 2) fatty acids trigger this response and consequent release of IL-1β/IL-18. Human peripheral blood monocytes were sorted by flow cytometry, and caspase activity was measured with a FLICA dye-based assay. Blood monocytes from obese individuals exhibited elevated caspase activity. To explore the nature and consequence of this activity, human THP1 monocytes were exposed to saturated or unsaturated fatty acids. Caspase activity was revealed by isoform-specific cleavage and enzymatic activity; cytokine expression/release was measured by qPCR and ELISA. Palmitate, but not palmitoleate, increased caspase activity in parallel to the release of IL-1β and IL-18. Palmitate induced eventual monocyte cell death with features of pyroptosis (an inflammation-linked cell death program involving caspase-4/5), scored through LDH release, vital dye influx, cell volume changes, and nuclear morphology. Notably, selective gene silencing or inhibition of caspase-4/5 reduced palmitate-induced release of IL-1β and IL-18. In summary, monocytes from obese individuals present elevated caspase activity. Mechanistically, palmitate activates a pyroptotic program in monocytes through caspase-4/5, causing inflammatory cytokine release, additional to inflammasomes. These caspases represent potential, novel, therapeutic targets to taper obesity-associated inflammation.
Collapse
Affiliation(s)
- Nicolas J Pillon
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kenny L Chan
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shitian Zhang
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, China; and
| | - Marios Mejdani
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maya R Jacobson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alexandre Ducos
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Philip J Bilan
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wenyan Niu
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, China; and
- Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Amira Klip
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada;
| |
Collapse
|
15
|
Kajiwara Y, McKenzie A, Dorr N, Gama Sosa MA, Elder G, Schmeidler J, Dickstein DL, Bozdagi O, Zhang B, Buxbaum JD. The human-specific CASP4 gene product contributes to Alzheimer-related synaptic and behavioural deficits. Hum Mol Genet 2016; 25:4315-4327. [PMID: 27516385 DOI: 10.1093/hmg/ddw265] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/09/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022] Open
Abstract
Recent studies have indicated that innate immune signalling molecules are involved in late-onset Alzheimer's disease (LOAD) risk. Amyloid beta (Aβ) accumulates in AD brain, and has been proposed to act as a trigger of innate immune responses. Caspase-4 is an important part of the innate immune response. We recently characterized transgenic mice carrying human CASP4, and observed that the mice manifested profound innate immune responses to lipopolysaccharide (LPS). Since these inflammatory processes are important in the aetiology of AD, we have now analysed the correlation of expression of caspase-4 in human brain with AD risk genes, and studied caspase-4 effects on AD-related phenotypes in APPswe/PS1deltaE9 (APP/PS1) mice. We observed that the expression of caspase-4 was strongly correlated with AD risk genes including TYROBP, TREM2, CR1, PSEN1, MS4A4A and MS4A6A in LOAD brains. Caspase-4 expression was upregulated in CASP4/APP/PS1 mice in a region-specific manner, including hippocampus and prefrontal cortex. In APP/PS1 mice, caspase-4 expression led to impairments in the reversal phase of a Barnes maze task and in hippocampal synaptic plasticity, without affecting soluble or aggregated Aβ levels. Caspase-4 was expressed predominantly in microglial cells, and in the presence of CASP4, more microglia were clustered around amyloid plaques. Furthermore, our data indicated that caspase-4 modulates microglial cells in a manner that increases proinflammatory processes. We propose that microglial caspase-4 expression contributes to the cognitive impairments in AD, and that further study of caspase-4 will enhance our understanding of AD pathogenesis and may lead to novel therapeutic targets in AD.
Collapse
Affiliation(s)
| | - Andrew McKenzie
- Department of Genetics and Genomic Sciences.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | | | | | - Gregory Elder
- Department of Psychiatry.,Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA.,Department of Neurology
| | | | - Dara L Dickstein
- Department of Neuroscience.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Bin Zhang
- Department of Genetics and Genomic Sciences.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Joseph D Buxbaum
- Department of Psychiatry .,Department of Genetics and Genomic Sciences.,Department of Neuroscience.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
16
|
Silva LR, Girard D. Human eosinophils are direct targets to nanoparticles: Zinc oxide nanoparticles (ZnO) delay apoptosis and increase the production of the pro-inflammatory cytokines IL-1β and IL-8. Toxicol Lett 2016; 259:11-20. [PMID: 27452280 DOI: 10.1016/j.toxlet.2016.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 07/18/2016] [Indexed: 12/25/2022]
Abstract
Zinc oxide NPs (ZnO) have been recently proposed as novel candidates for the treatment of allergic inflammatory diseases. Paradoxically, recent data suggested that ZnO could cause eosinophilic airway inflammation in rodents. Despite the above observations, there are currently no studies reporting direct interaction between a given NP and human eosinophils themselves. In this study, freshly isolated human eosinophils were incubated with ZnO and several cellular functions were studied. We found that ZnO delay human eosinophil apoptosis, partially by inhibiting caspases and by preventing caspase-4 and Bcl-xL degradation. ZnO do not induce production of reactive oxygen species but increase de novo protein synthesis. In addition, ZnO were found to increase the production of the proinflammatory IL-1β and IL-8 cytokines. Using a pharmacological approach, we demonstrated that inhibition of caspase-1 reversed the ability of ZnO to induce IL-1β and IL-8 production, whereas inhibition of caspase-4 only reversed that of IL-8. Our results indicate the necessity of conducting studies to determine the potential of using NP as nanotherapies, particularly in diseases in which eosinophils may be involved. We conclude that, indeed, human eosinophils represent potential new direct targets to NPs, ZnO in the present case.
Collapse
Affiliation(s)
- Luis Rafael Silva
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, Québec, Canada.
| |
Collapse
|
17
|
García de la Cadena S, Massieu L. Caspases and their role in inflammation and ischemic neuronal death. Focus on caspase-12. Apoptosis 2016; 21:763-77. [DOI: 10.1007/s10495-016-1247-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Viganò E, Diamond CE, Spreafico R, Balachander A, Sobota RM, Mortellaro A. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat Commun 2015; 6:8761. [PMID: 26508369 PMCID: PMC4640152 DOI: 10.1038/ncomms9761] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 09/28/2015] [Indexed: 02/08/2023] Open
Abstract
Monocytes promote the early host response to infection releasing key pro-inflammatory cytokines, such as IL-1β. The biologically inactive IL-1β precursor is processed to active form by inflammasomes, multi-protein complexes activating caspase-1. Human monocytes exhibit an unconventional one-step pathway of inflammasome activation in response to lipopolysaccharide (LPS) alone. Although this lineage-restricted mechanism is likely to contribute to the pathology of endotoxin shock, signalling pathways regulating this mechanism are currently unknown. Here we report that caspase-4 and caspase-5 mediate IL-1α and IL-1β release from human monocytes after LPS stimulation. Although caspase-4 remains uncleaved, caspase-5 undergoes rapid processing upon LPS treatment. We also identify an additional caspase-5 cleavage product in LPS-stimulated monocytes, which correlates with IL-1 secretion. This one-step pathway requires Syk activity and Ca2+ flux instigated by CD14/TLR4-mediated LPS internalization. Identification of caspase-4/5 as the key determinants of one-step inflammasome activation in human monocytes provides potential targets for therapeutic intervention in endotoxin shock. Human monocytes exhibit an unconventional one-step pathway of inflammasome activation and IL-1 release in response to LPS. Here the authors show that it is mediated by caspases 4 and 5, and characterize caspase 5 cleavage, Syk and calcium signalling as key mediators of this pathway.
