1
|
Gopalakrishnan RP, Østrøm MS, Skjeldal FM, Bakke O, Bogen B, Huszthy PC. B Cells With Complementary B Cell Receptors Can Kill Each Other. Eur J Immunol 2025; 55:e202350890. [PMID: 39520365 PMCID: PMC11739674 DOI: 10.1002/eji.202350890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
B cells differentiate from hematopoietic stem cells in the bone marrow (BM) and migrate as transitional cells to the spleen where final maturation takes place. Due to the enormous diversity in variable (V) regions of B cell receptors for antigen (BCR), B cells with complementary BCRs are likely to be generated. These could encounter each other in the BM or in secondary lymphoid organs. The outcome of such an event is unknown. To study this issue, we used two strains of gene-modified mice whose B cells display complementary BCRs. B cells of one strain express an idiotype+ (Id+) BCR while B cells of the other strain display an anti-idiotypic (αId) BCR. In vitro, B cells with complementary BCRs killed each other in a mechanism that required physical binding between BCR V-regions. In contrast, killing was unilateral in vivo: αId B cells with a follicular (FO) B cell phenotype were expanded, while Id+ B cells with a marginal zone (MZ) phenotype became deleted. The results show that B cells with complementary BCRs can recognize and regulate each other in vivo. This mechanism should be taken into account in theories for idiotypic regulation of the immune system.
Collapse
Affiliation(s)
- Ramakrishna Prabhu Gopalakrishnan
- Department of Immunology, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Immunology, Division of Laboratory MedicineOslo University HospitalOsloNorway
| | | | | | - Oddmund Bakke
- Department of BiosciencesUniversity of OsloOsloNorway
| | - Bjarne Bogen
- Department of Immunology, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Immunology, Division of Laboratory MedicineOslo University HospitalOsloNorway
| | - Peter Csaba Huszthy
- Department of Immunology, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Immunology, Division of Laboratory MedicineOslo University HospitalOsloNorway
- Department of Microbiology and Infection Control, Division of Diagnostics and TechnologyAkershus University HospitalLørenskogNorway
| |
Collapse
|
2
|
Fukasawa T, Yoshizaki-Ogawa A, Sato S, Yoshizaki A. The role of B cells in systemic sclerosis. J Dermatol 2024; 51:904-913. [PMID: 38321641 DOI: 10.1111/1346-8138.17134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 02/08/2024]
Abstract
Systemic sclerosis (SSc) is a rare and refractory systemic disease characterized by fibrosis and vasculopathy in the presence of autoimmune abnormalities. While the exact cause of SSc is incompletely understood, the specific autoantibodies identified in SSc are closely linked to disease severity and prognosis, indicating a significant role of autoimmune abnormalities in the pathogenesis of SSc. Although the direct pathogenic mechanisms of autoantibodies in SSc are not fully elucidated, numerous prior investigations have demonstrated the involvement of B cells in the pathogenesis of SSc through various mechanisms. Additionally, several clinical trials have explored the efficacy of B-cell depletion therapy for SSc, with many reporting positive outcomes. However, the role of B cells in SSc pathogenesis is multifaceted, as they can both promote inflammation and exert inhibitory functions. This article provides an overview of the involvement of B cells in SSc development, incorporating the latest research findings.
Collapse
Affiliation(s)
- Takemichi Fukasawa
- Department of Dermatology, Systemic Sclerosis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, Systemic Sclerosis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Systemic Sclerosis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, Systemic Sclerosis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Cho H, Kwon HY, Kim Y, Kim K, Lee EJ, Kang NY, Chang YT. Development of a Mature B Lymphocyte Probe through Gating-Oriented Live-Cell Distinction (GOLD) and Selective Imaging of Topical Spleen. JACS AU 2024; 4:1450-1457. [PMID: 38665660 PMCID: PMC11040558 DOI: 10.1021/jacsau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 04/28/2024]
Abstract
B lymphocytes play a pivotal role in the adaptive immune system by facilitating antibody production. Young B cell progenitors originate in the bone marrow and migrate to the spleen for antigen-dependent maturation, leading to the development of diverse B cell subtypes. Thus, tracking B cell trajectories through cell type distinction is essential for an appropriate checkpoint assessment. Despite its significance, monitoring specific B cell subclasses in live states has been hindered by a lack of suitable molecular tools. In this study, we introduce CDoB as the first mature B cell-selective probe, enabling real-time discrimination of three classified stages in B-cell development: progenitor, transitional, and mature B cells, through a single analysis using CyTOF. The selective mechanism of CDoB, elucidated as gating-oriented live-cell distinction (GOLD), targets SLC25A16, identified through systematic screening of SLC-CRISPRa and CRISPRi libraries. CDoB selectively brightens mature B cells in the mitochondrial area using SLC25A16 as the main gate, and the staining intensity correlates positively with the expression level of SLC25A16 along the B cell maturation continuum. In spleen tissues, CDoB demonstrates selective marking in mature B cell areas in live tissue status, representing the first performance achieved by a small-molecule fluorescent probe.
Collapse
Affiliation(s)
- Heewon Cho
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea
| | - Haw-Young Kwon
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea
- Center
for Self-Assembly and Complexity, Institute
for Basic Science (IBS), Pohang, Gyeongsangbuk-do 37673, Republic of Korea
| | - Youngsook Kim
- Endocrinology,
Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyungwon Kim
- Endocrinology,
Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eun Jig Lee
- Endocrinology,
Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Nam-Young Kang
- Department
of Convergence IT Engineering, Pohang University
of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea
| | - Young-Tae Chang
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea
- Center
for Self-Assembly and Complexity, Institute
for Basic Science (IBS), Pohang, Gyeongsangbuk-do 37673, Republic of Korea
| |
Collapse
|
4
|
Lee S, Ko Y, Lee HW, Oh WJ, Hong HG, Ariyaratne D, Im SJ, Kim TJ. Two distinct subpopulations of marginal zone B cells exhibit differential antibody-producing capacities and radioresistance. Cell Mol Immunol 2024; 21:393-408. [PMID: 38424169 PMCID: PMC10978899 DOI: 10.1038/s41423-024-01126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/27/2023] [Indexed: 03/02/2024] Open
Abstract
Marginal zone (MZ) B cells, which are splenic innate-like B cells that rapidly secrete antibodies (Abs) against blood-borne pathogens, are composed of heterogeneous subpopulations. Here, we showed that MZ B cells can be divided into two distinct subpopulations according to their CD80 expression levels. CD80high MZ B cells exhibited greater Ab-producing, proliferative, and IL-10-secreting capacities than did CD80low MZ B cells. Notably, CD80high MZ B cells survived 2-Gy whole-body irradiation, whereas CD80low MZ B cells were depleted by irradiation and then repleted with one month after irradiation. Depletion of CD80low MZ B cells led to accelerated development of type II collagen (CII)-induced arthritis upon immunization with bovine CII. CD80high MZ B cells exhibited higher expression of genes involved in proliferation, plasma cell differentiation, and the antioxidant response. CD80high MZ B cells expressed more autoreactive B cell receptors (BCRs) that recognized double-stranded DNA or CII, expressed more immunoglobulin heavy chain sequences with shorter complementarity-determining region 3 sequences, and included more clonotypes with no N-nucleotides or with B-1a BCR sequences than CD80low MZ B cells. Adoptive transfer experiments showed that CD21+CD23+ transitional 2 MZ precursors preferentially generated CD80low MZ B cells and that a proportion of CD80low MZ B cells were converted into CD80high MZ B cells; in contrast, CD80high MZ B cells stably remained CD80high MZ B cells. In summary, MZ B cells can be divided into two subpopulations according to their CD80 expression levels, Ab-producing capacity, radioresistance, and autoreactivity, and these findings may suggest a hierarchical composition of MZ B cells with differential stability and BCR specificity.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Yeunjung Ko
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hyun Woo Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Won Joon Oh
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Hun Gi Hong
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Dinuka Ariyaratne
- Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Se Jin Im
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| | - Tae Jin Kim
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Babushku T, Lechner M, Ehrenberg S, Rambold U, Schmidt-Supprian M, Yates AJ, Rane S, Zimber-Strobl U, Strobl LJ. Notch2 controls developmental fate choices between germinal center and marginal zone B cells upon immunization. Nat Commun 2024; 15:1960. [PMID: 38438375 PMCID: PMC10912316 DOI: 10.1038/s41467-024-46024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Sustained Notch2 signals induce trans-differentiation of Follicular B (FoB) cells into Marginal Zone B (MZB) cells in mice, but the physiology underlying this differentiation pathway is still elusive. Here, we demonstrate that most B cells receive a basal Notch signal, which is intensified in pre-MZB and MZB cells. Ablation or constitutive activation of Notch2 upon T-cell-dependent immunization reveals an interplay between antigen-induced activation and Notch2 signaling, in which FoB cells that turn off Notch2 signaling enter germinal centers (GC), while high Notch2 signaling leads to generation of MZB cells or to initiation of plasmablast differentiation. Notch2 signaling is dispensable for GC dynamics but appears to be re-induced in some centrocytes to govern expansion of IgG1+ GCB cells. Mathematical modelling suggests that antigen-activated FoB cells make a Notch2 dependent binary fate-decision to differentiate into either GCB or MZB cells. This bifurcation might serve as a mechanism to archive antigen-specific clones into functionally and spatially diverse B cell states to generate robust antibody and memory responses.
Collapse
Affiliation(s)
- Tea Babushku
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, D-81377, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Einsteinstraße 25, D-81675, Munich, Germany
| | - Markus Lechner
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, D-81377, Munich, Germany
| | - Stefanie Ehrenberg
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, D-81377, Munich, Germany
| | - Ursula Rambold
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, D-81377, Munich, Germany
| | - Marc Schmidt-Supprian
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Einsteinstraße 25, D-81675, Munich, Germany
| | - Andrew J Yates
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Sanket Rane
- Irving Institute for Cancer Dynamics, Columbia University, 1190 Amsterdam Ave, New York, 10027, USA
| | - Ursula Zimber-Strobl
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, D-81377, Munich, Germany.
