1
|
Lim Y, Kang TK, Kim MI, Kim D, Kim JY, Jung SH, Park K, Lee W, Seo M. Massively Parallel Screening of Toll/Interleukin-1 Receptor (TIR)-Derived Peptides Reveals Multiple Toll-Like Receptors (TLRs)-Targeting Immunomodulatory Peptides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406018. [PMID: 39482884 PMCID: PMC11714206 DOI: 10.1002/advs.202406018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/04/2024] [Indexed: 11/03/2024]
Abstract
Toll-like receptors (TLRs) are critical regulators of the immune system, and altered TLR responses lead to a variety of inflammatory diseases. Interference of intracellular TLR signaling, which is mediated by multiple Toll/interleukin-1 receptor (TIR) domains on all TLRs and TLR adapters, is an effective therapeutic strategy against immune dysregulation. Peptides that inhibit TIR-TIR interactions by fragmenting interface residues have potential as therapeutic decoys. However, a systematic method for discovering TIR-targeting moieties has been elusive, limiting exploration of the vast, unsequenced space of the TIR domain family. A comprehensive parallel screening method is developed to uncover novel TIR-binding peptides derived from previously unexplored surfaces on a wide range of TIR domains. A large peptide library is constructed, named TIR surfacesome, by tiling surface sequences of the large TIR domain family and screening against MALTIR and MyD88TIR, TIRs of two major TLR adaptor proteins, resulting in the discovery of hundreds of TIR-binding peptides. The selected peptides inhibited TLR signaling and demonstrated anti-inflammatory effects in macrophages, and therapeutic potential in mouse inflammatory models. This approach may facilitate the development of TLR-targeted therapeutics.
Collapse
Affiliation(s)
- Yun Lim
- Natural Product Research CenterKorea Institute of Science and TechnologyGangneung25451Republic of Korea
| | - Tae Kyeom Kang
- Natural Product Research CenterKorea Institute of Science and TechnologyGangneung25451Republic of Korea
| | - Meong Il Kim
- Natural Product Research CenterKorea Institute of Science and TechnologyGangneung25451Republic of Korea
| | - Dohyeon Kim
- Natural Product Informatics Research CenterKorea Institute of Science and TechnologyGangneung25451Republic of Korea
- Department of Bioinformatics and Life ScienceSoongsil UniversitySeoul06978Republic of Korea
| | - Ji Yul Kim
- Natural Product Research CenterKorea Institute of Science and TechnologyGangneung25451Republic of Korea
- Department of Convergence MedicineYonsei University Wonju College of MedicineWonju26426Republic of Korea
| | - Sang Hoon Jung
- Natural Product Research CenterKorea Institute of Science and TechnologyGangneung25451Republic of Korea
| | - Keunwan Park
- Natural Product Informatics Research CenterKorea Institute of Science and TechnologyGangneung25451Republic of Korea
- Department of YM‐KIST Bio‐Health ConvergenceYonsei UniversityWonju26493Republic of Korea
| | - Wook‐Bin Lee
- Natural Product Research CenterKorea Institute of Science and TechnologyGangneung25451Republic of Korea
- Department of YM‐KIST Bio‐Health ConvergenceYonsei UniversityWonju26493Republic of Korea
| | - Moon‐Hyeong Seo
- Natural Product Research CenterKorea Institute of Science and TechnologyGangneung25451Republic of Korea
- Department of Convergence MedicineYonsei University Wonju College of MedicineWonju26426Republic of Korea
| |
Collapse
|
2
|
Vallés PG, Gil Lorenzo AF, Garcia RD, Cacciamani V, Benardon ME, Costantino VV. Toll-like Receptor 4 in Acute Kidney Injury. Int J Mol Sci 2023; 24:ijms24021415. [PMID: 36674930 PMCID: PMC9864062 DOI: 10.3390/ijms24021415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
Acute kidney injury (AKI) is a common and devastating pathologic condition, associated with considerable high morbidity and mortality. Although significant breakthroughs have been made in recent years, to this day no effective pharmacological therapies for its treatment exist. AKI is known to be connected with intrarenal and systemic inflammation. The innate immune system plays an important role as the first defense response mechanism to tissue injury. Toll-like receptor 4 (TLR4) is a well-characterized pattern recognition receptor, and increasing evidence has shown that TLR4 mediated inflammatory response, plays a pivotal role in the pathogenesis of acute kidney injury. Pathogen-associated molecular patterns (PAMPS), which are the conserved microbial motifs, are sensed by these receptors. Endogenous molecules generated during tissue injury, and labeled as damage-associated molecular pattern molecules (DAMPs), also activate pattern recognition receptors, thereby offering an understanding of sterile types of inflammation. Excessive, uncontrolled and/or sustained activation of TLR4, may lead to a chronic inflammatory state. In this review we describe the role of TLR4, its endogenous ligands and activation in the inflammatory response to ischemic/reperfusion-induced AKI and sepsis-associated AKI. The potential regeneration signaling patterns of TLR4 in acute kidney injury, are also discussed.
Collapse
Affiliation(s)
- Patricia G. Vallés
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
- IMBECU-CONICET (Instituto de Medicina y Biología Experimental de Cuyo—Consejo Nacional de Investigaciones Científicas y Técnicas), Mendoza 5500, Argentina
- Correspondence:
| | - Andrea Fernanda Gil Lorenzo
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
| | - Rodrigo D. Garcia
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
| | - Valeria Cacciamani
- IMBECU-CONICET (Instituto de Medicina y Biología Experimental de Cuyo—Consejo Nacional de Investigaciones Científicas y Técnicas), Mendoza 5500, Argentina
| | - María Eugenia Benardon
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
| | - Valeria Victoria Costantino
- IMBECU-CONICET (Instituto de Medicina y Biología Experimental de Cuyo—Consejo Nacional de Investigaciones Científicas y Técnicas), Mendoza 5500, Argentina
- Área de Biología Celular, Departamento de Morfofisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza 5500, Argentina
| |
Collapse
|
3
|
Own J, Ulevitch R, McKay D. CD14 blockade to prevent ischemic injury to donor organs. Transpl Immunol 2022; 72:101580. [DOI: 10.1016/j.trim.2022.101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
|
4
|
Belanger KM, Mohamed R, Webb RC, Sullivan JC. Sex Differences in TLR4 Expression in SHR Do Not Contribute to Sex Differences in Blood Pressure or the Renal T cell Profile. Am J Physiol Regul Integr Comp Physiol 2022; 322:R319-R325. [PMID: 35107023 PMCID: PMC8917934 DOI: 10.1152/ajpregu.00237.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypertension is a primary risk factor for the development of cardiovascular disease. Mechanisms controlling blood pressure (BP) in men and women are still being investigated, however, there is increasing evidence supporting a role for the innate immune system. Specifically, Toll-like receptors (TLR), and TLR4 in particular, have been implicated in the development of hypertension in male spontaneously hypertensive rats (SHR). Despite established sex differences in BP control and inflammatory markers in hypertensive males and females, little is known regarding the role of TLR4 in hypertension in females. Our hypotheses were that male SHR have greater TLR4 expression compared to females, and that sex differences in TLR4 contribute to sex differences in BP and the T cell profile. To test these hypotheses, initial studies measured renal TLR4 protein expression in 13-week old male and female SHR. Additional SHR were implanted with telemetry devices and randomized to treatment with either IgG or TLR4 neutralizing antibodies. Untreated control male SHR have greater TLR4 protein expression in the kidney compared to females. However, treatment with TLR4 neutralizing antibody for 2 weeks did not significantly alter BP in either male or female SHR. Interestingly, neutralization of TLR4 increased renal CD3+ T cells in female SHR, with no alteration in CD4+ T cells or CD8+ T cells in either sex. Taken together, our data indicates that although male SHR have greater renal TLR4 expression than females, TLR4 does not contribute to the higher BP and more pro-inflammatory renal T cell prolife in males vs. females.
Collapse
Affiliation(s)
- Kasey M Belanger
- Department of Physiology Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Riyaz Mohamed
- Department of Physiology Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - R Clinton Webb
- Department of Pharmacology, Physiology, and Neuroscience University of South Carolina, Columbia, South Carolina, United States
| | - Jennifer C Sullivan
- Department of Physiology Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
5
|
Friend or foe for obesity: how hepatokines remodel adipose tissues and translational perspective. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
6
|
Abstract
Endotoxaemia is an inflammatory condition which happens due to the presence of outer cell wall layer of Gram-negative bacteria in blood circulation, containing lipopolysaccharide commonly known as endotoxin. This condition causes high mortality in affected animals and sheep are highly susceptible in this regard. Several researchers have emphasised the therapeutic regimens of endotoxaemia and its sequels in sheep. Furthermore, sheep are among the most commonly used animal species in experimental studies on endotoxaemia, and for the past five decades, ovine models have been employed to evaluate different aspects of endotoxaemia. Currently, there are several studies on experimentally induced endotoxaemia in sheep, and information regarding novel therapeutic protocols in this species contributes to better understanding and treating the condition. This review aims to specifically introduce various treatment methods of endotoxaemia in sheep.