Collapse
Affiliation(s)
- Elena Viganò
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Singapore.,University of Milano-Bicocca, PhD program in Translational and Molecular Medicine (DIMET), Ospedale San Gerardo, Via Pergolesi 33, Monza (MB) 20900, Italy
| | - Catherine Emma Diamond
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Singapore.,Faculty of Life Sciences, The University of Manchester, Carys Bannister Building, Dover Street, Manchester M13 9PT, UK
| | - Roberto Spreafico
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Singapore
| | - Akhila Balachander
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Singapore
| | - Radoslaw M Sobota
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Singapore
| | - Alessandra Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Singapore
| |
Collapse
|
19
|
Flood B, Oficjalska K, Laukens D, Fay J, O'Grady A, Caiazza F, Heetun Z, Mills KHG, Sheahan K, Ryan EJ, Doherty GA, Kay E, Creagh EM. Altered expression of caspases-4 and -5 during inflammatory bowel disease and colorectal cancer: Diagnostic and therapeutic potential. Clin Exp Immunol 2015; 181:39-50. [PMID: 25943872 PMCID: PMC4469154 DOI: 10.1111/cei.12617] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 12/27/2022] Open
Abstract
Caspases are a group of proteolytic enzymes involved in the co-ordination of cellular processes, including cellular homeostasis, inflammation and apoptosis. Altered activity of caspases, particularly caspase-1, has been implicated in the development of intestinal diseases, such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). However, the involvement of two related inflammatory caspase members, caspases-4 and -5, during intestinal homeostasis and disease has not yet been established. This study demonstrates that caspases-4 and -5 are involved in IBD-associated intestinal inflammation. Furthermore, we found a clear correlation between stromal caspase-4 and -5 expression levels, inflammation and disease activity in ulcerative colitis patients. Deregulated intestinal inflammation in IBD patients is associated with an increased risk of developing CRC. We found robust expression of caspases-4 and -5 within intestinal epithelial cells, exclusively within neoplastic tissue, of colorectal tumours. An examination of adjacent normal, inflamed and tumour tissue from patients with colitis-associated CRC confirmed that stromal expression of caspases-4 and -5 is increased in inflamed and dysplastic tissue, while epithelial expression is restricted to neoplastic tissue. In addition to identifying caspases-4 and -5 as potential targets for limiting intestinal inflammation, this study has identified epithelial-expressed caspases-4 and -5 as biomarkers with diagnostic and therapeutic potential in CRC.
Collapse
Affiliation(s)
- B Flood
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinIreland
| | - K Oficjalska
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinIreland
| | - D Laukens
- Department of Gastroenterology, Ghent UniversityGhent, Belgium
| | - J Fay
- Pathology Department, RCSI and Beaumont HospitalDublin
| | - A O'Grady
- Pathology Department, RCSI and Beaumont HospitalDublin
| | - F Caiazza
- Centre for Colorectal Disease, St Vincent's University Hospital and School of Medicine and Medical Sciences, University College DublinIreland
| | - Z Heetun
- Centre for Colorectal Disease, St Vincent's University Hospital and School of Medicine and Medical Sciences, University College DublinIreland
| | - K H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinIreland
| | - K Sheahan
- Centre for Colorectal Disease, St Vincent's University Hospital and School of Medicine and Medical Sciences, University College DublinIreland
| | - E J Ryan
- Centre for Colorectal Disease, St Vincent's University Hospital and School of Medicine and Medical Sciences, University College DublinIreland
| | - G A Doherty
- Centre for Colorectal Disease, St Vincent's University Hospital and School of Medicine and Medical Sciences, University College DublinIreland
| | - E Kay
- Pathology Department, RCSI and Beaumont HospitalDublin
| | - E M Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinIreland
| |
Collapse
|
20
|
NF-κB regulates caspase-4 expression and sensitizes neuroblastoma cells to Fas-induced apoptosis. PLoS One 2015; 10:e0117953. [PMID: 25695505 PMCID: PMC4335045 DOI: 10.1371/journal.pone.0117953] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/06/2015] [Indexed: 12/01/2022] Open
Abstract
Found in neurons and neuroblastoma cells, Fas-induced apoptosis and accompanied activation of NF-κB signaling were thought to be associated with neurodegenerative diseases. However, the detailed functions of NF-κB activation in Fas killing and the effect of NF-κB activation on its downstream events remain unclear. Here, we demonstrated that agonistic Fas antibody induces cell death in a dose-dependent way and NF-κB signaling is activated as well, in neuroblastoma cells SH-EP1. Unexpectedly, NF-κB activation was shown to be pro-apoptotic, as suggested by the reduction of Fas-induced cell death with either a dominant negative form of IκBα (DN-IκBα) or an IκB kinase-specific inhibitor. To our interest, when analyzing downstream events of NF-κB signaling, we found that DN-IκBα only suppressed the expression of caspase-4, but not other caspases. Vice versa, enhancement of NF-κB activity by p65 (RelA) overexpression increased the expression of caspase-4 at both mRNA and protein levels. More directly, results from dual luciferase reporter assay demonstrated the regulation of caspase-4 promoter activity by NF-κB. When caspase-4 activity was blocked by its dominant negative (DN) form, Fas-induced cell death was substantially reduced. Consistently, the cleavage of PARP and caspase-3 induced by Fas was also reduced. In contrast, the cleavage of caspase-8 remained unaffected in caspase-4 DN cells, although caspase-8 inhibitor could rescue Fas-induced cell death. Collectively, these data suggest that caspase-4 activity is required for Fas-induced cell apoptosis and caspase-4 may act upstream of PARP and caspase-3 and downstream of caspase-8. Overall, we demonstrate that NF-κB can mediate Fas-induced apoptosis through caspase-4 protease, indicating that caspase-4 is a new mediator of NF-κB pro-apoptotic pathway in neuroblastoma cells.
Collapse
|
21
|
Simard JC, Vallieres F, de Liz R, Lavastre V, Girard D. Silver nanoparticles induce degradation of the endoplasmic reticulum stress sensor activating transcription factor-6 leading to activation of the NLRP-3 inflammasome. J Biol Chem 2015; 290:5926-39. [PMID: 25593314 DOI: 10.1074/jbc.m114.610899] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the past decade, the increasing amount of nanoparticles (NP) and nanomaterials used in multiple applications led the scientific community to investigate the potential toxicity of NP. Many studies highlighted the cytotoxic effects of various NP, including titanium dioxide, zinc oxide, and silver nanoparticles (AgNP). In a few studies, endoplasmic reticulum (ER) stress was found to be associated with NP cytotoxicity leading to apoptosis in different cell types. In this study, we report for the first time that silver nanoparticles of 15 nm (AgNP15), depending on the concentration, induced different signature ER stress markers in human THP-1 monocytes leading to a rapid ER stress response with degradation of the ATF-6 sensor. Also, AgNP15 induced pyroptosis and activation of the NLRP-3 inflammasome as demonstrated by the processing and increased activity of caspase-1 and secretion of IL-1β and ASC (apoptosis-associated speck-like protein containing a CARD domain) pyroptosome formation. Transfection of THP-1 cells with siRNA targeting NLRP-3 decreased the AgNP15-induced IL-1β production. The absence of caspase-4 expression resulted in a significant reduction of pro-IL-1β. However, caspase-1 activity was significantly higher in caspase-4-deficient cells when compared with WT cells. Inhibition of AgNP15-induced ATF-6 degradation with Site-2 protease inhibitors completely blocked the effect of AgNP15 on pyroptosis and secretion of IL-1β, indicating that ATF-6 is crucial for the induction of this type of cell death. We conclude that AgNP15 induce degradation of the ER stress sensor ATF-6, leading to activation of the NLRP-3 inflammasome regulated by caspase-4 in human monocytes.