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | - Lothar J Strobl
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, D-81377, Munich, Germany
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| |
Collapse
|
6
|
Bierling TEH, Gumann A, Ottmann SR, Schulz SR, Weckwerth L, Thomas J, Gessner A, Wichert M, Kuwert F, Rost F, Hauke M, Freudenreich T, Mielenz D, Jäck HM, Pracht K. GLUT1-mediated glucose import in B cells is critical for anaplerotic balance and humoral immunity. Cell Rep 2024; 43:113739. [PMID: 38340319 DOI: 10.1016/j.celrep.2024.113739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Glucose uptake increases during B cell activation and antibody-secreting cell (ASC) differentiation, but conflicting findings prevent a clear metabolic profile at different stages of B cell activation. Deletion of the glucose transporter type 1 (GLUT1) gene in mature B cells (GLUT1-cKO) results in normal B cell development, but it reduces germinal center B cells and ASCs. GLUT1-cKO mice show decreased antigen-specific antibody titers after vaccination. In vitro, GLUT1-deficient B cells show impaired activation, whereas established plasmablasts abolish glycolysis, relying on mitochondrial activity and fatty acids. Transcriptomics and metabolomics reveal an altered anaplerotic balance in GLUT1-deficient ASCs. Despite attempts to compensate for glucose deprivation by increasing mitochondrial mass and gene expression associated with glycolysis, the tricarboxylic acid cycle, and hexosamine synthesis, GLUT1-deficient ASCs lack the metabolites for energy production and mitochondrial respiration, limiting protein synthesis. We identify GLUT1 as a critical metabolic player defining the germinal center response and humoral immunity.
Collapse
Affiliation(s)
- Theresa E H Bierling
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Amelie Gumann
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Shannon R Ottmann
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian R Schulz
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Leonie Weckwerth
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jana Thomas
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Magdalena Wichert
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Frederic Kuwert
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Rost
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Manuela Hauke
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tatjana Freudenreich
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Pracht
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
7
|
Hemme E, Biskop D, Depuydt MAC, Smit V, Delfos L, Bernabé Kleijn MNA, Foks AC, Kuiper J, Bot I. Bruton's Tyrosine Kinase inhibition by Acalabrutinib does not affect early or advanced atherosclerotic plaque size and morphology in Ldlr-/- mice. Vascul Pharmacol 2023; 150:107172. [PMID: 37075932 DOI: 10.1016/j.vph.2023.107172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Atherosclerosis is characterized by the accumulation of lipids and immune cells, including mast cells and B cells, in the arterial wall. Mast cells contribute to atherosclerotic plaque growth and destabilization upon active degranulation. The FcεRI-IgE pathway is the most prominent mast cell activation route. Bruton's Tyrosine Kinase (BTK) is involved in FcεRI-signaling and may be a potential therapeutic target to limit mast cell activation in atherosclerosis. Additionally, BTK is crucial in B cell development and B-cell receptor signaling. In this project, we aimed to assess the effects of BTK inhibition on mast cell activation and B cell development in atherosclerosis. In human carotid artery plaques, we showed that BTK is primarily expressed on mast cells, B cells and myeloid cells. In vitro, BTK inhibitor Acalabrutinib dose-dependently inhibited IgE mediated activation of mouse bone marrow derived mast cells. In vivo, male Ldlr-/- mice were fed a high-fat diet for eight weeks, during which mice were treated with Acalabrutinib or control solvent. In Acalabrutinib treated mice, B cell maturation was reduced compared to control mice, showing a shift from follicular II towards follicular I B cells. Mast cell numbers and activation status were not affected. Acalabrutinib treatment did not affect atherosclerotic plaque size or morphology. In advanced atherosclerosis, where mice were first fed a high-fat diet for eight weeks before receiving treatment, similar effects were observed. Conclusively, BTK inhibition by Acalabrutinib alone did neither affect either mast cell activation nor early- and advanced atherosclerosis, despite the effects on follicular B cell maturation.
Collapse
Affiliation(s)
- Esmeralda Hemme
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Danique Biskop
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Marie A C Depuydt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Virginia Smit
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Lucie Delfos
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Mireia N A Bernabé Kleijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Amanda C Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands..
| |
Collapse
|
8
|
Daum P, Ottmann SR, Meinzinger J, Schulz SR, Côrte-Real J, Hauke M, Roth E, Schuh W, Mielenz D, Jäck HM, Pracht K. The microRNA processing subunit DGCR8 is required for a T cell-dependent germinal center response. Front Immunol 2022; 13:991347. [PMID: 36591274 PMCID: PMC9800915 DOI: 10.3389/fimmu.2022.991347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
We have previously shown that the microRNA (miRNA) processor complex consisting of the RNAse Drosha and the DiGeorge Critical Region (DGCR) 8 protein is essential for B cell maturation. To determine whether miRNA processing is required to initiate T cell-mediated antibody responses, we deleted DGCR8 in maturing B2 cells by crossing a mouse with loxP-flanked DGCR8 alleles with a CD23-Cre mouse. As expected, non-immunized mice showed reduced numbers of mature B2 cells and IgG-secreting cells and diminished serum IgG titers. In accordance, germinal centers and antigen-specific IgG-secreting cells were absent in mice immunized with T-dependent antigens. Therefore, DGCR8 is required to mount an efficient T-dependent antibody response. However, DGCR8 deletion in B1 cells was incomplete, resulting in unaltered B1 cell numbers and normal IgM and IgA titers in DGCR8-knock-out mice. Therefore, this mouse model could be used to analyze B1 responses in the absence of functional B2 cells.
Collapse
|
9
|
Yoshizaki A, Fukasawa T, Ebata S, Yoshizaki-Ogawa A, Sato S. Involvement of B cells in the development of systemic sclerosis. Front Immunol 2022; 13:938785. [PMID: 35967355 PMCID: PMC9365989 DOI: 10.3389/fimmu.2022.938785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare intractable systemic disease that causes fibrosis and vasculopathy against a background of autoimmune abnormalities. Although the etiology is not yet fully understood, the type of autoantibodies detected in SSc is closely associated with disease severity and prognosis, supporting that those autoimmune abnormalities play an important role in the pathogenesis of SSc. Although the direct pathogenicity of autoantibodies found in SSc is unknown, many previous studies have shown that B cells are involved in the development of SSc through a variety of functions. Furthermore, a number of clinical studies have been conducted in which B-cell depletion therapy has been tried for SSc, and many of these studies have found B-cell depletion therapy to be effective for SSc. However, the involvement of B cells in pathogenesis is complex, as they not only promote inflammation but also play an inhibitory role. This article outlines the role of B cells in the development of SSc, including the latest research.
Collapse
|
10
|
Kodali S, Li M, Budai MM, Chen M, Wang J. Protection of Quiescence and Longevity of IgG Memory B Cells by Mitochondrial Autophagy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1085-1098. [PMID: 35101890 PMCID: PMC8887795 DOI: 10.4049/jimmunol.2100969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022]
Abstract
The development of long-lived immune memory cells against pathogens is critical for the success of vaccines to establish protection against future infections. However, the mechanisms governing the long-term survival of immune memory cells remain to be elucidated. In this article, we show that the maintenance mitochondrial homeostasis by autophagy is critical for restricting metabolic functions to protect IgG memory B cell survival. Knockout of mitochondrial autophagy genes, Nix and Bnip3, leads to mitochondrial accumulation and increases in oxidative phosphorylation and fatty acid synthesis, resulting in the loss of IgG+ memory B cells in mice. Inhibiting fatty acid synthesis or silencing necroptosis gene Ripk3 rescued Nix-/-Bnip3-/- IgG memory B cells, indicating that mitochondrial autophagy is important for limiting metabolic functions to prevent cell death. Our results suggest a critical role for mitochondrial autophagy in the maintenance of immunological memory by protecting the metabolic quiescence and longevity of memory B cells.
Collapse
Affiliation(s)
- Srikanth Kodali
- * Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Min Li
- * Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Marietta M. Budai
- * Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Min Chen
- † Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX; .,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX; and.,Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY
| |
Collapse
|
11
|
Thomsen I, Kunowska N, de Souza R, Moody AM, Crawford G, Wang YF, Khadayate S, Whilding C, Strid J, Karimi MM, Barr AR, Dillon N, Sabbattini P. RUNX1 Regulates a Transcription Program That Affects the Dynamics of Cell Cycle Entry of Naive Resting B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2976-2991. [PMID: 34810221 PMCID: PMC8675107 DOI: 10.4049/jimmunol.2001367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/28/2021] [Indexed: 11/19/2022]
Abstract
RUNX1 is a transcription factor that plays key roles in hematopoietic development and in hematopoiesis and lymphopoiesis. In this article, we report that RUNX1 regulates a gene expression program in naive mouse B cells that affects the dynamics of cell cycle entry in response to stimulation of the BCR. Conditional knockout of Runx1 in mouse resting B cells resulted in accelerated entry into S-phase after BCR engagement. Our results indicate that Runx1 regulates the cyclin D2 (Ccnd2) gene, the immediate early genes Fosl2, Atf3, and Egr2, and the Notch pathway gene Rbpj in mouse B cells, reducing the rate at which transcription of these genes increases after BCR stimulation. RUNX1 interacts with the chromatin remodeler SNF-2-related CREB-binding protein activator protein (SRCAP), recruiting it to promoter and enhancer regions of the Ccnd2 gene. BCR-mediated activation triggers switching between binding of RUNX1 and its paralog RUNX3 and between SRCAP and the switch/SNF remodeling complex member BRG1. Binding of BRG1 is increased at the Ccnd2 and Rbpj promoters in the Runx1 knockout cells after BCR stimulation. We also find that RUNX1 exerts positive or negative effects on a number of genes that affect the activation response of mouse resting B cells. These include Cd22 and Bank1, which act as negative regulators of the BCR, and the IFN receptor subunit gene Ifnar1 The hyperresponsiveness of the Runx1 knockout B cells to BCR stimulation and its role in regulating genes that are associated with immune regulation suggest that RUNX1 could be involved in regulating B cell tolerance.