Collapse
Affiliation(s)
- A. Chalmeh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
7
|
Trimebutine suppresses Toll-like receptor 2/4/7/8/9 signaling pathways in macrophages. Arch Biochem Biophys 2021; 711:109029. [PMID: 34517011 DOI: 10.1016/j.abb.2021.109029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Because of the critical roles of Toll-like receptors (TLRs) and receptor for advanced glycation end-products (RAGE) in the pathophysiology of various acute and chronic inflammatory diseases, continuous efforts have been made to discover novel therapeutic inhibitors of TLRs and RAGE to treat inflammatory disorders. A recent study by our group has demonstrated that trimebutine, a spasmolytic drug, suppresses the high mobility group box 1‒RAGE signaling that is associated with triggering proinflammatory signaling pathways in macrophages. Our present work showed that trimebutine suppresses interleukin-6 (IL-6) production in lipopolysaccharide (LPS, a stimulant of TLR4)-stimulated macrophages of RAGE-knockout mice. In addition, trimebutine suppresses the LPS-induced production of various proinflammatory cytokines and chemokines in mouse macrophage-like RAW264.7 cells. Importantly, trimebutine suppresses IL-6 production induced by TLR2-and TLR7/8/9 stimulants. Furthermore, trimebutine greatly reduces mortality in a mouse model of LPS-induced sepsis. Studies exploring the action mechanism of trimebutine revealed that it inhibits the LPS-induced activation of IL-1 receptor-associated kinase 1 (IRAK1), and the subsequent activations of extracellular signal-related kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and nuclear factor-κB (NF-κB). These findings suggest that trimebutine exerts anti-inflammatory effects on TLR signaling by downregulating IRAK1‒ERK1/2‒JNK pathway and NF-κB activity, thereby indicating the therapeutic potential of trimebutine in inflammatory diseases. Therefore, trimebutine can be a novel anti-inflammatory drug-repositioning candidate and may provide an important scaffold for designing more effective dual anti-inflammatory drugs that target TLR/RAGE signaling.
Collapse
|
8
|
Leong K, Gaglani B, Khanna AK, McCurdy MT. Novel Diagnostics and Therapeutics in Sepsis. Biomedicines 2021; 9:biomedicines9030311. [PMID: 33803628 PMCID: PMC8003067 DOI: 10.3390/biomedicines9030311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Sepsis management demands early diagnosis and timely treatment that includes source control, antimicrobial therapy, and resuscitation. Currently employed diagnostic tools are ill-equipped to rapidly diagnose sepsis and isolate the offending pathogen, which limits the ability to offer targeted and lowest-toxicity treatment. Cutting edge diagnostics and therapeutics in development may improve time to diagnosis and address two broad management principles: (1) source control by removing the molecular infectious stimulus of sepsis, and (2) attenuation of the pathological immune response allowing the body to heal. This review addresses novel diagnostics and therapeutics and their role in the management of sepsis.
Collapse
Affiliation(s)
- Kieran Leong
- Division of Pulmonary & Critical Care, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Bhavita Gaglani
- Department of Anesthesiology, Section on Critical Care Medicine, Wake Forest University Hospital, Winston-Salem, NC 27157, USA; (B.G.); (A.K.K.)
| | - Ashish K. Khanna
- Department of Anesthesiology, Section on Critical Care Medicine, Wake Forest University Hospital, Winston-Salem, NC 27157, USA; (B.G.); (A.K.K.)
- Department of Outcomes Research, Outcomes Research Consortium, Cleveland, OH 44195, USA
| | - Michael T. McCurdy
- Division of Pulmonary & Critical Care, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Correspondence:
| |
Collapse
|
9
|
Li C, Wang J, Zhao M, Zhang S, Zhang Y. Toll‐like receptor 4 antagonist FP7 alleviates lipopolysaccharide‐induced septic shock via NF‐kB signaling pathway. Chem Biol Drug Des 2021; 97:1151-1157. [PMID: 33638265 DOI: 10.1111/cbdd.13837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/23/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Chao Li
- Department of Emergency Xingtai People’s Hospital of Hebei Province Xingtai China
| | - Junhui Wang
- Department of Emergency Xingtai People’s Hospital of Hebei Province Xingtai China
| | - Mailiang Zhao
- Department of Emergency Xingtai People’s Hospital of Hebei Province Xingtai China
| | - Sheng Zhang
- Department of Emergency Xingtai People’s Hospital of Hebei Province Xingtai China
| | - Yanwei Zhang
- Department of Emergency Xingtai People’s Hospital of Hebei Province Xingtai China
| |
Collapse
|
10
|
Keshari RS, Silasi R, Popescu NI, Regmi G, Chaaban H, Lambris JD, Lupu C, Mollnes TE, Lupu F. CD14 inhibition improves survival and attenuates thrombo-inflammation and cardiopulmonary dysfunction in a baboon model of Escherichia coli sepsis. J Thromb Haemost 2021; 19:429-443. [PMID: 33174372 PMCID: PMC8312235 DOI: 10.1111/jth.15162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND During sepsis, gram-negative bacteria induce robust inflammation primarily via lipopolysacharride (LPS) signaling through TLR4, a process that involves the glycosylphosphatidylinositol (GPI)-anchored receptor CD14 transferring LPS to the Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD-2) complex. Sepsis also triggers the onset of disseminated intravascular coagulation and consumptive coagulopathy. OBJECTIVES We investigated the effect of CD14 blockade on sepsis-induced coagulopathy, inflammation, organ dysfunction, and mortality. METHODS We used a baboon model of lethal Escherichia (E) coli sepsis to study two experimental groups (n = 5): (a) E coli challenge; (b) E coli challenge plus anti-CD14 (23G4) inhibitory antibody administered as an intravenous bolus 30 minutes before the E coli. RESULTS Following anti-CD14 treatment, two animals reached the 7-day end-point survivor criteria, while three animals had a significantly prolonged survival as compared to the non-treated animals that developed multiple organ failure and died within 30 hours. Anti-CD14 reduced the activation of coagulation through inhibition of tissue factor-dependent pathway, especially in the survivors, and enhanced the fibrinolysis due to strong inhibition of plasminogen activator inhibitor 1. The treatment prevented the robust complement activation induced by E coli, as shown by significantly decreased C3b, C5a, and sC5b-9. Vital signs, organ function biomarkers, bacteria clearance, and leukocyte and fibrinogen consumption were all improved at varying levels. Anti-CD14 reduced neutrophil activation, cell death, LPS levels, and pro-inflammatory cytokines (tumor necrosis factor, interleukin (IL)-6, IL-1β, IL-8, interferon gamma, monocyte chemoattractant protein-1), more significantly in the survivors than non-surviving animals. CONCLUSIONS Our results highlight the crosstalk between coagulation/fibrinolysis, inflammation, and complement systems and suggest a protective role of anti-CD14 treatment in E coli sepsis.
Collapse
Affiliation(s)
- Ravi S. Keshari
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Robert Silasi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Narcis I. Popescu
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Girija Regmi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Hala Chaaban
- Department of Pediatrics, Neonatal and Perinatal Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - John D. Lambris
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cristina Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Tom E. Mollnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway
- Research Laboratory Nordland Hospital, K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Bodo, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Departments of Cell Biology, Pathology and Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
11
|
Garzón-Tituaña M, Sierra-Monzón JL, Comas L, Santiago L, Khaliulina-Ushakova T, Uranga-Murillo I, Ramirez-Labrada A, Tapia E, Morte-Romea E, Algarate S, Couty L, Camerer E, Bird PI, Seral C, Luque P, Paño-Pardo JR, Galvez EM, Pardo J, Arias M. Granzyme A inhibition reduces inflammation and increases survival during abdominal sepsis. Theranostics 2021; 11:3781-3795. [PMID: 33664861 PMCID: PMC7914344 DOI: 10.7150/thno.49288] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Aims: Peritonitis is one of the most common causes of sepsis, a serious syndrome characterized by a dysregulated systemic inflammatory response. Recent evidence suggests that Granzyme A (GzmA), a serine protease mainly expressed by NK and T cells, could act as a proinflammatory mediator and could play an important role in the pathogenesis of sepsis. This work aims to analyze the role and the therapeutic potential of GzmA in the pathogenesis of peritoneal sepsis. Methods: The level of extracellular GzmA as well as GzmA activity were analyzed in serum from healthy volunteers and patients with confirmed peritonitis and were correlated with the Sequential Organ Failure Assessment (SOFA) score. Peritonitis was induced in C57Bl/6 (WT) and GzmA-/- mice by cecal ligation and puncture (CLP). Mice were treated intraperitoneally with antibiotics alone or in combination serpinb6b, a specific GzmA inhibitor, for 5 days. Mouse survival was monitored during 14 days, levels of some proinflammatory cytokines were measured in serum and bacterial load and diversity was analyzed in blood and spleen at different times. Results: Clinically, elevated GzmA was observed in serum from patients with abdominal sepsis suggesting that GzmA plays an important role in this pathology. In the CLP model GzmA deficient mice, or WT mice treated with an extracellular GzmA inhibitor, showed increased survival, which correlated with a reduction in proinflammatory markers in both serum and peritoneal lavage fluid. GzmA deficiency did not influence bacterial load in blood and spleen and GzmA did not affect bacterial replication in macrophages in vitro, indicating that GzmA has no role in bacterial control. Analysis of GzmA in lymphoid cells following CLP showed that it was mainly expressed by NK cells. Mechanistically, we found that extracellular active GzmA acts as a proinflammatory mediator in macrophages by inducing the TLR4-dependent expression of IL-6 and TNFα. Conclusions: Our findings implicate GzmA as a key regulator of the inflammatory response during abdominal sepsis and provide solid evidences about its therapeutic potential for the treatment of this severe pathology.