Collapse
Affiliation(s)
- Jean-Christophe Simard
- From the Laboratoire de recherche en inflammation et physiologie des granulocytes, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec H7V1B7, Canada
| | - Francis Vallieres
- From the Laboratoire de recherche en inflammation et physiologie des granulocytes, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec H7V1B7, Canada
| | - Rafael de Liz
- From the Laboratoire de recherche en inflammation et physiologie des granulocytes, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec H7V1B7, Canada
| | - Valerie Lavastre
- From the Laboratoire de recherche en inflammation et physiologie des granulocytes, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec H7V1B7, Canada
| | - Denis Girard
- From the Laboratoire de recherche en inflammation et physiologie des granulocytes, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec H7V1B7, Canada
| |
Collapse
|
22
|
The type III secretion effector NleF of enteropathogenic Escherichia coli activates NF-κB early during infection. Infect Immun 2014; 82:4878-88. [PMID: 25183730 DOI: 10.1128/iai.02131-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The enteric pathogens enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli employ a type 3 secretion system (T3SS) to manipulate the host inflammatory response during infection. Previously, it has been reported that EPEC, in a T3SS-dependent manner, induces an early proinflammatory response through activation of NF-κB via extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase Cζ (PKCζ). However, the activation of NF-κB during infection has not yet been attributed to an effector. At later time points postinfection, NF-κB signaling is inhibited through the translocation of multiple effectors, including NleE and NleC. Here we report that the highly conserved non-LEE (locus of enterocyte effacement)-encoded effector F (NleF) shows both diffuse and mitochondrial localization during ectopic expression. Moreover, NleF induces the nuclear translocation of NF-κB p65 and the expression of interleukin 8 (IL-8) following ectopic expression and during EPEC infection. Furthermore, the proinflammatory activity and localization of NleF were dependent on the C-terminal amino acids LQCG. While the C-terminal domain of NleF has previously been shown to be essential for interaction with caspase-4, caspase-8, and caspase-9, the proinflammatory activity of NleF was independent of interaction with caspase-4, -8, or -9. In conclusion, EPEC, through the T3SS-dependent translocation of NleF, induces a proinflammatory response in an NF-κB-dependent manner in the early stages of infection.
Collapse
|
23
|
Wu LF, Guo YT, Zhang QH, Xiang MQ, Deng W, Ye YQ, Pu ZJ, Feng JL, Huang GY. Enhanced antitumor effects of adenoviral-mediated siRNA against GRP78 gene on adenosine-induced apoptosis in human hepatoma HepG2 cells. Int J Mol Sci 2014; 15:525-44. [PMID: 24394318 PMCID: PMC3907823 DOI: 10.3390/ijms15010525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/19/2013] [Accepted: 12/23/2013] [Indexed: 02/05/2023] Open
Abstract
Our previous studies show that adenosine-induced apoptosis is involved in endoplasmic reticulum stress in HepG2 cells. In this study, we have investigated whether knockdown of GRP78 by short hairpin RNA (shRNA) increases the cytotoxic effects of adenosine in HepG2 cells. The adenovirus vector-delivered shRNA targeting GRP78 (Ad-shGRP78) was constructed and transfected into HepG2 cells. RT-PCR assay was used to determine RNA interference efficiency. Effects of knockdown of GRP78 on adenosine-induced cell viabilities, cell-cycle distribution and apoptosis, as well as relative protein expressions were determined by flow cytometry and/or Western blot analysis. The intracellular Ca2+ concentration was detected by laser scanning confocal microscope. Mitochondrial membrane potential (ΔΨm) was measured by a fluorospectrophotometer. The results revealed that GRP78 mRNA was significantly downregulated by Ad-shGRP78 transfection. Knockdown of GRP78 enhanced HepG2 cell sensitivity to adenosine by modulating G0/G1 arrest and stimulating Bax, Bak, m-calpain, caspase-4 and CHOP protein levels. Knockdown of GRP78 worsened cytosolic Ca2+ overload and ΔΨm loss. Knockdown of caspase-4 by shRNA decreased caspase-3 mRNA expression and cell apoptosis. These findings indicate that GRP 78 plays a protective role in ER stress-induced apoptosis and show that the combination of chemotherapy drug and RNA interference adenoviruses provides a new treatment strategy against malignant tumors.
Collapse
Affiliation(s)
- Ling-Fei Wu
- Department of Gastroenterology and Information, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China.
| | - Yi-Tian Guo
- Department of Gastroenterology and Information, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China.
| | - Qing-Hua Zhang
- Department of Gastroenterology and Information, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China.
| | - Meng-Qi Xiang
- Department of Gastroenterology and Information, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China.
| | - Wei Deng
- Department of Gastroenterology and Information, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China.
| | - Yan-Qing Ye
- Department of Gastroenterology and Information, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China.
| | - Ze-Jin Pu
- Department of Gastroenterology and Information, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China.
| | - Jia-Lin Feng
- Department of Gastroenterology and Information, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China.
| | - Guan-You Huang
- Department of Gastroenterology and Information, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
24
|
Antoine F, Simard JC, Girard D. Curcumin inhibits agent-induced human neutrophil functions in vitro and lipopolysaccharide-induced neutrophilic infiltration in vivo. Int Immunopharmacol 2013; 17:1101-7. [DOI: 10.1016/j.intimp.2013.09.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/18/2013] [Accepted: 09/30/2013] [Indexed: 12/23/2022]
|
25
|
Yin Y, Pastrana JL, Li X, Huang X, Mallilankaraman K, Choi ET, Madesh M, Wang H, Yang XF. Inflammasomes: sensors of metabolic stresses for vascular inflammation. Front Biosci (Landmark Ed) 2013; 18:638-49. [PMID: 23276949 DOI: 10.2741/4127] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Metabolic syndrome is a major health issue in the western world. An elevated pro-inflammatory state is often found in patients with metabolic diseases such as type 2 diabetes and obesity. Atherosclerosis is one such clinical manifestation of pro-inflammatory state associated with the vasculature. The exact mechanism by which metabolic stress induces this pro-inflammatory status and promotes atherogenesis remained elusive until the discovery of the inflammasome protein complex. This complex is composed of pro-caspase-1 and pathogen sensors. Activation of inflammasome requires the transcriptional upregulation of inflammasome components and the post-translational assembly. Three models of inflammasome assembly have been proposed: 1) the ion channel model; 2) the reactive oxygen species (ROS) model; and 3) the lysosome model. In either case, inflammasome activation triggers the auto-activation of pro-caspase-1 into its mature form. Caspase-1, which was first discovered as the IL-1β converting enzyme, is known to be a major player in inflammatory and cell death pathways. Many endogenous metabolic ligands have been experimentally shown to activate inflammasome, and thus initiate the subsequent inflammation process. Further understanding of the distinct molecular mechanism by which metabolic ligands activates inflammasome could lead to developing novel therapeutic interventions for atherosclerosis and other clinical problems related to metabolic diseases.