Collapse
Affiliation(s)
- Inesa Thomsen
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Natalia Kunowska
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Roshni de Souza
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Anne-Marie Moody
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Greg Crawford
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Yi-Fang Wang
- Bioinformatics and Computing, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Sanjay Khadayate
- Bioinformatics and Computing, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Chad Whilding
- Microscopy Facility, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Jessica Strid
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Mohammad M Karimi
- Bioinformatics and Computing, MRC London Institute of Medical Sciences, London, United Kingdom
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Alexis R Barr
- Cell Cycle Control Group, MRC London Institute of Medical Sciences, London, United Kingdom; and
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Niall Dillon
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom;
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Pierangela Sabbattini
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom;
| |
Collapse
|
12
|
Lechner M, Engleitner T, Babushku T, Schmidt-Supprian M, Rad R, Strobl LJ, Zimber-Strobl U. Notch2-mediated plasticity between marginal zone and follicular B cells. Nat Commun 2021; 12:1111. [PMID: 33597542 PMCID: PMC7889629 DOI: 10.1038/s41467-021-21359-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Follicular B (FoB) and marginal zone B (MZB) cells are functionally and spatially distinct mature B cell populations in the spleen, originating from a Notch2-dependent fate decision after splenic influx of immature transitional B cells. In the B cell follicle, a Notch2-signal is provided by DLL-1-expressing fibroblasts. However, it is unclear whether FoB cells, which are in close contact with these DLL-1 expressing fibroblasts, can also differentiate to MZB cells if they receive a Notch2-signal. Here, we show induced Notch2IC-expression in FoB cells re-programs mature FoB cells into bona fide MZB cells as is evident from the surface phenotype, localization, immunological function and transcriptome of these cells. Furthermore, the lineage conversion from FoB to MZB cells occurs in immunocompetent wildtype mice. These findings demonstrate plasticity between mature FoB and MZB cells that can be driven by a singular signaling event, the activation of Notch2.
Collapse
Affiliation(s)
- Markus Lechner
- Research Unit Gene Vectors, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, München, Germany
| | - Thomas Engleitner
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, München, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Tea Babushku
- Research Unit Gene Vectors, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, München, Germany
| | - Marc Schmidt-Supprian
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, München, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Experimental Hematology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Roland Rad
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, München, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Lothar J Strobl
- Research Unit Gene Vectors, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, München, Germany
| | - Ursula Zimber-Strobl
- Research Unit Gene Vectors, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, München, Germany.
| |
Collapse
|
13
|
Wittmann J. Modeling Lymphocytes. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Lindner SE, Egelston CA, Huard SM, Lee PP, Wang LD. Arhgap25 Deficiency Leads to Decreased Numbers of Peripheral Blood B Cells and Defective Germinal Center Reactions. Immunohorizons 2020; 4:274-281. [PMID: 32434881 DOI: 10.4049/immunohorizons.2000021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/05/2020] [Indexed: 02/03/2023] Open
Abstract
Rho family GTPases are critical for normal B cell development and function, and their activity is regulated by a large and complex network of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). However, the role of GAPs in B cell development is poorly understood. In this study, we show that the novel Rac-GAP ARHGAP25 is important for B cell development in mice in a CXCR4-dependent manner. We show that Arhgap25 deficiency in mice leads to a significant decrease in peripheral blood B cell numbers as well as defects in mature B cell differentiation. Arhgap25-/- B cells respond to Ag stimulation in vitro and in vivo but have impaired germinal center formation and decreased IgG1 class switching. Additionally, Arhgap25-/- B cells show evidence of increased baseline motility and augmented chemotaxis to CXCL12. Taken together, these studies demonstrate an important role for Arhgap25 in peripheral B cell development and Ag response.
Collapse
Affiliation(s)
- Silke E Lindner
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010; and
| | - Colt A Egelston
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010; and
| | - Stephanie M Huard
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010; and
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010; and
| | - Leo D Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010; and .,Department of Pediatrics, City of Hope National Medical Center, Duarte, CA 91010
| |
Collapse
|
15
|
Liu Y, Guo J, Huang L. Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies. Am J Cancer Res 2020; 10:3099-3117. [PMID: 32194857 PMCID: PMC7053194 DOI: 10.7150/thno.42998] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023] Open
Abstract
Recent advances in the field of immunotherapy have profoundly opened up the potential for improved cancer therapy and reduced side effects. However, the tumor microenvironment (TME) is highly immunosuppressive, therefore, clinical outcomes of currently available cancer immunotherapy are still poor. Recently, nanomaterial-based strategies have been developed to modulate the TME for robust immunotherapeutic responses. In this review, the immunoregulatory cell types (cells relating to the regulation of immune responses) inside the TME in terms of stimulatory and suppressive roles are described, and the technologies used to identify and quantify these cells are provided. In addition, recent examples of nanomaterial-based cancer immunotherapy are discussed, with particular emphasis on those designed to overcome barriers caused by the complexity and diversity of TME.
Collapse
|
16
|
Mcheik S, Van Eeckhout N, De Poorter C, Galés C, Parmentier M, Springael JY. Coexpression of CCR7 and CXCR4 During B Cell Development Controls CXCR4 Responsiveness and Bone Marrow Homing. Front Immunol 2019; 10:2970. [PMID: 31921208 PMCID: PMC6930800 DOI: 10.3389/fimmu.2019.02970] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
The CXCL12-CXCR4 axis plays a key role in the retention of stem cells and progenitors in dedicated bone marrow niches. It is well-known that CXCR4 responsiveness in B lymphocytes decreases dramatically during the final stages of their development in the bone marrow. However, the molecular mechanism underlying this regulation and whether it plays a role in B-cell homeostasis remain unknown. In the present study, we show that the differentiation of pre-B cells into immature and mature B cells is accompanied by modifications to the relative expression of chemokine receptors, with a two-fold downregulation of CXCR4 and upregulation of CCR7. We demonstrate that expression of CCR7 in B cells is involved in the selective inactivation of CXCR4, and that mature B cells from CCR7-/- mice display higher responsiveness to CXCL12 and improved retention in the bone marrow. We also provide molecular evidence supporting a model in which upregulation of CCR7 favors the formation of CXCR4-CCR7 heteromers, wherein CXCR4 is selectively impaired in its ability to activate certain G-protein complexes. Collectively, our results demonstrate that CCR7 behaves as a novel selective endogenous allosteric modulator of CXCR4.
Collapse
Affiliation(s)
- Saria Mcheik
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Nils Van Eeckhout
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Cédric De Poorter
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Céline Galés
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Marc Parmentier
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| | - Jean-Yves Springael
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| |
Collapse
|
17
|
The Role of Tumor-Infiltrating B Cells in Tumor Immunity. JOURNAL OF ONCOLOGY 2019; 2019:2592419. [PMID: 31662750 PMCID: PMC6778893 DOI: 10.1155/2019/2592419] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022]
Abstract
Earlier studies on elucidating the role of lymphocytes in tumor immunity predominantly focused on T cells. However, the role of B cells in tumor immunity has increasingly received better attention in recent studies. The B cells that infiltrate tumor tissues are called tumor-infiltrating B cells (TIBs). It is found that TIBs play a multifaceted dual role in regulating tumor immunity rather than just tumor inhibition or promotion. In this article, latest research advances focusing on the relationship between TIBs and tumor complexity are reviewed, and light is shed on some novel ideas for exploiting TIBs as a possible tumor biomarker and potential therapeutic target against tumors.
Collapse
|
18
|
Tóth DM, Ocskó T, Balog A, Markovics A, Mikecz K, Kovács L, Jolly M, Bukiej AA, Ruthberg AD, Vida A, Block JA, Glant TT, Rauch TA. Amelioration of Autoimmune Arthritis in Mice Treated With the DNA Methyltransferase Inhibitor 5'-Azacytidine. Arthritis Rheumatol 2019; 71:1265-1275. [PMID: 30835944 DOI: 10.1002/art.40877] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/28/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Disease-associated, differentially hypermethylated regions have been reported in rheumatoid arthritis (RA), but no DNA methyltransferase inhibitors have been evaluated in either RA or any animal models of RA. The present study was conducted to evaluate the therapeutic potential of 5'-azacytidine (5'-azaC), a DNA methyltransferase inhibitor, and explore the cellular and gene regulatory networks involved in the context of autoimmune arthritis. METHODS A disease-associated genome-wide DNA methylation profile was explored by methylated CpG island recovery assay-chromatin immunoprecipitation (ChIP) in arthritic B cells. Mice with proteoglycan-induced arthritis (PGIA) were treated with 5'-azaC. The effect of 5'-azaC on the pathogenesis of PGIA was explored by measuring serum IgM and IgG1 antibody levels using enzyme-linked immunosorbent assay, investigating the efficiency of class-switch recombination (CSR) and Aicda gene expression using real-time quantitative polymerase chain reaction, monitoring germinal center (GC) formation by immunohistochemistry, and determining alterations in B cell subpopulations by flow cytometry. The 5'-azaC-induced regulation of the Aicda gene was explored using RNA interference, ChIP, and luciferase assays. RESULTS We explored arthritis-associated hypermethylated regions in mouse B cells and demonstrated that DNA demethylation had a beneficial effect on autoimmune arthritis. The 5'-azaC-mediated demethylation of the epigenetically inactivated Ahr gene resulted in suppressed expression of the Aicda gene, reduced CSR, and compromised GC formation. Ultimately, this process led to diminished IgG1 antibody production and amelioration of autoimmune arthritis in mice. CONCLUSION DNA hypermethylation plays a leading role in the pathogenesis of autoimmune arthritis and its targeted inhibition has therapeutic potential in arthritis management.