Collapse
Affiliation(s)
- Marcela Garzón-Tituaña
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - José L Sierra-Monzón
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Laura Comas
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Tatiana Khaliulina-Ushakova
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Elena Tapia
- Animal Unit, University of Zaragoza, 50009, Zaragoza, Spain
| | - Elena Morte-Romea
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Sonia Algarate
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Ludovic Couty
- INSERM U970, Paris Cardiovascular Research Centre, Université de Paris, 75015, Paris, France
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, Université de Paris, 75015, Paris, France
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, 3800, Clayton VIC, Australia
| | - Cristina Seral
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Pilar Luque
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - José R Paño-Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Eva M Galvez
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Aragon I+D Foundation (ARAID), 50018, Zaragoza, Spain
- Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
| | - Maykel Arias
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
| |
Collapse
|
12
|
Vázquez-Carballo C, Guerrero-Hue M, García-Caballero C, Rayego-Mateos S, Opazo-Ríos L, Morgado-Pascual JL, Herencia-Bellido C, Vallejo-Mudarra M, Cortegano I, Gaspar ML, de Andrés B, Egido J, Moreno JA. Toll-Like Receptors in Acute Kidney Injury. Int J Mol Sci 2021; 22:ijms22020816. [PMID: 33467524 PMCID: PMC7830297 DOI: 10.3390/ijms22020816] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is an important health problem, affecting 13.3 million individuals/year. It is associated with increased mortality, mainly in low- and middle-income countries, where renal replacement therapy is limited. Moreover, survivors show adverse long-term outcomes, including increased risk of developing recurrent AKI bouts, cardiovascular events, and chronic kidney disease. However, there are no specific treatments to decrease the adverse consequences of AKI. Epidemiological and preclinical studies show the pathological role of inflammation in AKI, not only at the acute phase but also in the progression to chronic kidney disease. Toll-like receptors (TLRs) are key regulators of the inflammatory response and have been associated to many cellular processes activated during AKI. For that reason, a number of anti-inflammatory agents targeting TLRs have been analyzed in preclinical studies to decrease renal damage during AKI. In this review, we updated recent knowledge about the role of TLRs, mainly TLR4, in the initiation and development of AKI as well as novel compounds targeting these molecules to diminish kidney injury associated to this pathological condition.
Collapse
Affiliation(s)
- Cristina Vázquez-Carballo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
| | - Melania Guerrero-Hue
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Sandra Rayego-Mateos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
| | - Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - José Luis Morgado-Pascual
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Carmen Herencia-Bellido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
| | - Mercedes Vallejo-Mudarra
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Isabel Cortegano
- Immunobiology Department, Carlos III Health Institute, 28220 Majadahonda (Madrid), Spain; (I.C.); (M.L.G.); (B.d.A.)
| | - María Luisa Gaspar
- Immunobiology Department, Carlos III Health Institute, 28220 Majadahonda (Madrid), Spain; (I.C.); (M.L.G.); (B.d.A.)
| | - Belén de Andrés
- Immunobiology Department, Carlos III Health Institute, 28220 Majadahonda (Madrid), Spain; (I.C.); (M.L.G.); (B.d.A.)
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
- Correspondence: (J.E.); (J.A.M.); Tel.: +34-915504800 (J.E.); +34-957-218039 (J.A.M.)
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 28029 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 140471 Cordoba, Spain
- Correspondence: (J.E.); (J.A.M.); Tel.: +34-915504800 (J.E.); +34-957-218039 (J.A.M.)
| |
Collapse
|
13
|
Can the Cecal Ligation and Puncture Model Be Repurposed To Better Inform Therapy in Human Sepsis? Infect Immun 2020; 88:IAI.00942-19. [PMID: 32571986 DOI: 10.1128/iai.00942-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A recent report by the National Institutes of Health on sepsis research has implied there is a trend to move away from mouse models of sepsis. The most commonly used animal model to study the pathogenesis of human sepsis is cecal ligation and puncture (CLP) in mice. The model has been the mainstay of sepsis research for decades and continues to be considered the gold standard to inform novel pathways of sepsis physiology and its therapeutic direction. As there have been many criticisms of the model, particularly regarding its relevance to human disease, how this model might be repurposed to be more reflective of the human condition begs discussion. In this piece, we compare and contrast the mouse microbiome of the CLP model to the emerging science of the microbiome of human sepsis and discuss the relevance for mice to harbor the specific pathogens present in the human microbiome during sepsis, as well as an underlying disease process to mimic the characteristics of those patients with undesirable outcomes. How to repurpose this model to incorporate these "human factors" is discussed in detail and suggestions offered.
Collapse
|
14
|
Abstract
Sepsis, a life threating syndrome characterized by organ failure after infection, is the most common cause of death in hospitalized patients. The treatment of sepsis is generally supportive in nature, involving the administration of intravenous fluids, vasoactive substances and oxygen plus antibiotics to eliminate the pathogen. No drugs have been approved specifically for the treatment of sepsis, and clinical trials of potential therapies have failed to reduce mortality - suggesting that new approaches are needed. Abnormalities in the immune response elicited by the pathogen, ranging from excessive inflammation to immunosuppression, contribute to disease pathogenesis. Although hundreds of immunomodulatory agents are potentially available, it remains unclear which patient benefits from which immune therapy at a given time point. Results indicate the importance of personalized therapy, specifically the need to identify the type of intervention required by each individual patient at a given point in the disease process. To address this issue will require using biomarkers to stratify patients based on their individual immune status. This article reviews recent and ongoing clinical investigations using immunostimulatory or immunosuppressive therapies against sepsis including non-pharmacological and novel preclinical approaches.
Collapse
|
15
|
Infection-induced innate antimicrobial response disorders: from signaling pathways and their modulation to selected biomarkers. Cent Eur J Immunol 2020; 45:104-116. [PMID: 32425688 PMCID: PMC7226557 DOI: 10.5114/ceji.2020.94712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
Severe infections are a major public health problem responsible for about 40-65% of hospitalizations in intensive care units (ICU). The high mortality (30-50%) of persons diagnosed with severe infection is caused by largely unknown mechanisms of sepsis-induced immune system response. Severe infections with dynamic progress are accompanied with SIRS (systemic inflammatory reaction syndrome) and CARS (compensatory anti-inflammatory response syndrome), and require a biological treatment appropriate to the phase of immune response. The mechanisms responsible for severe infection related to immune system response particularly attract extensive interest of non-specific defense mechanisms, including signaling pathways of Toll-like receptors (mainly TLR4 and TLR2) that recognize distinct pathogen-associated molecular patterns (PAMP) and play a critical role in innate immune response. There are attempts of treatment, followed by blocking ligand binding with TLR or modulation of intracellular signaling pathways, to inhibit signal transduction. Moreover, researches regarding new and more efficient diagnostics biomarkers were mostly focused on indicators related to innate response to infection as well as connections of pro-inflammatory response with anti-inflammatory response.According to these studies, in case of ICU septic patients with high-risk of mortality, the solution for the problem will require mainly early immune and genetic diagnostics (e.g. cytokines, microRNA, cluster of differentiation-64 [CD64], triggering receptor expressed on myeloid cells-1 [TREM-1], and high mobility group box 1 protein [HMGB1]).
Collapse
|
16
|
|
17
|
Key residues in TLR4-MD2 tetramer formation identified by free energy simulations. PLoS Comput Biol 2019; 15:e1007228. [PMID: 31609969 PMCID: PMC6812856 DOI: 10.1371/journal.pcbi.1007228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/24/2019] [Accepted: 06/30/2019] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptors (TLRs) play a central role in both the innate and adaptive immune systems by recognizing pathogen-associated molecular patterns and inducing the release of the effector molecules of the immune system. The dysregulation of the TLR system may cause various autoimmune diseases and septic shock. A series of molecular dynamics simulations and free energy calculations were performed to investigate the ligand-free, lipopolysaccharide (LPS)-bound, and neoseptin3-bound (TLR4-MD2)2 tetramers. Compared to earlier simulations done by others, our simulations showed that TLR4 structure was well maintained with stable interfaces. Free energy decomposition by molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method suggests critical roles that two hydrophobic clusters I85-L87-P88 and I124-L125-P127 of MD2, together with LPS and neoseptin3, may play in TLR4 activation. We propose that 1) direct contacts between TLR4 convex surface and LPS and neoseptin3 at the region around L442 significantly increase the binding and 2) binding of LPS and neoseptin3 in the central hydrophobic cavity of MD2 triggers burial of F126 and exposure of I85-L87-P88 that facilitate formation of (TLR4-MD2)2 tetramer and activation of TLR4 system.
Collapse
|
18
|
Kobayashi-Tsukumo H, Oiji K, Xie D, Sawada Y, Yamashita K, Ogata S, Kojima H, Itagaki H. Eliminating the contribution of lipopolysaccharide to protein allergenicity in the human cell-line activation test (h-CLAT). J Toxicol Sci 2019; 44:283-297. [PMID: 30944281 DOI: 10.2131/jts.44.283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We previously developed a test for detecting naturally occurring protein-induced skin sensitization based on the markers and criteria of the human cell-line activation test (h-CLAT) and showed that the h-CLAT was useful for assessing the allergenic potency of proteins. However, test proteins were contaminated with varying amounts of lipopolysaccharide (LPS), which might have contributed to the stimulation of CD86 and CD54 expression. In this study, we developed a method to exclude the effects of LPS in the assessment of skin sensitization by naturally occurring proteins. We tested two inhibitors [the caspase-1 inhibitor acetyl-Tyr-Val-Ala-Asp-chloromethylketone (Ac-YVAD-cmk; hereafter referred to as YVAD), which can mitigate the LPS-induced increases in CD54 expression, and polymyxin B (PMB), which suppresses the effect of LPS by binding to its lipid moiety (i.e., the toxic component of LPS)]. After a 24 hr exposure, YVAD and PMB reduced LPS-induced CD86 and CD54 expression. In particular, the effect of PMB was dependent upon pre-incubation time and temperature, with the most potent effect observed following pre-incubation at 37°C for 24 hr. Moreover, only pre-incubation with cell-culture medium (CCM) at 37°C for 24 hr showed an inhibitory effect similar to that of PMB, with this result possibly caused by components of CCM binding to LPS. Similar effects were observed in the presence of ovalbumin (with 1070 EU/mg LPS) and ovomucoid, and lysozyme (with 2.82 and 0.234 EU/mg LPS, respectively) in CCM. These results indicated that PMB and CCM effectively eliminated the effects of LPS during assessment of protein allergenicity, thereby allowing a more accurate evaluation of the potential of proteins to induce skin sensitization.