Collapse
Affiliation(s)
- Ying Yin
- Department of Pharmacology and Cardiovascular Research Center, Temple University School of Medicine, 3500 North Broad Street, MERB 1059, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Huang Q, Xu X, Mao YL, Huang Y, Rajput IR, Li WF. Effects ofBacillus subtilis B10 spores on viability and biological functions of murine macrophages. Anim Sci J 2012; 84:247-52. [DOI: 10.1111/j.1740-0929.2012.01064.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/11/2012] [Indexed: 01/01/2023]
Affiliation(s)
- Qin Huang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science; Zhejiang University; Hangzhou; China
| | - Xin Xu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science; Zhejiang University; Hangzhou; China
| | - Yu-long Mao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science; Zhejiang University; Hangzhou; China
| | - Yi Huang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science; Zhejiang University; Hangzhou; China
| | - Imran R. Rajput
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science; Zhejiang University; Hangzhou; China
| | - Wei-fen Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science; Zhejiang University; Hangzhou; China
| |
Collapse
|
27
|
The expression of caspases is enhanced in peripheral blood mononuclear cells of autism spectrum disorder patients. J Autism Dev Disord 2012; 42:1403-10. [PMID: 21969075 DOI: 10.1007/s10803-011-1373-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autism and autism spectrum disorders (ASDs) are heterogeneous complex neuro-developmental disorders characterized by dysfunctions in social interaction and communication skills. Their pathogenesis has been linked to interactions between genes and environmental factors. Consistent with the evidence of certain similarities between immune cells and neurons, autistic children also show an altered immune response of peripheral blood mononuclear cells (PBMCs). In this study, we investigated the activation of caspases, cysteinyl aspartate-specific proteases involved in apoptosis and several other cell functions in PBMCs from 15 ASD children compared to age-matched normal healthy developing controls. The mRNA levels for caspase-1, -2, -4, -5 were significantly increased in ASD children as compared to healthy subjects. Protein levels of Caspase-3, -7, -12 were also increased in ASD patients. Our data are suggestive of a possible role of the caspase pathway in ASD clinical outcome and of the use of caspase as potential diagnostic and/or therapeutic tools in ASD management.
Collapse
|
28
|
Cisplatin resistance induced by decreased apoptotic activity in non-small-cell lung cancer cell lines. Cell Biol Int 2012; 36:261-5. [PMID: 22397496 DOI: 10.1042/cbi20110329] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have investigated defective steps in apoptosis that might account for the development of resistance. For this purpose, A549 and Calu1 NSCLC (non-small-cell lung cancer) cell lines were treated with cisplatin to obtain resistant sub-lines. Gene expression profiles and the phosphorylation status of the BAD (Bcl-2/Bcl-XL-antagonist, causing cell death) protein were determined for each cell line. Cell death and cytochrome c release were analysed after treating cell lines with their appropriate cisplatin doses. Gene expression of BAD, Bid, caspases 4 and 6 were clearly decreased in the resistant cell lines, and the differential phosphorylation status of BAD also seemed to play a role in the development of cisplatin resistance. Since this is a new cisplatin-resistant Calu1 cell line, it is noteworthy that DNA fragmentation, apoptotic cell ratio and cytochrome c levels were most decreased in the CR-Calu1 cell line.
Collapse
|
29
|
A genome-wide RNA interference screen identifies caspase 4 as a factor required for tumor necrosis factor alpha signaling. Mol Cell Biol 2012; 32:3372-81. [PMID: 22733992 DOI: 10.1128/mcb.06739-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) is a potent inflammatory cytokine secreted upon cellular stress as well as immunological stimuli and is implicated in the pathology of inflammatory diseases and cancer. The therapeutic potential of modifying TNF-α pathway activity has been realized in several diseases, and antagonists of TNF-α have reached clinical applications. While much progress in the understanding of signaling downstream of the TNF-α receptor complex has been made, the compendium of factors required for signal transduction is still not complete. In order to find novel regulators of proinflammatory signaling induced by TNF-α, we conducted a genome-wide small interfering RNA screen in human cells. We identified several new candidate modulators of TNF-α signaling, which were confirmed in independent experiments. Specifically, we show that caspase 4 is required for the induction of NF-κB activity, while it appears to be dispensable for the activation of the Jun N-terminal protein kinase signaling branch. Taken together, our experiments identify caspase 4 as a novel regulator of TNF-α-induced NF-κB signaling that is required for the activation of IκB kinase. We further provide the genome-wide RNA interference data set as a compendium in a format compliant with minimum information about an interfering RNA experiment (MAIRE).
Collapse
|
30
|
Durrani Z, Weir W, Pillai S, Kinnaird J, Shiels B. Modulation of activation-associated host cell gene expression by the apicomplexan parasite Theileria annulata. Cell Microbiol 2012; 14:1434-54. [PMID: 22533473 PMCID: PMC3532605 DOI: 10.1111/j.1462-5822.2012.01809.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/29/2012] [Accepted: 04/19/2012] [Indexed: 12/29/2022]
Abstract
Infection of bovine leucocytes by Theileria annulata results in establishment of transformed, infected cells. Infection of the host cell is known to promote constitutive activation of pro-inflammatory transcription factors that have the potential to be beneficial or detrimental. In this study we have compared the effect of LPS activation on uninfected bovine leucocytes (BL20 cells) and their Theileria-infected counterpart (TBL20). Gene expression profiles representing activated uninfected BL20 relative to TBL20 cells were also compared. The results show that while prolonged stimulation with LPS induces cell death and activation of NF-κB in BL20 cells, the viability of Theileria-infected cells was unaffected. Analysis of gene expression networks provided evidence that the parasite establishes tight control over pathways associated with cellular activation by modulating reception of extrinsic stimuli and by significantly altering the expression outcome of genes targeted by infection-activated transcription factors. Pathway analysis of the data set identified novel candidate genes involved in manipulation of cellular functions associated with the infected transformed cell. The data indicate that the T. annulata parasite can irreversibly reconfigure host cell gene expression networks associated with development of inflammatory disease and cancer to generate an outcome that is beneficial to survival and propagation of the infected leucocyte.