Collapse
Affiliation(s)
| | - Timea Ocskó
- Rush University Medical Center, Chicago, Illinois
| | - Attila Balog
- Albert Szent-Györgyi Clinical Center, Szeged, Hungary
| | | | | | - László Kovács
- Albert Szent-Györgyi Clinical Center, Szeged, Hungary
| | | | | | | | - András Vida
- Rush University Medical Center, Chicago, Illinois
| | - Joel A Block
- Rush University Medical Center, Chicago, Illinois
| | | | - Tibor A Rauch
- Rush University Medical Center, Chicago, Illinois, and University of Pécs, Pécs, Hungary
| |
Collapse
|
19
|
Malik N, Sansom OJ, Michie AM. The role of mTOR-mediated signals during haemopoiesis and lineage commitment. Biochem Soc Trans 2018; 46:1313-1324. [PMID: 30154096 PMCID: PMC6195642 DOI: 10.1042/bst20180141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
The serine/threonine protein kinase mechanistic target of rapamycin (mTOR) has been implicated in the regulation of an array of cellular functions including protein and lipid synthesis, proliferation, cell size and survival. Here, we describe the role of mTOR during haemopoiesis within the context of mTORC1 and mTORC2, the distinct complexes in which it functions. The use of conditional transgenic mouse models specifically targeting individual mTOR signalling components, together with selective inhibitors, have generated a significant body of research emphasising the critical roles played by mTOR, and individual mTOR complexes, in haemopoietic lineage commitment and development. This review will describe the profound role of mTOR in embryogenesis and haemopoiesis, underscoring the importance of mTORC1 at the early stages of haemopoietic cell development, through modulation of stem cell potentiation and self-renewal, and erythroid and B cell lineage commitment. Furthermore, the relatively discrete role of mTORC2 in haemopoiesis will be explored during T cell development and B cell maturation. Collectively, this review aims to highlight the functional diversity of mTOR signalling and underline the importance of this pathway in haemopoiesis.
Collapse
Affiliation(s)
- Natasha Malik
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Owen J Sansom
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, U.K
| | - Alison M Michie
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K.
| |
Collapse
|
20
|
Alsufyani F, Mattoo H, Zhou D, Cariappa A, Van Buren D, Hock H, Avruch J, Pillai S. The Mst1 Kinase Is Required for Follicular B Cell Homing and B-1 B Cell Development. Front Immunol 2018; 9:2393. [PMID: 30386341 PMCID: PMC6199389 DOI: 10.3389/fimmu.2018.02393] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/27/2018] [Indexed: 11/22/2022] Open
Abstract
The Mst1 and 2 cytosolic serine/threonine protein kinases are the mammalian orthologs of the Drosophila Hippo protein. Mst1 has been shown previously to participate in T-cell and B-cell trafficking and the migration of lymphocytes into secondary lymphoid organs in a cell intrinsic manner. We show here that the absence of Mst1 alone only modestly impacts B cell homing to lymph nodes. The absence of both Mst1 and 2 in hematopoietic cells results in relatively normal B cell development in the bone marrow and does not impact migration of immature B cells to the spleen. However, follicular B cells lacking both Mst1 and Mst2 mature in the splenic white pulp but are unable to recirculate to lymph nodes or to the bone marrow. These cells also cannot traffic efficiently to the splenic red pulp. The inability of late transitional and follicular B cells lacking Mst 1 and 2 to migrate to the red pulp explains their failure to differentiate into marginal zone B cell precursors and marginal zone B cells. Mst1 and Mst2 are therefore required for follicular B cells to acquire the ability to recirculate and also to migrate to the splenic red pulp in order to generate marginal zone B cells. In addition B-1 a B cell development is defective in the absence of Mst1.
Collapse
Affiliation(s)
- Faisal Alsufyani
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hamid Mattoo
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Dawang Zhou
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Annaiah Cariappa
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Denille Van Buren
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hanno Hock
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Balkhi MY, Willette-Brown J, Wittmann G, Hu Y. IKKα deficiency disrupts the development of marginal zone and follicular B cells. Genes Immun 2018; 20:224-233. [PMID: 29740197 DOI: 10.1038/s41435-018-0025-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/15/2018] [Indexed: 01/10/2023]
Abstract
Only few genes have been confidently identified to be involved in the Follicular (FO) and Marginal Zone (MZ) B cell differentiation, migration, and retention in the periphery. Our group previously observed that IKKα kinase inactive mutant mice IKKαK44A/K44A have significantly lower number of MZ B cells whereas FO B cell numbers appeared relatively normal. Because kinase dead IKKα can retain some of its biological functions that may interfere in revealing its actual role in the MZ and FO B cell differentiation. Therefore, in the current study, we genetically deleted IKKα from the pro-B cell lineage that revealed novel functions of IKKα in the MZ and FO B lymphocyte development. The loss of IKKα produces a significant decline in the percentage of immature B lymphocytes, mature marginal zone B cells, and follicular B cells along with a severe disruption of splenic architecture of marginal and follicular zones. IKKα deficiency affect the recirculation of mature B cells through bone marrow. A transplant of IKKα knockout fetal liver cells into Rag-/- mice shows a significant reduction compared to control in the B cells recirculating through bone marrow. To reveal the genes important in the B cell migration, a high throughput gene expression analysis was performed on the IKKα deficient recirculating mature B cells (B220+IgMhi). That revealed significant changes in the expression of genes involved in the B lymphocyte survival, homing and migration. And several among those genes identified belong to G protein family. Taken together, this study demonstrates that IKKα forms a vial axis controlling the genes involved in MZ and FO B cell differentiation and migration.
Collapse
Affiliation(s)
- Mumtaz Y Balkhi
- Division of Hematology/Oncology, Department of Medicine, Tufts University School of Medicine, Boston, MA, USA.
| | - Jami Willette-Brown
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD, USA
| | - Gabor Wittmann
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD, USA
| |
Collapse
|
22
|
Meng QH, White HN. CD21 int CD23 + follicular B cells express antigen-specific secretory IgM mRNA as primary and memory responses. Immunology 2017; 151:211-218. [PMID: 28190261 PMCID: PMC5418461 DOI: 10.1111/imm.12724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/18/2017] [Accepted: 02/07/2017] [Indexed: 11/28/2022] Open
Abstract
CD21int CD23+ IgM+ mouse follicular B cells comprise the bulk of the mature B-cell compartment, but it is not known whether these cells contribute to the humoral antibody response. We show using a direct RT-PCR method for antigen-specific VH, that FACS-sorted mouse CD21int CD23+ B cells express specific secretory IgM VH transcripts in response to immunization and also exhibit a memory response. The secretory IgM expressed is distinct from the IgG expressed by cells of this phenotype, which we also analyse here, having a distinct broader distribution of CDR-H3 sequences and zero or low levels of somatic mutation in the region analysed. These results imply that cells of the CD21int CD23+ phenotype have distinct IgM+ and IgG+ populations that contribute directly to the humoral antibody and memory responses by expressing antigen-specific secretory immunoglobulin. We also argue that the more diverse CDR-H3 sequences expressed by antigen-experienced IgM+ CD21int CD23+ follicular B cells would place them at the bottom of a recently hypothesized memory B-cell hierarchy.
Collapse
Affiliation(s)
- Qing-Hai Meng
- Molecular Immunology Unit, Institute of Child Health, University College London, London, UK
| | - Harry N White
- Department of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
23
|
Chen L, Oleksyn D, Pulvino M, Sanz I, Ryan D, Ryan C, Lin CS, Poligone B, Pentland AP, Ritchlin C, Zhao J. A critical role for the protein kinase PKK in the maintenance of recirculating mature B cells and the development of B1 cells. Immunol Lett 2016; 172:67-78. [PMID: 26921474 DOI: 10.1016/j.imlet.2016.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 02/16/2016] [Accepted: 02/21/2016] [Indexed: 01/10/2023]
Abstract
Protein kinase C associated kinase (PKK) regulates NF-κB activation and is required for the survival of certain lymphoma cells. Mice lacking PKK die soon after birth, and previous studies suggest that the role of PKK in B cell development might be context dependent. We have generated a mouse strain harboring conditional null alleles for PKK and a Cre-recombinase transgene under the control of the endogenous CD19 promoter. In the present study, we show that knockout of PKK in B cells results in the reduction of long-lived recirculating mature B cell population in lymph nodes and bone marrow as well as a decrease in peritoneal B1 cells, while PKK deficiency has no apparent effect on early B cell development in bone marrow or the development of follicular and marginal zone B cells in the spleen. In addition, we demonstrate that PKK-deficient B cells display defective proliferation and survival responses to stimulation of B cell receptor (BCR), which may underlie the reduction of recirculating mature B cells in PKK mutant mice. Consistently, BCR-mediated NF-κB activation, known to be required for the survival of activated but not resting B cells, is attenuated in PKK-deficient B cells. Thus, our results reveal a critical role of PKK in the maintenance of recirculating mature B cells as well as the development of B1 cells in mice.