Collapse
Affiliation(s)
- Hanae Kobayashi-Tsukumo
- Department of Chemical and Energy Engineering, Yokohama National University.,Division of Risk Assessment, National Institute of Health Sciences
| | - Kanami Oiji
- College of Engineering Science, Yokohama National University
| | - Dan Xie
- Department of Chemical and Energy Engineering, Yokohama National University
| | - Yuka Sawada
- Department of Chemical and Energy Engineering, Yokohama National University
| | | | - Shinichi Ogata
- Department of Environment and Information Sciences, Yokohama National University
| | - Hajime Kojima
- Division of Risk Assessment, National Institute of Health Sciences
| | - Hiroshi Itagaki
- Department of Chemical and Energy Engineering, Yokohama National University
| |
Collapse
|
19
|
Zhang W, Sun J, Shen X, Xue Y, Yuan S, Wang X. Effect of PA-MSAH preprocessing on the expression of TLR-4-NF-κB pathway and inflammatory factors in the intestinal tract of rats with septic shock. Exp Ther Med 2019; 17:2567-2574. [PMID: 30906447 PMCID: PMC6425148 DOI: 10.3892/etm.2019.7247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Effects of Pseudomona blank s aeruginosa-mannose sensitive hemagglutini (PA-MSHA) preprocessing on toll like receptor (TLR)-4-NF-κB pathway and inflammatory factors expression in the intestinal tract of rats with septic shock were investigated. A total of 30 rats were randomly divided into 3 groups (n=10): Blank control, septic shock, and PA-septic shock group. After the model was successfully established, the average arterial pressure in rats was monitored. The concentration of cytokine interleukin-l (IL-1), IL-6 and tumor necrosis factor-α (TNF-α) were determined by ELISA method. Flow cytometry was performed to detect TLR-4 expression. Number of in vitro chemotaxised neutrophils was detected by Transwell chamber. The expression of TLR-4, NF-κB and ICAM-1 and VCAM-1 was detected by western blot analysis. The concentration of cytokine IL-1, IL-6, TNF-α in the peritoneal lavage fluid and the intestinal tissue significantly increased in the septic shock group and the PA-septic shock group (P<0.05), and the concentration in the PA-septic shock group was significantly lower than that of the septic shock group (P<0.05). Compared to the control group, the expression of TLR-4, NF-κB and ICAM-1 and VCAM-1 increased in the septic shock and PA-septic shock group (P<0.05), and the expression level of PA-septic shock group was lower than the septic shock group (P<0.05). The expression of TLR-4 in the PA-septic shock group was lower than the septic shock group (P<0.05). PA-MSHA pretreatment reduced inflammation, thus preventing the intestinal injury caused by septic shock.
Collapse
Affiliation(s)
- Wenhao Zhang
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Jiakui Sun
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xiao Shen
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yinying Xue
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Shoutao Yuan
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xiang Wang
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
20
|
Wietzorrek G, Drexel M, Trieb M, Santos-Sierra S. Anti-inflammatory activity of small-molecule antagonists of Toll-like receptor 2 (TLR2) in mice. Immunobiology 2019; 224:1-9. [PMID: 30509503 DOI: 10.1016/j.imbio.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022]
Abstract
Toll-like receptor 2 (TLR2) is currently investigated as a potential therapeutic target in diseases with underlying inflammation like sepsis and arthritis. We reported the discovery, by virtual screening and biological testing, of eight TLR2 antagonists (AT1-AT8) which showed TLR2-inhibitory activity in human cells (Murgueitio et al., 2014). In this study, we have deepened in the mechanism of action and selectivity (TLR2/1 or TLR2/6) of those compounds in mouse primary cells and in vivo. The antagonists reduced, in a dose-dependent way the TNFα production (e.g. AT5 IC50 7.4 μM) and also reduced the nitric oxide (NO) formation in mouse bone marrow-derived macrophages (BMDM). Treatment of BMDM with the antagonists showed that downstream of TLR2, MAPKs phosphorylation and IkBα degradation was reduced. Notably, in a mouse model of tri-acylated lipopeptide (Pam3CSK4)-induced inflammation, AT5 attenuated the TNFα and IL-6 inflammatory response. Further, the effect of AT5 in the stimulation of BMDM by the endogenous alarmin HMGB1 was investigated. Our results indicate that AT4-AT7 and, particularly AT5 appear as good starting points for the development of inhibitors targeting TLR2 in inflammatory disorders.
Collapse
Affiliation(s)
- G Wietzorrek
- Section of Molecular and Cellular Pharmacology, Medical University of Innsbruck, A-6020, Innsbruck, Austria
| | - M Drexel
- Department of Pharmacology, Medical University of Innsbruck, A-6020, Innsbruck, Austria
| | - M Trieb
- Section of Biochemical Pharmacology, Medical University of Innsbruck, A-6020, Innsbruck, Austria
| | - S Santos-Sierra
- Section of Biochemical Pharmacology, Medical University of Innsbruck, A-6020, Innsbruck, Austria.
| |
Collapse
|
21
|
Toll-Like Receptor 4 and NLRP3 Caspase 1- Interleukin-1β-Axis are Not Involved in Colon Ascendens Stent Peritonitis-Associated Heart Disease. Shock 2018; 50:483-492. [DOI: 10.1097/shk.0000000000001059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Ding Y, Liu P, Chen ZL, Zhang SJ, Wang YQ, Cai X, Luo L, Zhou X, Zhao L. Emodin Attenuates Lipopolysaccharide-Induced Acute Liver Injury via Inhibiting the TLR4 Signaling Pathway in vitro and in vivo. Front Pharmacol 2018; 9:962. [PMID: 30186181 PMCID: PMC6113398 DOI: 10.3389/fphar.2018.00962] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
Aims: Emodin is an anthraquinone with potential anti-inflammatory properties. However, the possible molecular mechanisms and protective effects of emodin are not clear. The objective of this study was to investigate the possible molecular mechanisms and protective effects of emodin on lipopolysaccharide (LPS)-induced acute liver injury (ALI) via the Toll-like receptor 4 (TLR4) signaling pathway in the Raw264.7 cell line and in Balb/c mice. Methods: This study established an inflammatory cellular model and induced an ALI animal model. TLR4 was overexpressed by lentivirus and downregulated by small interfering RNA (siRNA) technology. The mRNA and protein levels of TLR4 and downstream molecules were detected in cells and liver tissue. The tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 levels in supernatant and serum were determined by ELISA. The distribution and expression of mannose receptor C type 1 (CD206) and arginase 1 (ARG1) in the liver were tested by immunofluorescence. Mouse liver function and histopathological observations were assessed. Results: Administration of emodin reduced the protein and/or mRNA levels of TLR4 and its downstream molecules following LPS challenge in Raw264.7 cells and in an animal model. Additionally, emodin suppressed the expression of TNF-α and IL-6 in cell culture supernatant and serum. The inhibitory effect of emodin was also confirmed in RAW264.7 cells, in which TLR4 was overexpressed or knocked down. Additionally, ARG1 and CD206 were elevated in the emodin groups. Emodin also decreased serum ALT and AST levels and alleviated the liver histopathological damage induced by LPS. Conclusion: Emodin showed excellent hepatoprotective effects against LPS-induced ALI, possibly by inhibiting TLR4 signaling pathways.
Collapse
Affiliation(s)
- Yan Ding
- Department of Infectious Diseases and Immunology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Liu
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhi-Lin Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Jun Zhang
- National and Local Joint Engineering Research Center for High-throughput Drug Screening Technology, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei University, Wuhan, China
| | - You-Qin Wang
- Graduate School of Jinzhou Medical University, Department of Pediatrics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xin Cai
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Luo
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xuan Zhou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Supramaniam A, Lui H, Bellette BM, Rudd PA, Herrero LJ. How myeloid cells contribute to the pathogenesis of prominent emerging zoonotic diseases. J Gen Virol 2018; 99:953-969. [DOI: 10.1099/jgv.0.001024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Aroon Supramaniam
- 1Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | - Hayman Lui
- 2School of Medicine, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | | | - Penny A. Rudd
- 1Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | - Lara J. Herrero
- 1Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
- 2School of Medicine, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| |
Collapse
|
24
|
Uchino K, Mizuno S, Sato-Otsubo A, Nannya Y, Mizutani M, Horio T, Hanamura I, Espinoza JL, Onizuka M, Kashiwase K, Morishima Y, Fukuda T, Kodera Y, Doki N, Miyamura K, Mori T, Ogawa S, Takami A. Toll-like receptor genetic variations in bone marrow transplantation. Oncotarget 2018; 8:45670-45686. [PMID: 28484092 PMCID: PMC5542217 DOI: 10.18632/oncotarget.17315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/31/2017] [Indexed: 11/25/2022] Open
Abstract
The Toll-like receptor family mediates the innate immune system through recognizing the molecular patterns of microorganisms and self-components and leading the synthesis of the inflammatory mediators. We retrospectively examined whether or not genetic variations in toll-like receptor 1 (rs5743551, -7202GQ>A), toll-like receptor 2 (rs7656411, 22215G>T), and toll-like receptor 4 (rs11536889, +3725G>C) affected transplant outcomes in a cohort of 365 patients who underwent unrelated HLA-matched bone marrow transplantation (for hematologic malignancies through the Japan Marrow Donor Program. Only donor toll-like receptor 4 variation significantly improved the survival outcomes. A multivariate analysis showed that the donor toll-like receptor 4 +3725G/G genotype was significantly associated with a better 5-year progression-free survival and a lower 5-year transplant-related mortality than other variations. Furthermore, the donor toll-like receptor 4 +3725G/G genotype was associated with a significantly lower incidence of fatal infections than other variations. The validation study of 502 patients confirmed that the donor toll-like receptor 4 +3725G/G genotype was associated with better survival outcomes. Toll-like receptor4 genotyping in transplant donors may therefore be a useful tool for optimizing donor selection and evaluating pretransplantation risks.