Collapse
Affiliation(s)
- Zeeshan Durrani
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, Scotland, UK
| | | | | | | | | |
Collapse
|
31
|
Vedin I, Cederholm T, Freund-Levi Y, Basun H, Garlind A, Irving GF, Eriksdotter-Jönhagen M, Wahlund LO, Dahlman I, Palmblad J. Effects of DHA-rich n-3 fatty acid supplementation on gene expression in blood mononuclear leukocytes: the OmegAD study. PLoS One 2012; 7:e35425. [PMID: 22545106 PMCID: PMC3335851 DOI: 10.1371/journal.pone.0035425] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 03/16/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Dietary fish oil, rich in n-3 fatty acids (n-3 FAs), e.g. docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), regulate inflammatory reactions by various mechanisms, e.g. gene activation. However, the effects of long-term treatment with DHA and EPA in humans, using genome wide techniques, are poorly described. Hence, our aim was to determine the effects of 6 mo of dietary supplementation with an n-3 FA preparation rich in DHA on global gene expression in peripheral blood mononuclear cells. METHODS AND FINDINGS In the present study, blood samples were obtained from a subgroup of 16 patients originating from the randomized double-blind, placebo-controlled OmegAD study, where 174 Alzheimer disease (AD) patients received daily either 1.7 g of DHA and 0.6 g EPA or placebo for 6 months. In blood samples obtained from 11 patients receiving n-3 FA and five placebo, expressions of approximately 8000 genes were assessed by gene array. Significant changes were confirmed by real-time PCR. At 6 months, the n-3 FAs group displayed significant rises of DHA and EPA plasma concentrations, as well as up- and down-regulation of nine and ten genes, respectively, was noticed. Many of these genes are involved in inflammation regulation and neurodegeneration, e.g. CD63, MAN2A1, CASP4, LOC399491, NAIP, and SORL1 and in ubiqutination processes, e.g. ANAPC5 and UBE2V1. Down-regulations of ANAPC5 and RHOB correlated to increases of plasma DHA and EPA levels. CONCLUSIONS We suggest that 6 months of dietary n-3 FA supplementation affected expression of genes that might influence inflammatory processes and could be of significance for AD. TRIAL REGISTRATION ClinicalTrials.gov NCT00211159.
Collapse
Affiliation(s)
- Inger Vedin
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sollberger G, Strittmatter GE, Kistowska M, French LE, Beer HD. Caspase-4 is required for activation of inflammasomes. THE JOURNAL OF IMMUNOLOGY 2012; 188:1992-2000. [PMID: 22246630 DOI: 10.4049/jimmunol.1101620] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IL-1β and IL-18 are crucial regulators of inflammation and immunity. Both cytokines are initially expressed as inactive precursors, which require processing by the protease caspase-1 for biological activity. Caspase-1 itself is activated in different innate immune complexes called inflammasomes. In addition, caspase-1 activity regulates unconventional protein secretion of many other proteins involved in inflammation and repair. Human caspase-4 is a poorly characterized member of the caspase family, which is supposed to be involved in endoplasmic reticulum stress-induced apoptosis. However, its gene is located on the same locus as the caspase-1 gene, which raises the possibility that caspase-4 plays a role in inflammation. In this study, we show that caspase-4 expression is required for UVB-induced activation of proIL-1β and for unconventional protein secretion by skin-derived keratinocytes. These processes require expression of the nucleotide-binding domain leucine-rich repeat containing, Pyrin domain containing-3 inflammasome, and caspase-4 physically interacts with its central molecule caspase-1. As the active site of caspase-4 is required for activation of caspase-1, the latter most likely represents a substrate of caspase-4. Caspase-4 expression is also essential for efficient nucleotide-binding domain leucine-rich repeat containing, Pyrin domain containing-3 and for absent in melanoma 2 inflammasome-dependent proIL-1β activation in macrophages. These results demonstrate an important role of caspase-4 in inflammation and innate immunity through activation of caspase-1. Therefore, caspase-4 represents a novel target for the treatment of (auto)inflammatory diseases.
Collapse
Affiliation(s)
- Gabriel Sollberger
- Department of Biology, Institute of Cell Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Liu Z, Brooks RS, Ciappio ED, Kim SJ, Crott JW, Bennett G, Greenberg AS, Mason JB. Diet-induced obesity elevates colonic TNF-α in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer. J Nutr Biochem 2011; 23:1207-13. [PMID: 22209007 DOI: 10.1016/j.jnutbio.2011.07.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/28/2011] [Accepted: 07/08/2011] [Indexed: 12/16/2022]
Abstract
Inflammation associated with obesity may play a role in colorectal carcinogenesis, but the underlying mechanism remains unclear. This study investigated whether the Wnt pathway, an intracellular signaling cascade that plays a critical role in colorectal carcinogenesis, is activated by obesity-induced elevation of the inflammatory cytokine tumor necrosis factor-alpha (TNF-α). Animal studies were conducted on C57BL/6 mice, and obesity was induced by utilizing a high-fat diet (60% kcal). An inflammation-specific microarray was performed, and results were confirmed with real-time polymerase chain reaction. The array revealed that diet-induced obesity increased the expression of TNF-α in the colon by 72% (P=.004) and that of interleukin-18 by 41% (P=.023). The concentration of colonic TNF-α protein, determined by ex vivo culture assay, was nearly doubled in the obese animals (P=.002). The phosphorylation of glycogen synthase kinase 3 beta (GSK3β), an important intermediary inhibitor of Wnt signaling and a potential target of TNF-α, was quantitated by immunohistochemistry. The inactivated (phosphorylated) form of GSK3β was elevated in the colonic mucosa of obese mice (P<.02). Moreover, β-catenin, the key effector of canonical Wnt signaling, was elevated in the colons of obese mice (P<.05), as was the expression of a downstream target gene, c-myc (P<.05). These data demonstrate that diet-induced obesity produces an elevation in colonic TNF-α and instigates a number of alterations of key components within the Wnt signaling pathway that are protransformational in nature. Thus, these observations offer evidence for a biologically plausible avenue, the Wnt pathway, by which obesity increases the risk of colorectal cancer.
Collapse
Affiliation(s)
- Zhenhua Liu
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Haasbach E, Pauli EK, Spranger R, Mitzner D, Schubert U, Kircheis R, Planz O. Antiviral activity of the proteasome inhibitor VL-01 against influenza A viruses. Antiviral Res 2011; 91:304-13. [PMID: 21777621 DOI: 10.1016/j.antiviral.2011.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 06/29/2011] [Accepted: 07/05/2011] [Indexed: 01/04/2023]
Abstract
The appearance of highly pathogenic avian influenza A viruses of the H5N1 subtype being able to infect humans and the 2009 H1N1 pandemic reveals the urgent need for new and efficient countermeasures against these viruses. The long-term efficacy of current antivirals is often limited, because of the emergence of drug-resistant virus mutants. A growing understanding of the virus-host interaction raises the possibility to explore alternative targets involved in the viral replication. In the present study we show that the proteasome inhibitor VL-01 leads to reduction of influenza virus replication in human lung adenocarcinoma epithelial cells (A549) as demonstrated with three different influenza virus strains, A/Puerto Rico/8/34 (H1N1) (EC50 value of 1.7 μM), A/Regensburg/D6/09 (H1N1v) (EC50 value of 2.4 μM) and A/Mallard/Bavaria/1/2006 (H5N1) (EC50 value of 0.8 μM). In in vivo experiments we could demonstrate that VL-01-aerosol-treatment of BALB/c mice with 14.1 mg/kg results in no toxic side effects, reduced progeny virus titers in the lung (1.1 ± 0.3 log10 pfu) and enhanced survival of mice after infection with a 5-fold MLD50 of the human influenza A virus strain A/Puerto Rico/8/34 (H1N1) up to 50%. Furthermore, treatment of mice with VL-01 reduced the cytokine release of IL-α/β, IL-6, MIP-1β, RANTES and TNF-α induced by LPS or highly pathogen avian H5N1 influenza A virus. The present data demonstrates an antiviral effect of VL-01 in vitro and in vivo and the ability to reduce influenza virus induced cytokines and chemokines.