Collapse
Affiliation(s)
- Luojing Chen
- Division of Allergy/Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States; Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States.
| | - David Oleksyn
- Division of Allergy/Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States; Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States
| | - Mary Pulvino
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States
| | - Ignacio Sanz
- Division of Allergy/Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States
| | - Daniel Ryan
- Department of Pathology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States
| | - Charlotte Ryan
- Department of Pathology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, United States
| | - Brian Poligone
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States
| | - Alice P Pentland
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States
| | - Christopher Ritchlin
- Division of Allergy/Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States
| | - Jiyong Zhao
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States.
| |
Collapse
|
24
|
von Wnuck Lipinski K, Sattler K, Peters S, Weske S, Keul P, Klump H, Heusch G, Göthert JR, Levkau B. Hepatocyte Nuclear Factor 1A Is a Cell-Intrinsic Transcription Factor Required for B Cell Differentiation and Development in Mice. THE JOURNAL OF IMMUNOLOGY 2016; 196:1655-65. [PMID: 26800876 DOI: 10.4049/jimmunol.1500897] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 12/07/2015] [Indexed: 12/22/2022]
Abstract
The hepatocyte NF (HNF) family of transcription factors regulates the complex gene networks involved in lipid, carbohydrate, and protein metabolism. In humans, HNF1A mutations cause maturity onset of diabetes in the young type 3, whereas murine HNF6 participates in fetal liver B lymphopoiesis. In this study, we have identified a crucial role for the prototypical member of the family HNF1A in adult bone marrow B lymphopoiesis. HNF1A(-/-) mice exhibited a clear reduction in total blood and splenic B cells and a further pronounced one in transitional B cells. In HNF1A(-/-) bone marrow, all B cell progenitors-from pre-pro-/early pro-B cells to immature B cells-were dramatically reduced and their proliferation rate suppressed. IL-7 administration in vivo failed to boost B cell development in HNF1A(-/-) mice, whereas IL-7 stimulation of HNF1A(-/-) B cell progenitors in vitro revealed a marked impairment in STAT5 phosphorylation. The B cell differentiation potential of HNF1A(-/-) common lymphoid progenitors was severely impaired in vitro, and the expression of the B lymphopoiesis-promoting transcription factors E2A, EBF1, Pax5, and Bach2 was reduced in B cell progenitors in vivo. HNF1A(-/-) bone marrow chimera featured a dramatic defect in B lymphopoiesis recapitulating that of global HNF1A deficiency. The HNF1A(-/-) lymphopoiesis defect was confined to B cells as T lymphopoiesis was unaffected, and bone marrow common lymphoid progenitors and hematopoietic stem cells were even increased. Our data demonstrate that HNF1A is an important cell-intrinsic transcription factor in adult B lymphopoiesis and suggest the IL-7R/STAT5 module to be causally involved in mediating its function.
Collapse
Affiliation(s)
- Karin von Wnuck Lipinski
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, 45122 Essen, Germany
| | - Katherine Sattler
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, 45122 Essen, Germany
| | - Susann Peters
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, 45122 Essen, Germany
| | - Sarah Weske
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, 45122 Essen, Germany
| | - Petra Keul
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, 45122 Essen, Germany
| | - Hannes Klump
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; and
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, 45122 Essen, Germany
| | - Joachim R Göthert
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Bodo Levkau
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, 45122 Essen, Germany;
| |
Collapse
|
25
|
Taylor RL, Cruickshank MN, Karimi M, Ng HL, Quail E, Kaufman KM, Harley JB, Abraham LJ, Tsao BP, Boackle SA, Ulgiati D. Focused transcription from the human CR2/CD21 core promoter is regulated by synergistic activity of TATA and Initiator elements in mature B cells. Cell Mol Immunol 2016; 13:119-31. [PMID: 25640655 PMCID: PMC4711682 DOI: 10.1038/cmi.2014.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/05/2014] [Accepted: 12/27/2014] [Indexed: 12/13/2022] Open
Abstract
Complement receptor 2 (CR2/CD21) is predominantly expressed on the surface of mature B cells where it forms part of a coreceptor complex that functions, in part, to modulate B-cell receptor signal strength. CR2/CD21 expression is tightly regulated throughout B-cell development such that CR2/CD21 cannot be detected on pre-B or terminally differentiated plasma cells. CR2/CD21 expression is upregulated at B-cell maturation and can be induced by IL-4 and CD40 signaling pathways. We have previously characterized elements in the proximal promoter and first intron of CR2/CD21 that are involved in regulating basal and tissue-specific expression. We now extend these analyses to the CR2/CD21 core promoter. We show that in mature B cells, CR2/CD21 transcription proceeds from a focused TSS regulated by a non-consensus TATA box, an initiator element and a downstream promoter element. Furthermore, occupancy of the general transcriptional machinery in pre-B versus mature B-cell lines correlate with CR2/CD21 expression level and indicate that promoter accessibility must switch from inactive to active during the transitional B-cell window.
Collapse
Affiliation(s)
- Rhonda L Taylor
- School of Pathology and Laboratory Medicine, Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, WA, Australia
- Biochemistry and Molecular Biology, School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| | - Mark N Cruickshank
- Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
| | - Mahdad Karimi
- Biochemistry and Molecular Biology, School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| | - Han Leng Ng
- School of Pathology and Laboratory Medicine, Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, WA, Australia
| | - Elizabeth Quail
- Biochemistry and Molecular Biology, School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| | - Kenneth M Kaufman
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - John B Harley
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Lawrence J Abraham
- School of Pathology and Laboratory Medicine, Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, WA, Australia
| | - Betty P Tsao
- Division of Rheumatology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Susan A Boackle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniela Ulgiati
- School of Pathology and Laboratory Medicine, Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
26
|
Abstract
The receptor-like tyrosine phosphatase CD45 regulates antigen receptor signaling by dephosphorylating the C-terminal inhibitory tyrosine of the src family kinases. However, despite its abundance, the function of the large, alternatively spliced extracellular domain of CD45 has remained elusive. We used normally spliced CD45 transgenes either incorporating a phosphatase-inactivating point mutation or lacking the cytoplasmic domain to uncouple the enzymatic and noncatalytic functions of CD45 in lymphocytes. Although these transgenes did not alter T-cell signaling or development irrespective of endogenous CD45 expression, both partially rescued the phenotype of CD45-deficient B cells. We identify a noncatalytic role for CD45 in regulating tonic, but not antigen-mediated, B-cell antigen receptor (BCR) signaling through modulation of the function of the inhibitory coreceptor CD22. This finding has important implications for understanding how naïve B cells maintain tonic BCR signaling while restraining inappropriate antigen-dependent activation to preserve clonal "ignorance."
Collapse
|
27
|
Kleiman E, Salyakina D, De Heusch M, Hoek KL, Llanes JM, Castro I, Wright JA, Clark ES, Dykxhoorn DM, Capobianco E, Takeda A, Renauld JC, Khan WN. Distinct Transcriptomic Features are Associated with Transitional and Mature B-Cell Populations in the Mouse Spleen. Front Immunol 2015; 6:30. [PMID: 25717326 PMCID: PMC4324157 DOI: 10.3389/fimmu.2015.00030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/15/2015] [Indexed: 11/30/2022] Open
Abstract
Splenic transitional B-cells (T1 and T2) are selected to avoid self-reactivity and to safeguard against autoimmunity, then differentiate into mature follicular (FO-I and FO-II) and marginal zone (MZ) subsets. Transcriptomic analysis by RNA-seq of the five B-cell subsets revealed T1 cell signature genes included RAG suggesting a potential for receptor revision. T1 to T2 B-cell differentiation was marked by a switch from Myb to Myc, increased expression of the PI3K adapter DAP10 and MHC class II. FO-II may be an intermediate in FO-I differentiation and may also become MZ B-cells as suggested by principle component analysis. MZ B-cells possessed the most distinct transcriptome including down-regulation of CD45 phosphatase-associated protein (CD45-AP/PTPRC-AP), as well as upregulation of IL-9R and innate molecules TLR3, TLR7, and bactericidal Perforin-2 (MPEG1). Among the endosomal TLRs, stimulation via TLR3 further enhanced Perforin-2 expression exclusively in MZ B-cells. Using gene-deleted and overexpressing transgenic mice we show that IL-9/IL-9R interaction resulted in rapid activation of STAT1, 3, and 5, primarily in MZ B-cells. Importantly, CD45-AP mutant mice had reduced transitional and increased mature MZ and FO B-cells, suggesting that it prevents premature entry of transitional B-cells to the mature B-cell pool or their survival and proliferation. Together, these findings suggest, developmental plasticity among splenic B-cell subsets, potential for receptor revision in peripheral tolerance whereas enhanced metabolism coincides with T2 to mature B-cell differentiation. Further, unique core transcriptional signatures in MZ B-cells may control their innate features.
Collapse
Affiliation(s)
- Eden Kleiman
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami , Miami, FL , USA
| | - Daria Salyakina
- Center for Computational Science, University of Miami , Miami, FL , USA
| | - Magali De Heusch
- Ludwig Institute for Cancer Research, Brussels Branch , Brussels , Belgium ; de Duve Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Kristen L Hoek
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville, TN , USA
| | - Joan M Llanes
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville, TN , USA
| | - Iris Castro
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami , Miami, FL , USA
| | - Jacqueline A Wright
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami , Miami, FL , USA
| | - Emily S Clark
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami , Miami, FL , USA
| | - Derek M Dykxhoorn
- Hussman Institute for Human Genomics, University of Miami , Miami, FL , USA
| | - Enrico Capobianco
- Center for Computational Science, University of Miami , Miami, FL , USA
| | - Akiko Takeda
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis , St. Louis, MO , USA
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Brussels Branch , Brussels , Belgium ; de Duve Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Wasif N Khan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami , Miami, FL , USA
| |
Collapse
|
28
|
Bao Y, Cao X. The immune potential and immunopathology of cytokine-producing B cell subsets: a comprehensive review. J Autoimmun 2014; 55:10-23. [PMID: 24794622 DOI: 10.1016/j.jaut.2014.04.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 02/07/2023]
Abstract
B lymphocytes are generally recognized for their potential to mediate humoral immunity by producing different antibody isotypes and being involved in opsonization and complement fixation. Nevertheless, the non-classical, antibody-independent immune potential of B cell subsets has attracted much attention especially in the past decade. These B cells can release a broad variety of cytokines (such as IL-2, IL-4, IL-6, IL-10, IL-17, IFN-α, IFN-γ, TNF-α, TGF-β, LT), and can be classified into distinct subsets depending on the particular cytokine profile, thus emerging the concept of cytokine-producing B cell subsets. Although there is still controversy surrounding the key cell surface markers, intracellular factors and cellular origins of cytokine-producing B cell subsets, accumulating evidence indicates that these B cells are endowed with great potential to regulate both innate and adaptive arms of immune system though releasing cytokines. On the one hand, they promote immune responses through mounting Th1/Th2/Th17 and neutrophil response, inducing DC maturation and formation of lymphoid structures, increasing NK cell and macrophage activation, enhancing development of themselves and sustaining antibody production. On the other hand, they can negatively regulate immune responses by suppressing Th cell responses, inhibiting Tr1 cell and Foxp3(+) Treg differentiation, impairing APC function and pro-inflammatory cytokine release by monocytes, and inducing CD8(+) T cell anergy and CD4(+) T cell apoptosis. Therefore, cytokine-producing B cell subsets have multifunctional functions in health and diseases, playing pathologic as well as protective roles in autoimmunity, infection, allergy, and even malignancy. In this review, we revisit the history of discovering cytokine-producing B cells, describe the identification of cytokine-producing B cell subsets, introduce the origins of cytokine-producing B cell subsets as well as molecular and cellular mechanisms for their differentiation, and summarize the recent progress made toward understanding the unexpectedly complex and potentially opposing roles of cytokine-producing B cells in immunological disorders.