Collapse
Affiliation(s)
- Kaori Uchino
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shohei Mizuno
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Aiko Sato-Otsubo
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motonori Mizutani
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Tomohiro Horio
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - J Luis Espinoza
- Cellular Transplantation Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Makoto Onizuka
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Koichi Kashiwase
- Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | - Yasuo Morishima
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Takahiro Fukuda
- Hematopoietic Stem Cell Transplantation Unit, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshihisa Kodera
- Department of Promotion for Blood and Marrow Transplantation, Aichi Medical University, Nagakute, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Koichi Miyamura
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Takehiko Mori
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akiyoshi Takami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| |
Collapse
|
25
|
Watterson D, Modhiran N, Muller DA, Stacey KJ, Young PR. Plugging the Leak in Dengue Shock. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:89-106. [PMID: 29845527 DOI: 10.1007/978-981-10-8727-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent structural and functional advances provide fresh insight into the biology of the dengue virus non-structural protein, NS1 and suggest new avenues of research. The work of our lab and others have shown that the secreted, hexameric form of NS1 has a systemic toxic effect, inducing inflammatory cytokines and acting directly on endothelial cells to produce the hallmark of dengue disease, vascular leak. We also demonstrated that NS1 exerts its toxic activity through recognition by the innate immune receptor TLR4, mimicking the bacterial endotoxin LPS. This monograph covers the background underpinning these new findings and discusses new avenues for antiviral and vaccine intervention.
Collapse
Affiliation(s)
- Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - David A Muller
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Katryn J Stacey
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
26
|
Wang L, Han J, Shan P, You S, Chen X, Jin Y, Wang J, Huang W, Wang Y, Liang G. MD2 Blockage Protects Obesity-Induced Vascular Remodeling via Activating AMPK/Nrf2. Obesity (Silver Spring) 2017; 25:1532-1539. [PMID: 28726347 DOI: 10.1002/oby.21916] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/24/2017] [Accepted: 05/29/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Obesity and increased free fatty acid (FFA) levels are tightly linked with vascular oxidative stress and remodeling. Myeloid differentiation 2 (MD2), an important protein in innate immunity, is requisite for endotoxin lipopolysaccharide responsiveness. This study shows that palmitic acid (PA) also bonds to MD2, initiating cardiac inflammatory injury. However, it is not clear whether MD2 plays a role in noninflammatory systems such as obesity- and FFA-related oxidative stress involved in vascular remodeling and injury. The aim of this study is to examine whether MD2 participates in reactive oxygen species increase and vascular remodeling. METHODS Male MD2-/- mice and wild-type littermates with a C57BL/6 background were fed a high-fat diet (HFD) to establish obesity-induced vascular remodeling. Rat aortic endothelial cells (RAECs) and vascular smooth muscle cells (VSMCs) were treated with PA to induce oxidative stress and injury. RESULTS In vivo, MD2 deficiency significantly reduced HFD-induced vascular oxidative stress, fibrosis, and remodeling, accompanied with AMP-activated kinase (AMPK) activation and nuclear factor erythroid (Nrf2) upregulation. In VSMCs and RAECs, inhibition of MD2 by neutralizing monoclonal antibody to MD2 or small interfering RNA knockdown significantly activated the AMPK/Nrf2-signaling pathway and reduced PA-induced oxidative stress and cell injury. CONCLUSIONS It was demonstrated that the deletion or inhibition of MD2 protects against HFD/FFA-induced vascular oxidative stress and remodeling by activating the AMPK/Nrf2-signaling pathway.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Animals
- Aorta
- Diet, High-Fat
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Enzyme Activation/drug effects
- Lymphocyte Antigen 96/antagonists & inhibitors
- Lymphocyte Antigen 96/deficiency
- Lymphocyte Antigen 96/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- NF-E2-Related Factor 2/physiology
- Obesity/complications
- Obesity/metabolism
- Oxidative Stress/drug effects
- Palmitic Acid/pharmacology
- RNA, Small Interfering/pharmacology
- Rats
- Signal Transduction/drug effects
- Vascular Remodeling/physiology
Collapse
Affiliation(s)
- Lintao Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jibo Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peiren Shan
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengban You
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuemei Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyi Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingying Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weijian Huang
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
27
|
Tsukamoto H, Yamagata Y, Ukai I, Takeuchi S, Okubo M, Kobayashi Y, Kozakai S, Kubota K, Numasaki M, Kanemitsu Y, Matsumoto Y, Tomioka Y. An inhibitory epitope of human Toll-like receptor 4 resides on leucine-rich repeat 13 and is recognized by a monoclonal antibody. FEBS Lett 2017; 591:2406-2416. [PMID: 28741733 DOI: 10.1002/1873-3468.12768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/15/2017] [Accepted: 07/23/2017] [Indexed: 12/16/2022]
Abstract
Lipopolysaccharide (LPS)-induced activation of Toll-like receptor 4 (TLR4) elicits the innate immune response and can trigger septic shock if excessive. Two antibodies (HT4 and HT52) inhibit LPS-induced human TLR4 activation via novel LPS binding-independent mechanisms. The HT52 epitope resides on leucine-rich repeat 2 (LRR2) and is a feature of many inhibitory antibodies; antigen specificity of HT4 does not reside in LRR2. Here, we identified an HT4 epitope on LRR13 located close to the TLR4 dimerization interface that plays a role in NFκB activation. HT4 and HT52 mutually enhanced TLR4 inhibition. LRR13 is a novel inhibitory epitope and may be useful for developing anti-TLR4 antibodies. Combination therapy with LRR2 and LRR13 may effectively inhibit TLR4 activation.
Collapse
Affiliation(s)
- Hiroki Tsukamoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yuki Yamagata
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ippo Ukai
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shino Takeuchi
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Misaki Okubo
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yohei Kobayashi
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sao Kozakai
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kanae Kubota
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Muneo Numasaki
- Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yoshitomi Kanemitsu
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yotaro Matsumoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
28
|
Gao W, Xiong Y, Li Q, Yang H. Inhibition of Toll-Like Receptor Signaling as a Promising Therapy for Inflammatory Diseases: A Journey from Molecular to Nano Therapeutics. Front Physiol 2017; 8:508. [PMID: 28769820 PMCID: PMC5516312 DOI: 10.3389/fphys.2017.00508] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
The recognition of invading pathogens and endogenous molecules from damaged tissues by toll-like receptors (TLRs) triggers protective self-defense mechanisms. However, excessive TLR activation disrupts the immune homeostasis by sustained pro-inflammatory cytokines and chemokines production and consequently contributes to the development of many inflammatory and autoimmune diseases, such as systemic lupus erythematosus (SLE), infection-associated sepsis, atherosclerosis, and asthma. Therefore, inhibitors/antagonists targeting TLR signals may be beneficial to treat these disorders. In this article, we first briefly summarize the pathophysiological role of TLRs in the inflammatory diseases. We then focus on reviewing the current knowledge in both preclinical and clinical studies of various TLR antagonists/inhibitors for the prevention and treatment of inflammatory diseases. These compounds range from conventional small molecules to therapeutic biologics and nanodevices. In particular, nanodevices are emerging as a new class of potent TLR inhibitors for their unique properties in desired bio-distribution, sustained circulation, and preferred pharmacodynamic and pharmacokinetic profiles. More interestingly, the inhibitory activity of these nanodevices can be regulated through precise nano-functionalization, making them the next generation therapeutics or “nano-drugs.” Although, significant efforts have been made in developing different kinds of new TLR inhibitors/antagonists, only limited numbers of them have undergone clinical trials, and none have been approved for clinical uses to date. Nevertheless, these findings and continuous studies of TLR inhibition highlight the pharmacological regulation of TLR signaling, especially on multiple TLR pathways, as future promising therapeutic strategy for various inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Wei Gao
- Department of Respiratory Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Ye Xiong
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - Qiang Li
- Department of Respiratory Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Hong Yang
- Department of Respiratory Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| |
Collapse
|
29
|
Li HR, Liu J, Zhang SL, Luo T, Wu F, Dong JH, Guo YJ, Zhao L. Corilagin ameliorates the extreme inflammatory status in sepsis through TLR4 signaling pathways. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:18. [PMID: 28056977 PMCID: PMC5217594 DOI: 10.1186/s12906-016-1533-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/19/2016] [Indexed: 11/18/2022]
Abstract
Background Sepsis is one of the serious disorders in clinical practice. Recent studies found toll-like receptors 4 (TLR4) played an important role in sepsis. In this study, we tried to find the influence of Corilagin on TLR4 signal pathways in vitro and in vivo. Methods The cellular and animal models of sepsis were established by LPS and then interfered with Corilagin. Real-time PCR and western blot were employed to detect the mRNA and protein expressions of TLR4, MyD88, TRIF and TRAF6. ELISA was used to determine the IL-6 and IL-1β levels in supernatant and serum. Results The survival rate was improved in the LPS + Corilagin group, and the mRNA and protein expressions of TLR4, MyD88, TRIF and TRAF6 were significantly decreased than that in the LPS group both in cellular and animal models (P < 0.01). The pro-inflammatory cytokines IL-6 and IL-1β were greatly decreased in the LPS + Corilagin group both in supernatant and serum (P < 0.01). Conclusions Corilagin exerts the anti-inflammatory effects by down-regulating the TLR4 signaling molecules to ameliorate the extreme inflammatory status in sepsis.