Collapse
Affiliation(s)
- Emanuel Haasbach
- Friedrich-Loeffler-Institut, Institute of Immunology, Paul-Ehrlich Str. 28, 72076 Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
van Raam BJ, Salvesen GS. Proliferative versus apoptotic functions of caspase-8 Hetero or homo: the caspase-8 dimer controls cell fate. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:113-22. [PMID: 21704196 DOI: 10.1016/j.bbapap.2011.06.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 12/12/2022]
Abstract
Caspase-8, the initiator of extrinsically-triggered apoptosis, also has important functions in cellular activation and differentiation downstream of a variety of cell surface receptors. It has become increasingly clear that the heterodimer of caspase-8 with the long isoform of cellular FLIP (FLIP(L)) fulfills these pro-survival functions of caspase-8. FLIP(L), a catalytically defective caspase-8 paralog, can interact with caspase-8 to activate its catalytic function. The caspase-8/FLIP(L) heterodimer has a restricted substrate repertoire and does not induce apoptosis. In essence, caspase-8 heterodimerized with FLIP(L) prevents the receptor interacting kinases RIPK1 and -3 from executing the form of cell death known as necroptosis. This review discusses the latest insights in caspase-8 homo- versus heterodimerization and the implication this has for cellular death or survival. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Bram J van Raam
- Program of Apoptosis and Cell Death Research, Sanford-Burnham Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
36
|
Abstract
Caspases are intracellular proteases that are best known for their function in apoptosis signaling. It has become evident that many caspases also function in other signaling pathways that propagate cell proliferation and inflammation, but studies on the inflammatory function of caspases have mainly been limited to caspase-1-mediated cytokine processing. Emerging evidence, however, indicates an important contribution of caspases as mediators or regulators of nuclear factor-κB (NF-κB) signaling, which plays a key role in inflammation and immunity. Much still needs to be learned about the mechanisms that govern the activation and regulation of NF-κB by caspases, and this review provides an update of this area. Whereas apoptosis signaling is dependent on the catalytic activity of caspases, they mainly act as scaffolding platforms for other signaling proteins in the case of NF-κB signaling. Caspase proteolytic activity, however, counteracts the pro-survival function of NF-κB by cleaving specific signaling molecules. A striking exception is the paracaspase mucosa-associated lymphoid tissue 1 (MALT1), whose adaptor and proteolytic activity are both needed to initiate a full blown NF-κB response in antigen-stimulated lymphocytes. Understanding the role of caspases and MALT1 in the regulation of NF-κB signaling is of high interest for therapeutic immunomodulation.
Collapse
|
37
|
Zhang Z, Bryan JL, DeLassus E, Chang LW, Liao W, Sandell LJ. CCAAT/enhancer-binding protein β and NF-κB mediate high level expression of chemokine genes CCL3 and CCL4 by human chondrocytes in response to IL-1β. J Biol Chem 2010; 285:33092-33103. [PMID: 20702408 PMCID: PMC2963416 DOI: 10.1074/jbc.m110.130377] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/16/2010] [Indexed: 11/06/2022] Open
Abstract
A large set of chemokines is highly up-regulated in human chondrocytes in response to IL-1β (Sandell, L. J., Xing, X., Franz, C., Davies, S., Chang, L. W., and Patra, D. (2008) Osteoarthr. Cartil. 16, 1560-1571). To investigate the mechanism of transcriptional regulation, deletion constructs of selected chemokine gene promoters, the human CCL3 (MIP-1α) and CCL4 (MIP-1β), were transfected into human chondrocytes with or without IL-1β. The results show that an IL-1β-responsive element is located between bp -300 and -140 of the CCL3 promoter and between bp -222 and -100 of the CCL4 promoter. Because both of these elements contain CCAAT/enhancer-binding protein β (C/EBPβ) motifs, the function of C/EBPβ was examined. IL-1β stimulated the expression of C/EBPβ, and the direct binding of C/EBPβ to the C/EBPβ motif was confirmed by EMSA and ChIP analyses. The -300 bp CCL3 promoter and -222 bp CCL4 promoter were strongly up-regulated by co-transfection with the C/EBPβ expression vector. Mutation of the C/EBPβ motif and reduction of C/EBPβ expression by siRNA decreased the up-regulation. Additionally, another cytokine-related transcription factor, NF-κB, was also shown to be involved in the up-regulation of chemokines in response to IL-1β, and the binding site was identified. The regulation of C/EBPβ and NF-κB was confirmed by the inhibition by C/EBPβ and NF-κB and by transfection with C/EBPβ and NF-κB expression vectors in the presence or absence of IL-1β. Taken together, our results suggest that C/EBPβ and NF-κB are both involved in the IL-1β-responsive up-regulation of chemokine genes in human chondrocytes. Time course experiments indicated that C/EBPβ gradually and steadily induces chemokine up-regulation, whereas NF-κB activity was highest at the early stage of chemokine up-regulation.
Collapse
Affiliation(s)
- Zhiqi Zhang
- From the Departments of Orthopaedic Surgery, St. Louis, Missouri 63110; Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jennifer L Bryan
- From the Departments of Orthopaedic Surgery, St. Louis, Missouri 63110
| | | | - Li-Wei Chang
- Pathology and Immunology, St. Louis, Missouri 63110
| | - Weiming Liao
- Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Linda J Sandell
- From the Departments of Orthopaedic Surgery, St. Louis, Missouri 63110; Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri 63110.
| |
Collapse
|
38
|
Yagi H, Soto-Gutierrez A, Navarro-Alvarez N, Nahmias Y, Goldwasser Y, Kitagawa Y, Tilles AW, Tompkins RG, Parekkadan B, Yarmush ML. Reactive bone marrow stromal cells attenuate systemic inflammation via sTNFR1. Mol Ther 2010; 18:1857-64. [PMID: 20664529 DOI: 10.1038/mt.2010.155] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Excessive systemic inflammation following trauma, sepsis, or burn could lead to distant organ damage. The transplantation of bone marrow stromal cells or mesenchymal stem cells (MSCs) has been reported to be an effective treatment for several immune disorders by modulating the inflammatory response to injury. We hypothesized that MSCs can dynamically secrete systemic factors that can neutralize the activity of inflammatory cytokines. In this study, we showed that cocultured MSCs are able to decrease nuclear factor κ-B (NFκB) activation in target epithelial cells incubated in inflammatory serum conditions. Proteomic screening revealed a responsive secretion of soluble tumor necrosis factor (TNF) receptor 1 (sTNFR1) when MSCs were exposed to lipopolysaccharide (LPS)-stimulated rat serum. The responsive effect was eliminated when NFκB activation was blocked in MSCs. Intramuscular transplantation of MSCs in LPS-endotoxic rats decreased a panel of inflammatory cytokines and inflammatory infiltration of macrophages and neutrophils in lung, kidney, and liver when compared to controls. These results suggest that improvements of inflammatory responses in animal models after local transplantation of MSCs are at least, in part, explained by the NFκB-dependent secretion of sTNFR1 by MSCs.