Collapse
Affiliation(s)
- Yan Bao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China; Translational Medicine Center, Changzheng Hospital, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| |
Collapse
|
29
|
Benitez A, Weldon AJ, Tatosyan L, Velkuru V, Lee S, Milford TA, Francis OL, Hsu S, Nazeri K, Casiano CM, Schneider R, Gonzalez J, Su RJ, Baez I, Colburn K, Moldovan I, Payne KJ. Differences in mouse and human nonmemory B cell pools. THE JOURNAL OF IMMUNOLOGY 2014; 192:4610-9. [PMID: 24719464 DOI: 10.4049/jimmunol.1300692] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Identifying cross-species similarities and differences in immune development and function is critical for maximizing the translational potential of animal models. Coexpression of CD21 and CD24 distinguishes transitional and mature B cell subsets in mice. In this study, we validate these markers for identifying analogous subsets in humans and use them to compare the nonmemory B cell pools in mice and humans, across tissues, and during fetal/neonatal and adult life. Among human CD19(+)IgM(+) B cells, the CD21/CD24 schema identifies distinct populations that correspond to transitional 1 (T1), transitional 2 (T2), follicular mature, and marginal zone subsets identified in mice. Markers specific to human B cell development validate the identity of marginal zone cells and the maturation status of human CD21/CD24 nonmemory B cell subsets. A comparison of the nonmemory B cell pools in bone marrow, blood, and spleen in mice and humans shows that transitional B cells comprise a much smaller fraction in adult humans than mice. T1 cells are a major contributor to the nonmemory B cell pool in mouse bone marrow, in which their frequency is more than twice that in humans. Conversely, in spleen, the T1:T2 ratio shows that T2 cells are proportionally ∼ 8-fold higher in humans than in mice. Despite the relatively small contribution of transitional B cells to the human nonmemory pool, the number of naive follicular mature cells produced per transitional B cell is 3- to 6-fold higher across tissues than in mice. These data suggest differing dynamics or mechanisms produce the nonmemory B cell compartments in mice and humans.
Collapse
Affiliation(s)
- Abigail Benitez
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92350
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fenutría R, Martinez VG, Simões I, Postigo J, Gil V, Martínez-Florensa M, Sintes J, Naves R, Cashman KS, Alberola-Ila J, Ramos-Casals M, Soldevila G, Raman C, Merino J, Merino R, Engel P, Lozano F. Transgenic expression of soluble human CD5 enhances experimentally-induced autoimmune and anti-tumoral immune responses. PLoS One 2014; 9:e84895. [PMID: 24454761 PMCID: PMC3893160 DOI: 10.1371/journal.pone.0084895] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/28/2013] [Indexed: 12/22/2022] Open
Abstract
CD5 is a lymphoid-specific transmembrane glycoprotein constitutively expressed on thymocytes and mature T and B1a lymphocytes. Current data support the view that CD5 is a negative regulator of antigen-specific receptor-mediated signaling in these cells, and that this would likely be achieved through interaction with CD5 ligand/s (CD5L) of still undefined nature expressed on immune or accessory cells. To determine the functional consequence of loss of CD5/CD5L interaction in vivo, a new transgenic mouse line was generated (shCD5EμTg), expressing a circulating soluble form of human CD5 (shCD5) as a decoy to impair membrane-bound CD5 function. These shCD5EμTg mice showed an enhanced response to autologous antigens, as deduced from the presentation of more severe forms of experimentally inducible autoimmune disease (collagen-induced arthritis, CIA; and experimental autoimmune encephalitis, EAE), as well as an increased anti-tumoral response in non-orthotopic cancer models (B16 melanoma). This enhancement of the immune response was in agreement with the finding of significantly reduced proportions of spleen and lymph node Treg cells (CD4+CD25+FoxP3+), and of peritoneal IL-10-producing and CD5+ B cells, as well as an increased proportion of spleen NKT cells in shCD5EμTg mice. Similar changes in lymphocyte subpopulations were observed in wild-type mice following repeated administration of exogenous recombinant shCD5 protein. These data reveal the relevant role played by CD5/CD5L interactions on the homeostasis of some functionally relevant lymphocyte subpopulations and the modulation of immune responses to autologous antigens.
Collapse
Affiliation(s)
- Rafael Fenutría
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Vanesa G. Martinez
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Inês Simões
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jorge Postigo
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Victor Gil
- Servei de Malalties Autoimmunes Sistémiques, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Jordi Sintes
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Rodrigo Naves
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kevin S. Cashman
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - José Alberola-Ila
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Manel Ramos-Casals
- Servei de Malalties Autoimmunes Sistémiques, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Gloria Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Chander Raman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jesús Merino
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Ramón Merino
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas-Universidad de Cantabria-SODERCAN, Santander, Spain
| | - Pablo Engel
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Francisco Lozano
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Universitat de Barcelona, Barcelona, Spain
- Servei d'Immunologia, Hospital Clínic de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
31
|
Khan WN, Wright JA, Kleiman E, Boucher JC, Castro I, Clark ES. B-lymphocyte tolerance and effector function in immunity and autoimmunity. Immunol Res 2013; 57:335-53. [DOI: 10.1007/s12026-013-8466-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Zhang P, Zhao Y, Sun XH. Notch-regulated periphery B cell differentiation involves suppression of E protein function. THE JOURNAL OF IMMUNOLOGY 2013; 191:726-36. [PMID: 23752615 DOI: 10.4049/jimmunol.1202134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Notch signaling pathway plays important roles in promoting the generation of marginal zone (MZ) B cells at the expense of follicular (FO) B cells during periphery B cell maturation, but the underlying molecular mechanisms are not well understood. We hypothesize that Notch favors the generation of MZ B cells by downregulating E protein activity. In this study, we demonstrated that expression of Id2 and ankyrin-repeat SOCS box-containing protein 2 was elevated in MZ B cells and by Notch signaling. Id2 inhibits the DNA binding activity of E proteins, whereas ankyrin-repeat SOCS box-containing protein 2 facilitates E protein ubiquitination. Next, we examined the phenotypes of splenic B cells in mice expressing constitutively active Notch1 and/or two gain-of-function mutants of E proteins that counteract Id2-mediated inhibition or Notch-induced degradation. We found that upregulation of E proteins promoted the formation of FO B cells, whereas it suppressed the maturation of MZ B cells. In contrast, excessive amounts of Notch1 stimulated the differentiation of MZ B cells and inhibited the production of FO B cells. More interestingly, the effects of Notch1 were reversed by gain of E protein function. Furthermore, high levels of Bcl-6 expression in FO B cells was shown to be diminished by Notch signaling and restored by E proteins. In addition, E proteins facilitated and Notch hindered the differentiation of transitional B cells. Taken together, it appears that Notch regulates peripheral B cell differentiation, at least in part, through opposing E protein function.
Collapse
Affiliation(s)
- Ping Zhang
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
33
|
Clarke ET, Williams NA, Dull PM, Findlow J, Borrow R, Finn A, Heyderman RS. Polysaccharide-protein conjugate vaccination induces antibody production but not sustained B-cell memory in the human nasopharyngeal mucosa. Mucosal Immunol 2013; 6:288-96. [PMID: 22806100 DOI: 10.1038/mi.2012.70] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Colonization of the nasopharyngeal mucosa by meningococcus and other polysaccharide (PS)-encapsulated bacteria precedes invasion. PS-conjugate vaccines induce PS-specific B-cell memory (B(MEM)) and also prevent colonization, thus blocking person-to-person transmission, generating herd protection. However, in isolation the B(MEM) are unable to sustain immunity. Furthermore, the duration of herd protection the vaccines induce appears limited. We demonstrate that, despite the persistence of PS-specific B(MEM), the population is not maintained within the nasopharynx. Although booster immunization results in the transient appearance of PS-specific B(MEM) within the mucosa, this reflects the re-circulation of systemic B(MEM) through the site rather than the generation of resident mucosal B(MEM). The induction of sustained PS-specific B(MEM) in the nasopharynx would allow the population to be activated by colonization, thus inhibiting subsequent invasion. It would also be expected to boost local mucosal immunity, thus extending herd protection. Strategies to generate PS-specific B(MEM) in the mucosa warrant further investigation.
Collapse
Affiliation(s)
- E T Clarke
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| | | | | | | | | | | | | |
Collapse
|
34
|
Viral latency locus augments B-cell response in vivo to induce chronic marginal zone enlargement, plasma cell hyperplasia, and lymphoma. Blood 2013; 121:2952-63. [PMID: 23365457 DOI: 10.1182/blood-2012-03-415620] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi sarcoma (KS) is associated with KS-associated herpesvirus (KSHV). This virus also causes B-cell lymphoma and B-cell hyperplasia. There exists no in vivo model for KSHV-associated B-cell malignancies or premalignant persistence in B cells. We generated a transgenic mouse that expresses multiple viral latent genes, including LANA, vFLIP, vCYC, all viral micro RNAs, and kaposin under the transcriptional control of their natural regulatory region. This promoter is B-cell specific, though it is a weak promoter. Mature B cells were chronically activated, leading to hyperglobulinemia triggered by increased plasma cell frequency and marginal zone (MZ) B-cell hyperplasia. The mice had an augmented response to T-dependent antigen as well as the TLR4 ligand LPS, leading to exacerbated MZ and germinal center responses and increased CD138(+) plasma cells. It is the first model to assess the viral micro RNA function in vivo. These data support a potentially novel mechanism of viral persistence in which virally infected B cells become hyper-responsive to coincident, but unrelated, pathogen exposure, leading to preferential expansion and ultimately lymphoma in a small subset of cases.