Collapse
|
30
|
Martyushev A, Nakaoka S, Sato K, Noda T, Iwami S. Modelling Ebola virus dynamics: Implications for therapy. Antiviral Res 2016; 135:62-73. [PMID: 27743917 DOI: 10.1016/j.antiviral.2016.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/29/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
Abstract
Ebola virus (EBOV) causes a severe, often fatal Ebola virus disease (EVD), for which no approved antivirals exist. Recently, some promising anti-EBOV drugs, which are experimentally potent in animal models, have been developed. However, because the quantitative dynamics of EBOV replication in humans is uncertain, it remains unclear how much antiviral suppression of viral replication affects EVD outcome in patients. Here, we developed a novel mathematical model to quantitatively analyse human viral load data obtained during the 2000/01 Uganda EBOV outbreak and evaluated the effects of different antivirals. We found that nucleoside analogue- and siRNA-based therapies are effective if a therapy with a >50% inhibition rate is initiated within a few days post-symptom-onset. In contrast, antibody-based therapy requires not only a higher inhibition rate but also an earlier administration, especially for otherwise fatal cases. Our results demonstrate that an appropriate choice of EBOV-specific drugs is required for effective EVD treatment.
Collapse
Affiliation(s)
- Alexey Martyushev
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Shinji Nakaoka
- Institute of Industrial Sciences, The University of Tokyo, Tokyo, 1538505, Japan
| | - Kei Sato
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto, 6068507, Japan; CREST, JST, Kawaguchi, Saitama, 3320012, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Virus Research, Kyoto University, Kyoto, 6068507, Japan; CREST, JST, Kawaguchi, Saitama, 3320012, Japan; PRESTO, JST, Kawaguchi, Saitama, 3320012, Japan.
| | - Shingo Iwami
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 8128581, Japan; PRESTO, JST, Kawaguchi, Saitama, 3320012, Japan; CREST, JST, Kawaguchi, Saitama, 3320012, Japan.
| |
Collapse
|
31
|
Kiyeko GW, Hatterer E, Herren S, Di Ceglie I, van Lent PL, Reith W, Kosco-Vilbois M, Ferlin W, Shang L. Spatiotemporal expression of endogenous TLR4 ligands leads to inflammation and bone erosion in mouse collagen-induced arthritis. Eur J Immunol 2016; 46:2629-2638. [PMID: 27510283 DOI: 10.1002/eji.201646453] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/24/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022]
Abstract
Increased expression of endogenous Toll-like receptor 4 (TLR4) ligands (e.g., Tenascin-C, S100A8/A9, citrullinated fibrinogen (cFb) immune complexes) has been observed in patients with rheumatoid arthritis (RA). However, their roles in RA pathogenesis are not well understood. Here, we investigated the expression kinetics and role of endogenous TLR4 ligands in the murine model of collagen-induced arthritis (CIA). Tenascin-C was upregulated in blood early in CIA, and correlated positively with the clinical score at day 56. Levels of S100A8/A9 increased starting from day 28, peaking at day 42, and correlated positively with joint inflammation. Levels of anti-cFb antibodies increased during the late phase of CIA and correlated positively with both joint inflammation and cartilage damage. Blockade of TLR4 activation at the time of the first TLR4 ligand upregulation prevented clinical and histological signs of arthritis. A TLR4-dependent role was also observed for Tenascin-C and cFb immune complexes in osteoclast differentiation in vitro. Taken together, our data suggests that the pathogenic contribution of TLR4 in promoting joint inflammation and bone erosion during CIA occurs via various TLR4 ligands arising at different stages of disease. The data also suggests that Blockade of TLR4 with monoclonal antibodies is a promising strategy in RA treatment.
Collapse
Affiliation(s)
| | | | | | - Irene Di Ceglie
- Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Peter L van Lent
- Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva, School of Medicine, Geneva, Switzerland
| | | | | | - Limin Shang
- NovImmune SA, Plan-Les-Ouates, Geneva, Switzerland.
| |
Collapse
|
32
|
Liu D, Cao G, Han L, Ye Y, SiMa Y, Ge W. Flavonoids from Radix Tetrastigmae inhibit TLR4/MD-2 mediated JNK and NF-κB pathway with anti-inflammatory properties. Cytokine 2016; 84:29-36. [DOI: 10.1016/j.cyto.2015.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 12/12/2022]
|
33
|
Abstract
Sepsis is a serious clinical problem involving complex mechanisms which requires better understanding and insight. Animal models of sepsis have played a major role in providing insight into the complex pathophysiology of sepsis. There have been various animal models of sepsis with different paradigms. Endotoxin, bacterial infusion, cecal ligation and puncture, and colon ascendens stent peritonitis models are the commonly practiced methods at present. Each of these models has their own advantages and also confounding factors. We have discussed the underlying mechanisms regulating each of these models along with possible reasons why each model failed to translate into the clinic. In animal models, the timing of development of the hemodynamic phases and the varied cytokine patterns could not accurately resemble the progression of clinical sepsis. More often, the exuberant and transient pro-inflammatory cytokine response is only focused in most models. Immunosuppression and apoptosis in the later phase of sepsis have been found to cause more damage than the initial acute phase of sepsis. Likewise, better understanding of the existing models of sepsis could help us create a more relevant model which could provide solution to the currently failed clinical trials in sepsis.
Collapse
|
34
|
Plasminogen activator inhibitor-1 stimulates macrophage activation through Toll-like Receptor-4. Biochem Biophys Res Commun 2016; 477:503-8. [PMID: 27317488 DOI: 10.1016/j.bbrc.2016.06.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 06/14/2016] [Indexed: 11/22/2022]
Abstract
While inflammation is often associated with increased Plasminogen Activator Inhibitor-1 (PAI-1), the functional consequences of PAI-1 in inflammation have yet to be fully determined. The aim of this study was to establish the in vivo relevance of PAI-1 in inflammation. A mouse model of systemic inflammation was employed in wild-type (WT) and PAI-1 deficient (PAI-1(-/-)) mice. Mice survival, macrophage infiltration into the lungs, and plasma levels of pro-inflammatory cytokines were assessed after lipopolysaccharide (LPS) infusion. In vitro experiments were conducted to examine changes in LPS-induced inflammatory responses after PAI-1 exposure. PAI-1 was shown to regulate inflammation, in vivo, and affect macrophage infiltration into lungs. Further, PAI-1 activated macrophages, and increased pro-inflammatory cytokines at both the mRNA and protein levels in these cells. The effect of PAI-1 on macrophage activation was dose-dependent and LPS-independent. Proteolytic inhibitory activity and Lipoprotein Receptor-related Protein (LRP) and vitronectin (VN) binding functions, were not involved in PAI-1-mediated activation of macrophages. However, the effect of PAI-1 on macrophage activation was partially blocked by a TLR4 neutralizing antibody. Furthermore, PAI-1-induced Tumor Necrosis Factor-alpha (TNF-α) and Macrophage Inflammatory Protein-2 (MIP-2) expression was reduced in TLR4(-/-) macrophages compared to WT macrophages. These results demonstrate that PAI-1 is involved in the regulation of host inflammatory responses through Toll-like Receptor-4 (TLR4)-mediated macrophage activation.
Collapse
|
35
|
Watterson D, Modhiran N, Young PR. The many faces of the flavivirus NS1 protein offer a multitude of options for inhibitor design. Antiviral Res 2016; 130:7-18. [DOI: 10.1016/j.antiviral.2016.02.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/23/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
|
36
|
Andresen L, Theodorou K, Grünewald S, Czech-Zechmeister B, Könnecke B, Lühder F, Trendelenburg G. Evaluation of the Therapeutic Potential of Anti-TLR4-Antibody MTS510 in Experimental Stroke and Significance of Different Routes of Application. PLoS One 2016; 11:e0148428. [PMID: 26849209 PMCID: PMC4746129 DOI: 10.1371/journal.pone.0148428] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/17/2016] [Indexed: 11/30/2022] Open
Abstract
Toll-like receptors (TLRs) are central sensors for the inflammatory response in ischemia-reperfusion injury. We therefore investigated whether TLR4 inhibition could be used to treat stroke in a standard model of focal cerebral ischemia. Anti-TLR4/MD2-antibody (mAb clone MTS510) blocked TLR4-induced cell activation in vitro, as reported previously. Here, different routes of MTS510 application in vivo were used to study the effects on stroke outcome up to 2d after occlusion of the middle cerebral artery (MCAO) for 45min in adult male C57Bl/6 wild-type mice. Improved neurological performance, reduced infarct volumes, and reduced brain swelling showed that intravascular application of MTS510 had a protective effect in the model of 45min MCAO. Evaluation of potential long-term adverse effects of anti-TLR4-mAb-treament revealed no significant deleterious effect on infarct volumes nor neurological deficit after 14d of reperfusion in a mild model of stroke (15min MCAO). Interestingly, inhibition of TLR4 resulted in an altered adaptive immune response at 48 hours after reperfusion. We conclude that blocking TLR4 by the use of specific mAb is a promising strategy for stroke therapy. However, long-term studies with increased functional sensitivity, larger sampling sizes and use of other species are required before a clinical use could be envisaged.