Collapse
Affiliation(s)
- Hiroshi Yagi
- Department of Surgery, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Binet F, Chiasson S, Girard D. Interaction between arsenic trioxide (ATO) and human neutrophils. Hum Exp Toxicol 2010; 30:416-24. [DOI: 10.1177/0960327110372645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cytotoxic effect of arsenic trioxide (ATO) is known to be mediated by its ability to induce cell apoptosis in a variety of cells, including neutrophils. More recently, we demonstrated that ATO induced several parameters involved in endoplasmic reticulum (ER) stress-induced neutrophil apoptosis but that caspase-4 was not involved. The aim of this study was to better understand how neutrophils are activated by ATO and to further demonstrate that ATO is an ER stressor. Human neutrophils were isolated from healthy blood donors and incubated in vitro in the presence or absence of ATO and several parameters were investigated. We found that ATO induced the expression of the proapoptotic GADD153 protein, a key player involved in ER stress-induced apoptosis, activated nuclear nuclear factor κB (NF-κB) DNA binding activities, and increased prostaglandine E2 (PGE2) production. Using an antibody array approach, we found that ATO increased the production of several cytokines, with interleukin 8 (IL-8) being the predominant one. We confirmed that ATO increased the production of IL-8 by enzyme-linked-immunosorbent assay (ELISA). Treatment with a caspase-4 inhibitor did not inhibit IL-8 production. The results of the present study further support the notion that ATO is an ER stressor and that, although its toxic effect is mediated by induction of apoptosis, this chemical also induced, in parallel, NF-κB activation, the production of PGE2 and several cytokines probably involved in other cell functions. Also, we conclude that the production of IL-8 is not induced by a caspase-4-dependent mechanism, suggesting that ATO-induced caspase-4 activation is involved in other as yet unidentified functions in human neutrophils.
Collapse
Affiliation(s)
- François Binet
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Sonia Chiasson
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, QC, Canada,
| |
Collapse
|
40
|
Arsenic trioxide induces endoplasmic reticulum stress-related events in neutrophils. Int Immunopharmacol 2010; 10:508-12. [PMID: 20138156 DOI: 10.1016/j.intimp.2010.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/19/2010] [Accepted: 01/25/2010] [Indexed: 11/20/2022]
Abstract
We recently reported that the endoplasmic reticulum (ER)-induced cell pathway of apoptosis is operational in human neutrophils and that some ER stressors can accelerate this process. Recent data suggest that arsenic trioxide (As(2)O(3) or ATO), may also act as an ER stressor. The aims of the present study were to elucidate if other ER stress-related events occur in ATO-induced neutrophils, and to determine the role of caspase-4 in the proapoptotic activity of ATO. We found that ATO induced ubiquitination of proteins, and increased calcium concentration and gene expression of calcineurin in neutrophils. In addition to caspase-4, activities of caspase-3, -8 and -9 were increased by ATO. The processing of caspase-4 was reversed by a caspase-8 inhibitor, indicating that caspase-4 activation requires the action of upstream initiator components, questioning on the role of caspase-4 in ATO-induced ER stress-mediated cell apoptosis. Using caspase-4 deficient THP-1 cells, we demonstrated that the proapoptotic effect of ATO was similar to that of control caspase-4-positive cells. We conclude that ATO is an ER stressor that can induce cell apoptosis by a mechanism which does not require caspase-4. In addition, we conclude that caspase-4 activation in ATO-induced neutrophils could be involved in functions other than apoptosis.
Collapse
|
41
|
Trannoy L, Roelen D, Koekkoek K, Brand A. Impact of Photodynamic Treatment with Meso-substituted Porphyrin on the Immunomodulatory Capacity of White Blood Cell-containing Red Blood Cell Products. Photochem Photobiol 2010; 86:223-30. [DOI: 10.1111/j.1751-1097.2009.00624.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Salminen A, Kauppinen A, Suuronen T, Kaarniranta K, Ojala J. ER stress in Alzheimer's disease: a novel neuronal trigger for inflammation and Alzheimer's pathology. J Neuroinflammation 2009; 6:41. [PMID: 20035627 PMCID: PMC2806266 DOI: 10.1186/1742-2094-6-41] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/26/2009] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) is involved in several crucial cellular functions, e.g. protein folding and quality control, maintenance of Ca2+ balance, and cholesterol synthesis. Many genetic and environmental insults can disturb the function of ER and induce ER stress. ER contains three branches of stress sensors, i.e. IRE1, PERK and ATF6 transducers, which recognize the misfolding of proteins in ER and activate a complex signaling network to generate the unfolded protein response (UPR). Alzheimer's disease (AD) is a progressive neurodegenerative disorder involving misfolding and aggregation of proteins in conjunction with prolonged cellular stress, e.g. in redox regulation and Ca2+ homeostasis. Emerging evidence indicates that the UPR is activated in neurons but not in glial cells in AD brains. Neurons display pPERK, peIF2α and pIRE1α immunostaining along with abundant diffuse staining of phosphorylated tau protein. Recent studies have demonstrated that ER stress can also induce an inflammatory response via different UPR transducers. The most potent pathways are IRE1-TRAF2, PERK-eIF2α, PERK-GSK-3, ATF6-CREBH, as well as inflammatory caspase-induced signaling pathways. We will describe the mechanisms which could link the ER stress of neurons to the activation of the inflammatory response and the evolution of pathological changes in AD.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
43
|
G-protein-coupled-receptor kinases mediate TNFα-induced NFκB signalling via direct interaction with and phosphorylation of IκBα. Biochem J 2009; 425:169-78. [PMID: 19796012 DOI: 10.1042/bj20090908] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor-α (TNFα) is a multifunctional cytokine involved in the pathophysiology of many chronic inflammatory diseases. TNFα activation of the nuclear factor κB (NFκB) signaling pathway particularly in macrophages has been implicated in many diseases. We demonstrate here that G-protein coupled receptor kinase-2 and 5 (GRK2 and 5) regulate TNFα-induced NFκB signaling in Raw264.7 macrophages. RNAi knockdown of GRK2 or 5 in macrophages significantly inhibits TNFα-induced IκBα phosphorylation and degradation, NFκB activation, and expression of the NFκB-regulated gene, macrophage inflammatory protein-1β. Consistent with these results, over-expression of GRK2 or 5 enhances TNFα-induced NFκB activity. In addition,we show that GRK2 and 5 interact with IκBα via the N-terminal domain of IκBα and that IκBα isa substrate for GRK2 and 5 in vitro. Furthermore, we also find that GRK5 but not GRK2 phosphorylates IκBα at the same amino acid residues (Ser32/36) as that of IKKβ. Interestingly,associated with these results, knockdown of IKKβ in Raw264.7 macrophages did not affect TNFα-induced IκBα phosphorylation. Taken together, these results demonstrate that both GRK2 and 5 are important and novel mediators of a non-traditional IκBα-NFκB signaling pathway.