Collapse
|
35
|
CD19-independent instruction of murine marginal zone B-cell development by constitutive Notch2 signaling. Blood 2011; 118:6321-31. [DOI: 10.1182/blood-2010-12-325944] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
B cell–specific gene ablation of Notch2 results in the loss of the marginal zone (MZ) B-cell lineage. To analyze the effects of constitutive Notch2 signaling in B cells, we have generated a transgenic mouse strain that allows the conditional expression of a constitutively active, intracellular form of Notch2 (Notch2IC). Expression of Notch2IC at the earliest developmental stages of the B-cell lineage completely abolished B-cell generation and led to the development of ectopic T cells in the bone marrow (BM), showing that Notch2IC is acting redundantly with Notch1IC in driving ectopic T-cell differentiation. In B cells clearly committed to the B-cell lineage induction of Notch2IC drove all cells toward the MZ B-cell compartment at the expense of follicular B cells. Notch2IC-expressing B cells reflected the phenotype of wild-type MZ B cells for their localization in the MZ, the expression of characteristic surface markers, their enhanced proliferation after stimulation, and increased basal activity of Akt, Erk, and Jnk. Notch2IC-driven MZ B-cell generation in the spleen was achieved even in the absence of CD19. Our results implicate that a constitutive Notch2 signal in transitional type 1 B cells is sufficient to drive MZ B-cell differentiation.
Collapse
|
36
|
Tussiwand R, Rauch M, Flück LA, Rolink AG. BAFF-R expression correlates with positive selection of immature B cells. Eur J Immunol 2011; 42:206-16. [PMID: 22028296 DOI: 10.1002/eji.201141957] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 01/10/2023]
Abstract
The interaction between BAFF and BAFF-R is crucial for the development of mature B cells. Here, we report that the expression of BAFF-R is first detectable on a fraction of mouse CD19(+) CD93(+) IgM(+) CD23(-) and human CD19(+) CD10(+) IgM(+) BM B cells. This BAFF-R(+) BM B-cell population shows higher levels of surface IgM expression and decreased RAG-2 transcripts than BAFF-R(-) immature B cells. When cultured, mouse BAFF-R(-), but not BAFF-R(+) immature B cells spontaneously undergo B-cell receptor editing. However, BAFF-R(+) immature B cells cultured in the presence of an anti-κ light chain antibody are induced to undergo receptor editing. This receptor editing correlates with down-modulation of surface BAFF-R expression and the up-regulation of RAG-2 at the RNA level. B-cell receptor (BCR) cross-linking on splenic T1 B cells results in down-modulation of the BAFF-R, and receptor editing and RAG-2 up-regulation in a minor fraction of B cells. BCR cross-linking on splenic T2/3 B cells results in partly down and partly up-modulation of BAFF-R expression and no evidence for receptor editing. Overall, our data indicate that BAFF-R expression is tightly regulated during B-cell development in mouse and human and its expression is correlated with positive selection.
Collapse
Affiliation(s)
- Roxane Tussiwand
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
37
|
White HN, Meng QH. Recruitment of a distinct but related set of VH sequences into the murine CD21hi/CD23- marginal zone B cell repertoire to that seen in the class-switched antibody response. THE JOURNAL OF IMMUNOLOGY 2011; 188:287-93. [PMID: 22140260 DOI: 10.4049/jimmunol.1101264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development and maintenance of cells in the murine follicular and marginal zone compartments is thought to involve differing levels of stimulation of the BCR, although it is still not clear which BCR ligands mediate these events. How the delineation between naive and Ag experienced B cell populations relates to cell phenotype and how precise or blurred this delineation is, is also not well understood. In this study, using PCR to analyze the Ab response to phenyl-oxazolone in the mouse, we show that the Ab repertoire of CD21(hi)/CD23(-) marginal zone B cells shows persistent increase in levels of particular IgM after immunization with foreign Ag. Further, we show that these IgMs have different but related VH/CDR3 sequences from those seen in the class-switched response to oxazolone that we have also analyzed. We also detect an effect of Ag on the follicular B cell repertoire that is less persisting. These results provide evidence consistent with the signal-strength model of mature B cell development being extended to include stimulation by foreign Ag, and also further the known zone of influence of foreign Ag on the B cell compartment.
Collapse
Affiliation(s)
- Henry N White
- Department of Molecular Immunology, University College London, London, UK.
| | | |
Collapse
|
38
|
Pillai S, Mattoo H, Cariappa A. B cells and autoimmunity. Curr Opin Immunol 2011; 23:721-31. [PMID: 22119110 DOI: 10.1016/j.coi.2011.10.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/17/2011] [Accepted: 10/27/2011] [Indexed: 12/21/2022]
Abstract
There is a growing appreciation for the role for B cells in autoimmune disorders in which inflammation is driven by T cells, in addition to the well-established role for B cells in autoimmune disorders characterized by pathogenic auto-antibodies. Current information on tolerance checkpoints in B cells, B cell depletion, BAFF blockade, regulatory B cells and clonal ignorance mediated by the SIAE/Siglec pathway will be reviewed.
Collapse
Affiliation(s)
- Shiv Pillai
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, United States.
| | | | | |
Collapse
|
39
|
Samuelson EM, Laird RM, Maue AC, Rochford R, Hayes SM. Blk haploinsufficiency impairs the development, but enhances the functional responses, of MZ B cells. Immunol Cell Biol 2011; 90:620-9. [PMID: 21894171 DOI: 10.1038/icb.2011.76] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Blk was identified two decades ago as a B-cell-specific member of the Src family of tyrosine kinases. Recent studies, however, have discovered that Blk is expressed in many cell types outside of the B lineage, including early thymic precursors, interleukin-17-producing γδ T cells and pancreatic β-cells. In light of these recent discoveries, we performed a more comprehensive analysis of Blk expression patterns in hematopoietic cells and found that Blk is differentially expressed in mature B-cell subsets, with marginal zone (MZ) B cells expressing high levels, B1 B cells expressing intermediate-to-high levels and follicular (FO) B cells expressing low levels of Blk. To determine whether these differences in Blk expression levels reflected differential requirements for Blk in MZ, B1 and FO B-cell development, we analyzed the effects of reducing and eliminating Blk expression on B-cell development. We report that both Blk haploinsufficiency and Blk deficiency impaired the generation of MZ B cells. Moreover, although there were fewer MZ B cells in Blk(+/-) and Blk(-/-) mice as compared with Blk(+/+) mice, Blk-mutant MZ B cells were hyper-responsive to B-cell receptor stimulation, both in vitro and in vivo. Thus, this study has revealed a previously unappreciated role for Blk in the development and activation of MZ B cells.
Collapse
Affiliation(s)
- Elizabeth M Samuelson
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
40
|
Vaughan AT, Roghanian A, Cragg MS. B cells--masters of the immunoverse. Int J Biochem Cell Biol 2010; 43:280-5. [PMID: 21147251 DOI: 10.1016/j.biocel.2010.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/19/2010] [Accepted: 12/06/2010] [Indexed: 12/11/2022]
Abstract
The immune system involves the complex interplay between many different cell types. Over the last decade, T cells, dendritic cells (DC) and macrophages have all been implicated as the key regulator cells of the immunological response, linking innate and adaptive immunity. The forgotten cell in this discourse has been the B-cell. Long considered as simple antibody production units dictated to by T-cells, recent years have begun to shift this assumption. The discovery that numerous B-cell subsets exist, with specific regulatory functions capable of modulating T-cell and chronic inflammatory responses has revealed a hitherto unappreciated role of B-cells. In particular, these ideas have been developed in light of the surprisingly successful responses delivered in autoimmune settings following depletion of B-cells with the anti-CD20 antibody rituximab. Here we summarise the history of the humble B-cell and discuss some of the key recent findings that lead us to propose it as an important regulator of ongoing immune responses and as such, one of the masters of the immunoverse.
Collapse
Affiliation(s)
- Andrew T Vaughan
- Cancer Sciences Division, University of Southampton School of Medicine, General Hospital, Southampton SO16 6YD, UK
| | | | | |
Collapse
|
41
|
DeKoter RP, Geadah M, Khoosal S, Xu LS, Thillainadesan G, Torchia J, Chin SS, Garrett-Sinha LA. Regulation of Follicular B Cell Differentiation by the Related E26 Transformation-Specific Transcription Factors PU.1, Spi-B, and Spi-C. THE JOURNAL OF IMMUNOLOGY 2010; 185:7374-84. [DOI: 10.4049/jimmunol.1001413] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Vlková M, Froňková E, Kanderová V, Janda A, Růžičková Š, Litzman J, Šedivá A, Kalina T. Characterization of Lymphocyte Subsets in Patients with Common Variable Immunodeficiency Reveals Subsets of Naive Human B Cells Marked by CD24 Expression. THE JOURNAL OF IMMUNOLOGY 2010; 185:6431-8. [DOI: 10.4049/jimmunol.0903876] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Hoek KL, Gordy LE, Collins PL, Parekh VV, Aune TM, Joyce S, Thomas JW, Van Kaer L, Sebzda E. Follicular B cell trafficking within the spleen actively restricts humoral immune responses. Immunity 2010; 33:254-65. [PMID: 20691614 DOI: 10.1016/j.immuni.2010.07.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 06/18/2010] [Accepted: 07/26/2010] [Indexed: 11/15/2022]
Abstract
Follicular (FO) and marginal zone (MZ) B cells are maintained in distinct locations within the spleen, but the genetic basis for this separation is still enigmatic. We now report that B cell sequestration requires lineage-specific regulation of migratory receptors by the transcription factor Klf2. Moreover, using gene-targeted mice we show that altered splenic B cell migration confers a significant in vivo gain-of-function phenotype to FO B cells, including the ability to quickly respond to MZ-associated antigens and pathogens in a T cell-dependent manner. This work demonstrates that in wild-type animals, naive FO B cells are actively removed from the MZ, thus restricting their capacity to respond to blood-borne pathogens.