Collapse
Affiliation(s)
- Lena Andresen
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Sarah Grünewald
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Birte Könnecke
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Lühder
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research, The Hertie Foundation and MPI for Experimental Medicine, Göttingen, Germany
| | - George Trendelenburg
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
37
|
Accompanying mild hypothermia significantly improved the prognosis of septic mice than artificial mild hypothermia. Am J Emerg Med 2015; 33:1651-8. [DOI: 10.1016/j.ajem.2015.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 02/05/2023] Open
|
38
|
Loyau J, Malinge P, Daubeuf B, Shang L, Elson G, Kosco-Vilbois M, Fischer N, Rousseau F. Maximizing the potency of an anti-TLR4 monoclonal antibody by exploiting proximity to Fcγ receptors. MAbs 2015; 6:1621-30. [PMID: 25484053 PMCID: PMC4622919 DOI: 10.4161/19420862.2014.975098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In order to treat Toll like receptor 4 (TLR4)-mediated diseases, we generated a potent antagonistic antibody directed against human TLR4, Hu 15C1. This antibody's potency can be modulated by engaging not only TLR4 but also Fcγ receptors (FcγR), a mechanism that is driven by avidity and not cell signaling. Here, using various formats of the antibody, we further dissect the relative contributions of the Fv and Fc portions of Hu 15C1, discovering that the relationship to potency of the different antibody arms is not linear. First, as could be anticipated, we observed that Hu 15C1 co-engages up to 3 receptors on the same plasma membrane, i.e., 2 TLR4 molecules (via its variable regions) and either FcγRI or FcγRIIA (via the Fc). The Kd of these interactions are in the nM range (3 nM of the Fv for TLR4 and 47 nM of the Fc for FcγRI). However, unexpectedly, neutralization experiments revealed that, due to the low level of cell surface TLR4 expression, the avidity afforded by engagement through 2 Fv arms was significantly limited. In contrast, the antibody's neutralization capacity increases by 3 logs when able to exploit Fc-FcγR interactions. Taken together, these results demonstrate an unforeseen level of contribution by FcγRs to an antibody's effectiveness when targeting a cell surface protein of relatively low abundance. These findings highlight an exploitable mechanism by which FcγR-bearing cells may be more powerfully targeted, envisioned to be broadly applicable to other reagents aimed at neutralizing cell surface targets on cells co-expressing FcγRs.
Collapse
Key Words
- DAMP, damage-associated molecular pattern
- Fc gamma receptors
- Fc, fragment crystallizable
- FcγR, Fc gamma receptor
- Fv, fragment variable
- IL, interleukin
- IVIg, intravenous immunoglobulin
- Ig, immunoglobulin
- LPS, lipopolysaccharide
- PAMP, pathogen-associated molecular pattern
- TLR, Toll-like receptor
- TLR4
- affinity maturation
- antibody
- avidity
- mAb, monoclonal antibody
Collapse
|
39
|
Lima CX, Souza DG, Amaral FA, Fagundes CT, Rodrigues IPS, Alves-Filho JC, Kosco-Vilbois M, Ferlin W, Shang L, Elson G, Teixeira MM. Therapeutic Effects of Treatment with Anti-TLR2 and Anti-TLR4 Monoclonal Antibodies in Polymicrobial Sepsis. PLoS One 2015; 10:e0132336. [PMID: 26147469 PMCID: PMC4492955 DOI: 10.1371/journal.pone.0132336] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/14/2015] [Indexed: 12/27/2022] Open
Abstract
Introduction Toll-like receptors (TLRs) play an important role in the recognition of microbial products and in host defense against infection. However, the massive release of inflammatory mediators into the bloodstream following TLR activation following sepsis is thought to contribute to disease pathogenesis. Methods Here, we evaluated the effects of preventive or therapeutic administration of monoclonal antibodies (mAbs) targeting either TLR2 or TLR4 in a model of severe polymicrobial sepsis induced by cecal ligation and puncture in mice. Results Pre-treatment with anti-TLR2 or anti-TLR4 mAb alone showed significant protection from sepsis-associated death. Protective effects were observed even when the administration of either anti-TLR2 or anti-TLR4 alone was delayed (i.e., 3 h after sepsis induction). Delayed administration of either mAb in combination with antibiotics resulted in additive protection. Conclusion Although attempts to translate preclinical findings to clinical sepsis have failed so far, our preclinical experiments strongly suggest that there is a sufficient therapeutic window within which patients with ongoing sepsis could benefit from combined antibiotic plus anti-TLR2 or anti-TLR4 mAb treatment.
Collapse
Affiliation(s)
- Cristiano Xavier Lima
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena 190, sala 203, 30130–100, Belo Horizonte, MG, Brasil
- * E-mail:
| | - Danielle Gloria Souza
- Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, 31270–901, Belo Horizonte, MG, Brasil
| | - Flavio Almeida Amaral
- Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, 31270–901, Belo Horizonte, MG, Brasil
| | - Caio Tavares Fagundes
- Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, 31270–901, Belo Horizonte, MG, Brasil
| | - Irla Paula Stopa Rodrigues
- Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, 31270–901, Belo Horizonte, MG, Brasil
| | - Jose Carlos Alves-Filho
- Faculdade de Medicina de Ribeirão Preto, USP Avenida dos Bandeirantes, 3.900, Monte Alegre, 14049–900, Ribeirão Preto, SP, Brasil
| | - Marie Kosco-Vilbois
- NovImmune SA, 14 Chemin des Aulx, 1228 Plan-Les-Ouates, Geneva, CH1228, Switzerland
| | - Walter Ferlin
- NovImmune SA, 14 Chemin des Aulx, 1228 Plan-Les-Ouates, Geneva, CH1228, Switzerland
| | - Limin Shang
- NovImmune SA, 14 Chemin des Aulx, 1228 Plan-Les-Ouates, Geneva, CH1228, Switzerland
| | - Greg Elson
- NovImmune SA, 14 Chemin des Aulx, 1228 Plan-Les-Ouates, Geneva, CH1228, Switzerland
| | - Mauro Martins Teixeira
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena 190, sala 203, 30130–100, Belo Horizonte, MG, Brasil
- Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, 31270–901, Belo Horizonte, MG, Brasil
| |
Collapse
|
40
|
Salama M, Elgamal M, Abdelaziz A, Ellithy M, Magdy D, Ali L, Fekry E, Mohsen Z, Mostafa M, Elgamal H, Sheashaa H, Sobh M. Toll-like receptor 4 blocker as potential therapy for acetaminophen-induced organ failure in mice. Exp Ther Med 2015; 10:241-246. [PMID: 26170942 DOI: 10.3892/etm.2015.2442] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 04/07/2015] [Indexed: 12/23/2022] Open
Abstract
Acetaminophen (APAP, 4-hydroxyacetanilide) is the most common cause of acute liver failure in the United States. In addition to exhibiting hepatotoxicity, APAP exerts a nephrotoxic effect may be independent of the induced liver damage. Toll-like receptors (TLRs) have been suggested as a potential class of novel therapeutic targets. The aim of the present study was to investigate the potential of the TLR-4 blocker TAK-242 in the prevention of APAP-induced hepato-renal failure. Four groups of C57BL mice were studied: Vehicle-treated/control (VEH), APAP-treated (APAP), N-acetyl cysteine (NAC)-pretreated plus APAP (APAP + NAC) and TAK-242-pretreated plus APAP (APAP + TAK) groups. Mice were clinically assessed then perfused 4 h later. Liver and kidney tissues were collected and examined histologically using basic hematoxylin and eosin staining to detect signs of necrosis and inflammation. Plasma samples were collected to measure the levels of alanine transaminase, aspartate transaminase and serum creatinine. In addition, liver and kidney tissues were assayed to determine the levels of reduced glutathione. The results of the present study indicate the potential role of TLR-4 in APAP-induced organ toxicity. In the APAP + TAK and APAP + NAC groups, histopathological examination indicated that pretreatment with TAK-242 or NAC afforded protection against APAP-induced injury. However, this protective effect was more clinically evident in the APAP + TAK group compared with the APAP + NAC group. The various biochemical parameters (serum enzymes and reduced glutathione) revealed no significant protection in either of the pretreated groups. Therefore, the present study indicated that the TLR-4 blocker had protective effects against acute APAP toxicity in liver and kidney tissues. These effects were identified clinically, histologically and biochemically. Furthermore, the TLR-4 blocker TAK-242 exhibited antioxidant properties in addition to anti-inflammatory effects.