Collapse
|
44
|
Bian ZM, Elner SG, Elner VM. Dual involvement of caspase-4 in inflammatory and ER stress-induced apoptotic responses in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2009; 50:6006-14. [PMID: 19643964 PMCID: PMC3208232 DOI: 10.1167/iovs.09-3628] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the functional involvement of caspase-4 in human retinal pigment epithelial (hRPE) cells. METHODS Expression and activation of caspase-4 in hRPE cells were measured after stimulation with proinflammatory agents IL-1beta (2 ng/mL), TNF-alpha (20 ng/mL), lipopolysaccharide (1000 ng/mL), interferon-gamma (500 U/mL), or monocyte coculture in the absence or presence of immunomodulating agent cyclosporine (3 or 30 ng/mL), dexamethasone (10 microM), or IL-10 (100 U/mL) and endoplasmic reticulum (ER) stress inducer thapsigargin (25 nM) or tunicamycin (3 or 10 microM). The onset of ER stress was determined by expression of GRP78. The involvement of caspase-4 in inflammation and apoptosis was further examined by treating the cells with caspase-4 inhibitor Z-LEVD-fmk, caspase-1 and -4 inhibitor Z-YVAD-fmk, and pan-caspase inhibitor Z-VAD-fmk. RESULTS Caspase-4 mRNA expression and protein activation were induced by all the proinflammatory agents and ER stress inducers tested in this study. Caspase-4 activation was blocked or reduced by dexamethasone and IL-10. Elevated ER stress by proinflammatory agents and ER stress inducers was shown by increased expression of the ER stress marker GRP78. The induced caspase-4 and caspase-3 activities by tunicamycin and the stimulated IL-8 protein expression by IL-1beta were markedly reduced by caspase-4 inhibitor Z-LEVD-fmk. Although caspase-4 inhibitor Z-LEVD-fmk and caspase-1 and -4 inhibitor Z-YVAD-fmk reduced tunicamycin-induced hRPE apoptotic cell death by 59% and 86%, respectively, pan-caspase inhibitor Z-VAD-fmk completely abolished the induced apoptosis. CONCLUSIONS Caspase-4 is dually involved in hRPE proinflammatory and proapoptotic responses. Various proinflammatory stimuli and ER stress induce hRPE caspase-4 mRNA synthesis and protein activation. ER stress-induced hRPE cell death is caspase and, in part, caspase-4 dependent.
Collapse
Affiliation(s)
- Zong-Mei Bian
- Department of Ophthalmology, University of Michigan, Ann Arbor, Michigan 48105, USA
| | | | | |
Collapse
|
45
|
Hagman R, Rönnberg E, Pejler G. Canine uterine bacterial infection induces upregulation of proteolysis-related genes and downregulation of homeobox and zinc finger factors. PLoS One 2009; 4:e8039. [PMID: 19956711 PMCID: PMC2777310 DOI: 10.1371/journal.pone.0008039] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 11/02/2009] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Bacterial infection with the severe complication of sepsis is a frequent and serious condition, being a major cause of death worldwide. To cope with the plethora of occurring bacterial infections there is therefore an urgent need to identify molecular mechanisms operating during the host response, in order both to identify potential targets for therapeutic intervention and to identify biomarkers for disease. Here we addressed this issue by studying global gene expression in uteri from female dogs suffering from spontaneously occurring uterine bacterial infection. PRINCIPAL FINDINGS The analysis showed that almost 800 genes were significantly (p<0.05) upregulated (>2-fold) in the uteri of diseased animals. Among these were numerous chemokine and cytokine genes, as well as genes associated with inflammatory cell extravasation, anti-bacterial action, the complement system and innate immune responses, as well as proteoglycan-associated genes. There was also a striking representation of genes associated with proteolysis. Robust upregulation of immunoglobulin components and genes involved in antigen presentation was also evident, indicating elaboration of a strong adaptive immune response. The bacterial infection was also associated with a significant downregulation of almost 700 genes, of which various homeobox and zinc finger transcription factors were highly represented. CONCLUSIONS/SIGNIFICANCE Together, these finding outline the molecular patterns involved in bacterial infection of the uterus. The study identified altered expression of numerous genes not previously implicated in bacterial disease, and several of these may be evaluated for potential as biomarkers of disease or as therapeutic targets. Importantly, since humans and dogs show genetic similarity and develop diseases that share many characteristics, the molecular events identified here are likely to reflect the corresponding situation in humans afflicted by similar disease.
Collapse
Affiliation(s)
- Ragnvi Hagman
- Division of Small Animals, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail: (RH); (GP)
| | - Elin Rönnberg
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail: (RH); (GP)
| |
Collapse
|
46
|
Binet F, Chiasson S, Girard D. Evidence that endoplasmic reticulum (ER) stress and caspase-4 activation occur in human neutrophils. Biochem Biophys Res Commun 2009; 391:18-23. [PMID: 19878647 DOI: 10.1016/j.bbrc.2009.10.141] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 10/25/2009] [Indexed: 11/16/2022]
Abstract
Apoptosis can result from activation of three major pathways: the extrinsic, the intrinsic, and the most recently identified endoplasmic reticulum (ER) stress-mediated pathway. While the two former pathways are known to be operational in human polymorphonuclear neutrophils (PMNs), the existence of the ER stress-mediated pathway, generally involving caspase-4, has never been reported in these cells. Recently, we have documented that arsenic trioxide (ATO) induced apoptosis in human PMNs by a mechanism that needs to be further investigated. In this study, using immunofluorescence and electron microscopy, we present evidence of ER alterations in PMNs activated by the ER stress inducer arsenic trioxide (ATO). Several key players of the unfolded protein response, including GRP78, GADD153, ATF6, XBP1 and eIF2alpha are expressed and activated in PMNs treated with ATO or other ER stress inducers. Although caspase-4 is expressed and activated in neutrophils, treatment with a caspase-4 inhibitor did not attenuate the pro-apoptotic effect of ATO at a concentration that reverses caspase-4 processing and activation. Our results demonstrate for the first time that the ER stress-mediated apoptotic pathway operates in human neutrophils.
Collapse
Affiliation(s)
- François Binet
- Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, QC, Canada
| | | | | |
Collapse
|
47
|
Pastorino JG, Shulga N. Tumor necrosis factor-alpha can provoke cleavage and activation of sterol regulatory element-binding protein in ethanol-exposed cells via a caspase-dependent pathway that is cholesterol insensitive. J Biol Chem 2008; 283:25638-25649. [PMID: 18635549 DOI: 10.1074/jbc.m800237200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ethanol induces the development of hepatic steatosis, increasingly recognized as causing vulnerability to subsequent liver injury. Ethanol has been shown to activate SREBP-1 (sterol regulatory element-binding protein) processing through the conventional cholesterol-sensitive pathway (1). The present study demonstrates that ethanol can also bring about SREBP-1 cleavage and activation through a novel pathway dependent on the endoplasmic reticulum-localized caspases-4 and -12. Evidence is presented that tumor necrosis factor can stimulate caspase-4 and -12 activation in ethanol-exposed cells, which cleaves SREBP-1 to a transcriptionally active form to induce the synthesis of lipogenic enzymes and triglycerides. Moreover, the caspase-4 and -12-dependent activation of SREBP-1 is insensitive to the normal negative feedback exerted by cholesterol and is mediated by the translocation of the scaffolding protein, TRAF-2, to the endoplasmic reticulum.
Collapse
Affiliation(s)
- John G Pastorino
- Department of Molecular Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084.
| | - Nataly Shulga
- Department of Molecular Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084
| |
Collapse
|