Collapse
Affiliation(s)
- Kristen L Hoek
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232-2363, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Misra RS, Shi G, Moreno-Garcia ME, Thankappan A, Tighe M, Mousseau B, Kusser K, Becker-Herman S, Hudkins KL, Dunn R, Kehry MR, Migone TS, Marshak-Rothstein A, Simon M, Randall TD, Alpers CE, Liggitt D, Rawlings DJ, Lund FE. G alpha q-containing G proteins regulate B cell selection and survival and are required to prevent B cell-dependent autoimmunity. ACTA ACUST UNITED AC 2010; 207:1775-89. [PMID: 20624888 PMCID: PMC2916136 DOI: 10.1084/jem.20092735] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Survival of mature B cells is regulated by B cell receptor and BAFFR-dependent signals. We show that B cells from mice lacking the Gαq subunit of trimeric G proteins (Gnaq−/− mice) have an intrinsic survival advantage over normal B cells, even in the absence of BAFF. Gnaq−/− B cells develop normally in the bone marrow but inappropriately survive peripheral tolerance checkpoints, leading to the accumulation of transitional, marginal zone, and follicular B cells, many of which are autoreactive. Gnaq−/− chimeric mice rapidly develop arthritis as well as other manifestations of systemic autoimmune disease. Importantly, we demonstrate that the development of the autoreactive B cell compartment is the result of an intrinsic defect in Gnaq−/− B cells, resulting in the aberrant activation of the prosurvival factor Akt. Together, these data show for the first time that signaling through trimeric G proteins is critically important for maintaining control of peripheral B cell tolerance induction and repressing autoimmunity.
Collapse
Affiliation(s)
- Ravi S Misra
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Traggiai E, Casati A, Frascoli M, Porcellini S, Ponzoni M, Sanvito F, Leng L, Bucala R, Moretta L, Grassi F. Selective preservation of bone marrow mature recirculating but not marginal zone B cells in murine models of chronic inflammation. PLoS One 2010; 5:e11262. [PMID: 20582316 PMCID: PMC2889832 DOI: 10.1371/journal.pone.0011262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/31/2010] [Indexed: 11/29/2022] Open
Abstract
Inflammation promotes granulopoiesis over B lymphopoiesis in the bone marrow (BM). We studied B cell homeostasis in two murine models of T cell mediated chronic inflammation, namely calreticulin-deficient fetal liver chimeras (FLC), which develop severe blepharitis and alopecia due to T cell hyper responsiveness, and inflammatory bowel disease (IBD) caused by injection of CD4+ naïve T cells into lymphopenic mice. We show herein that despite the severe depletion of B cell progenitors during chronic, peripheral T cell-mediated inflammation, the population of BM mature recirculating B cells is unaffected. These B cells are poised to differentiate to plasma cells in response to blood borne pathogens, in an analogous fashion to non-recirculating marginal zone (MZ) B cells in the spleen. MZ B cells nevertheless differentiate more efficiently to plasma cells upon polyclonal stimulation by Toll-like receptor (TLR) ligands, and are depleted during chronic T cell mediated inflammation in vivo. The preservation of mature B cells in the BM is associated with increased concentration of macrophage migration inhibitory factor (MIF) in serum and BM plasma. MIF produced by perivascular dendritic cells (DC) in the BM provides a crucial survival signal for recirculating B cells, and mice treated with a MIF inhibitor during inflammation showed significantly reduced mature B cells in the BM. These data indicate that MIF secretion by perivascular DC may promote the survival of the recirculating B cell pool to ensure responsiveness to blood borne microbes despite loss of the MZ B cell pool that accompanies depressed lymphopoiesis during inflammation.
Collapse
|
46
|
Samitas K, Lötvall J, Bossios A. B Cells: From Early Development to Regulating Allergic Diseases. Arch Immunol Ther Exp (Warsz) 2010; 58:209-25. [DOI: 10.1007/s00005-010-0073-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 10/27/2009] [Indexed: 01/22/2023]
|
47
|
Kövesdi D, Bell SE, Turner M. The development of mature B lymphocytes requires the combined function of CD19 and the p110δ subunit of PI3K. SELF NONSELF 2010; 1:144-153. [PMID: 21487516 DOI: 10.4161/self.1.2.11796] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/25/2010] [Accepted: 03/11/2010] [Indexed: 11/19/2022]
Abstract
Mice lacking either CD19 or p110δ have reduced numbers of marginal zone and B1 B cells but normal numbers of naïve B2 cells which occupy the follicles of the lymphoid organs. We show here that mice lacking both CD19 and p110δ have normal B cell development in the bone marrow but have a significant reduction in the number of naïve B2 cells in the bone marrow, spleen and lymph nodes. These p110δ/CD19 double mutant B cells show a survival defect and reduced responsiveness to the pro-survival cytokine BAFF despite normal NFκB2/p100 processing and elevated expression of Bcl-2. Although the combined loss of p110δ and CD19 did not increase switching to Ig-lambda in immature B cells, mature B lymphocytes from the lymph nodes of p110δ/CD19 double mutant mice express highly elevated levels of mRNA encoding RAG-1 and RAG-2, which confirms the existing synergy between CD19 and p110δ-mediated signaling.
Collapse
Affiliation(s)
- Dorottya Kövesdi
- Laboratory of Lymphocyte Signalling and Development; The Babraham Institute; Babraham, Cambridge UK
| | | | | |
Collapse
|
48
|
Sadri N, Lu JY, Badura ML, Schneider RJ. AUF1 is involved in splenic follicular B cell maintenance. BMC Immunol 2010; 11:1. [PMID: 20064252 PMCID: PMC2824733 DOI: 10.1186/1471-2172-11-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 01/11/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The adenosine/uridine-rich element (ARE)-binding protein AUF1 functions to regulate the inflammatory response through the targeted degradation of cytokine and other mRNAs that contain specific AREs in their 3' noncoding region (3' NCR). To investigate the role of AUF1 in the immune system, we characterized the lymphoid compartments of AUF1-deficient mice. RESULTS Mice lacking AUF1 exhibit an altered proportion and size of splenic B cell subsets. We show prominent apoptosis in splenic B cell follicles and reduced expression of Bcl-2, A1, and Bcl-XL correlate with increased turnover and significant reduction in the number and proportion of splenic FO B cells in AUF1-deficient mice. In addition, AUF1-deficient mice exhibit a sharp decrease in splenic size and lymphocyte cellularity. Bone marrow transfer studies demonstrate that AUF1 deficiency induces cell-autonomous defects in mature B cell subsets but not in the overall number of splenocytes. Reconstitution of irradiated adult AUF1-deficient mice with wild-type bone marrow restores the proportion of FO and marginal zone (MZ) B cells, but does not rescue the decrease in the number of splenocytes. Functionally, AUF1-deficient mice mount an attenuated response to T cell-independent (TI) antigen, which correlates with impaired MZ B cell function. CONCLUSION These data indicate that AUF1 is important in the maintenance of splenic FO B cells and adequate humoral immune responses.
Collapse
Affiliation(s)
- Navid Sadri
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
49
|
Hoek KL, Carlesso G, Clark ES, Khan WN. Absence of mature peripheral B cell populations in mice with concomitant defects in B cell receptor and BAFF-R signaling. THE JOURNAL OF IMMUNOLOGY 2009; 183:5630-43. [PMID: 19843948 DOI: 10.4049/jimmunol.0901100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Generation of mature B lymphocytes from early (T1) and late transitional (T2) precursors requires cooperative signaling through BCR and B cell-activating factor receptor 3 (BR3). Recent studies have shown that BCR signaling positively regulates NF-kappaB2, suggesting BCR regulation of BR3 signaling. To investigate the significance of signal integration from BCR and BR3 in B cell development and function, we crossed Btk-deficient mice (btk(-/-)), which are developmentally blocked between the T2 and the mature follicular B cell stage as a result of a partial defect in BCR signaling, and A/WySnJ mice, which possess a mutant BR3 defective in propagating intracellular signals that results in a severely reduced peripheral B cell compartment, although all B cell subsets are present in relatively normal ratios. A/WySnJ x btk(-/-) mice display a B cell-autonomous defect, resulting in a developmental block at an earlier stage (T1) than either mutation alone, leading to the loss of mature splenic follicular and marginal zone B cells, as well as the loss of peritoneal B1 and B2 cell populations. The competence of the double mutant T1 B cells to respond to TLR4 and CD40 survival and activation signals is further attenuated compared with single mutations as evidenced by severely reduced humoral immune responses in vivo and proliferation in response to anti-IgM, LPS, and anti-CD40 stimulation in vitro. Thus, BCR and BR3 independently and in concert regulate the survival, differentiation, and function of all B cell populations at and beyond T1, earliest transitional stage.
Collapse
Affiliation(s)
- Kristen L Hoek
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
50
|
The follicular versus marginal zone B lymphocyte cell fate decision. Nat Rev Immunol 2009; 9:767-77. [PMID: 19855403 DOI: 10.1038/nri2656] [Citation(s) in RCA: 397] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone marrow-derived B cells make an important cell fate choice to develop into either follicular B cells or marginal zone B cells in the spleen, which depends on signalling through the B cell receptor, Notch2, the receptor for B cell-activating factor and the canonical nuclear factor-kappaB pathway, as well as signals involved in the migration and anatomical retention of marginal zone B cells. Recent information discussed in this Review reconciles some of the controversies regarding the role of the B cell receptor in this cell fate decision and a clearer picture has also emerged regarding the anatomical location of ligands for Notch2 in the spleen. This cell fate decision could provide mechanistic insights that are relevant to other commitment events in lymphocytes.
Collapse
|