Collapse
Affiliation(s)
- Mohamed Salama
- Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura 36511, Egypt ; Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura 36511, Egypt
| | - Mohamed Elgamal
- Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura 36511, Egypt
| | - Azza Abdelaziz
- Mansoura-Manchester Programme, Faculty of Medicine, Mansoura University, Mansoura 36511, Egypt
| | - Moataz Ellithy
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 36511, Egypt
| | - Dina Magdy
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 36511, Egypt
| | - Lina Ali
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 36511, Egypt
| | - Emad Fekry
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura 36511, Egypt
| | - Zinab Mohsen
- Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura 36511, Egypt
| | - Mariam Mostafa
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 36511, Egypt
| | - Hoda Elgamal
- Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura 36511, Egypt
| | - Hussein Sheashaa
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura 36511, Egypt
| | - Mohamed Sobh
- Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura 36511, Egypt ; Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura 36511, Egypt
| |
Collapse
|
41
|
Riquelme SA, Bueno SM, Kalergis AM. Carbon monoxide down-modulates Toll-like receptor 4/MD2 expression on innate immune cells and reduces endotoxic shock susceptibility. Immunology 2015; 144:321-32. [PMID: 25179131 DOI: 10.1111/imm.12375] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/28/2014] [Accepted: 08/26/2014] [Indexed: 01/28/2023] Open
Abstract
Carbon monoxide (CO) has been recently reported as the main anti-inflammatory mediator of the haem-degrading enzyme haem-oxygenase 1 (HO-1). It has been shown that either HO-1 induction or CO treatment reduces the ability of monocytes to respond to inflammatory stimuli, such as lipopolysaccharide (LPS), due to an inhibition of the signalling pathways leading to nuclear factor-κB, mitogen-activated protein kinases and interferon regulatory factor 3 activation. Hence, it has been suggested that CO impairs the stimulation of the Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD2) complex located on the surface of immune cells. However, whether CO can negatively modulate the surface expression of the TLR4/MD2 complex in immune cells remains unknown. Here we report that either HO-1 induction or treatment with CO decreases the surface expression of TLR4/MD2 in dendritic cells (DC) and neutrophils. In addition, in a septic shock model of mice intraperitoneally injected with lipopolysaccharide (LPS), prophylactic treatment with CO protected animals from hypothermia, weight loss, mobility loss and death. Further, mice pre-treated with CO and challenged with LPS showed reduced recruitment of DC and neutrophils to peripheral blood, suggesting that this gas causes a systemic tolerance to endotoxin challenge. No differences in the amount of innate cells in lymphoid tissues were observed in CO-treated mice. Our results suggest that CO treatment reduces the expression of the TLR4/MD2 complex on the surface of myeloid cells, which renders them resistant to LPS priming in vitro, as well as in vivo in a model of endotoxic shock.
Collapse
Affiliation(s)
- Sebastián A Riquelme
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; INSERM, UMR 1064, Nantes, France
| | | | | |
Collapse
|
42
|
Foley NM, Wang J, Redmond HP, Wang JH. Current knowledge and future directions of TLR and NOD signaling in sepsis. Mil Med Res 2015; 2:1. [PMID: 25722880 PMCID: PMC4340879 DOI: 10.1186/s40779-014-0029-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/17/2014] [Indexed: 01/13/2023] Open
Abstract
The incidence of sepsis is increasing over time, along with an increased risk of dying from the condition. Sepsis care costs billions annually in the United States. Death from sepsis is understood to be a complex process, driven by a lack of normal immune homeostatic functions and excessive production of proinflammatory cytokines, which leads to multi-organ failure. The Toll-like receptor (TLR) family, one of whose members was initially discovered in Drosophila, performs an important role in the recognition of microbial pathogens. These pattern recognition receptors (PRRs), upon sensing invading microorganisms, activate intracellular signal transduction pathways. NOD signaling is also involved in the recognition of bacteria and acts synergistically with the TLR family in initiating an efficient immune response for the eradication of invading microbial pathogens. TLRs and NOD1/NOD2 respond to different pathogen-associated molecular patterns (PAMPs). Modulation of both TLR and NOD signaling is an area of research that has prompted much excitement and debate as a therapeutic strategy in the management of sepsis. Molecules targeting TLR and NOD signaling pathways exist but regrettably thus far none have proven efficacy from clinical trials.
Collapse
Affiliation(s)
- Niamh M Foley
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jian Wang
- Department of Pediatric Surgery, Affiliated Children's Hospital, Soochow University, Suzhou, 215003 China
| | - H Paul Redmond
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| |
Collapse
|
43
|
Giovannoni L, Muller YD, Lacotte S, Parnaud G, Borot S, Meier RP, Lavallard V, Bédat B, Toso C, Daubeuf B, Elson G, Shang L, Morel P, Kosco-Vilbois M, Bosco D, Berney T. Enhancement of Islet Engraftment and Achievement of Long-Term Islet Allograft Survival by Toll-Like Receptor 4 Blockade. Transplantation 2015; 99:29-35. [DOI: 10.1097/tp.0000000000000468] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Escudero-Pérez B, Volchkova VA, Dolnik O, Lawrence P, Volchkov VE. Shed GP of Ebola virus triggers immune activation and increased vascular permeability. PLoS Pathog 2014; 10:e1004509. [PMID: 25412102 PMCID: PMC4239094 DOI: 10.1371/journal.ppat.1004509] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/09/2014] [Indexed: 11/19/2022] Open
Abstract
During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular metalloprotease TACE. Shed GP and non-structural secreted glycoprotein sGP, both expressed from the same GP gene, have been detected in the blood of human patients and experimentally infected animals. In this study we demonstrate that shed GP could play a particular role during EBOV infection. In effect it binds and activates non-infected dendritic cells and macrophages inducing the secretion of pro- and anti-inflammatory cytokines (TNFα, IL1β, IL6, IL8, IL12p40, and IL1-RA, IL10). Activation of these cells by shed GP correlates with the increase in surface expression of co-stimulatory molecules CD40, CD80, CD83 and CD86. Contrary to shed GP, secreted sGP activates neither DC nor macrophages while it could bind DCs. In this study, we show that shed GP activity is likely mediated through cellular toll-like receptor 4 (TLR4) and is dependent on GP glycosylation. Treatment of cells with anti-TLR4 antibody completely abolishes shed GP-induced activation of cells. We also demonstrate that shed GP activity is negated upon addition of mannose-binding sera lectin MBL, a molecule known to interact with sugar arrays present on the surface of different microorganisms. Furthermore, we highlight the ability of shed GP to affect endothelial cell function both directly and indirectly, demonstrating the interplay between shed GP, systemic cytokine release and increased vascular permeability. In conclusion, shed GP released from virus-infected cells could activate non-infected DCs and macrophages causing the massive release of pro- and anti-inflammatory cytokines and effect vascular permeability. These activities could be at the heart of the excessive and dysregulated inflammatory host reactions to infection and thus contribute to high virus pathogenicity. Ebola virus, a member of the Filoviridae family, causes lethal hemorrhagic fever in man and primates, displaying up to 90% mortality rates. Viral infection is typified by an excessive systemic inflammatory response resembling septic shock. It also damages endothelial cells and creates difficulty in coagulation, ultimately leading to haemorrhaging, organ failure and death. A unique feature of EBOV is that following infection high amounts of truncated surface GP, named shed GP, are released from infected cells and are detected in the blood of patients and experimentally infected animals. However the role of shed GP in virus replication and pathogenicity is not yet clearly defined. Here we show that shed GP released from virus-infected cells binds and activates non-infected DCs and macrophages causing the massive release of pro- and anti-inflammatory cytokines and also affects vascular permeability. These activities could be at the heart of the excessive and dysregulated inflammatory host reactions to infection and thus contribute to high virus pathogenicity.
Collapse
Affiliation(s)
- Beatriz Escudero-Pérez
- Molecular Basis of Viral Pathogenicity, CIRI, INSERM U1111- CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Valentina A. Volchkova
- Molecular Basis of Viral Pathogenicity, CIRI, INSERM U1111- CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Olga Dolnik
- Molecular Basis of Viral Pathogenicity, CIRI, INSERM U1111- CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Philip Lawrence
- Molecular Basis of Viral Pathogenicity, CIRI, INSERM U1111- CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Viktor E. Volchkov
- Molecular Basis of Viral Pathogenicity, CIRI, INSERM U1111- CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
45
|
Oda M, Yamamoto H, Shibutani M, Nakano M, Yabiku K, Tarui T, Kameyama N, Shirakawa D, Obayashi S, Watanabe N, Nakase H, Suenaga M, Matsunaga Y, Nagahama M, Takahashi H, Imagawa H, Kurosawa M, Terao Y, Nishizawa M, Sakurai J. Vizantin inhibits endotoxin-mediated immune responses via the TLR 4/MD-2 complex. THE JOURNAL OF IMMUNOLOGY 2014; 193:4507-14. [PMID: 25261480 DOI: 10.4049/jimmunol.1401796] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vizantin has immunostimulating properties and anticancer activity. In this study, we investigated the molecular mechanism of immune activation by vizantin. THP-1 cells treated with small interfering RNA for TLR-4 abolished vizantin-induced macrophage activation processes such as chemokine release. In addition, compared with wild-type mice, the release of MIP-1β induced by vizantin in vivo was significantly decreased in TLR-4 knockout mice, but not in TLR-2 knockout mice. Vizantin induced the release of IL-8 when HEK293T cells were transiently cotransfected with TLR-4 and MD-2, but not when they were transfected with TLR-4 or MD-2 alone or with TLR-2 or TLR-2/MD-2. A dipyrromethene boron difluoride-conjugated vizantin colocalized with TLR-4/MD-2, but not with TLR-4 or MD-2 alone. A pull-down assay with vizantin-coated magnetic beads showed that vizantin bound to TLR-4/MD-2 in extracts from HEK293T cells expressing both TLR-4 and MD-2. Furthermore, vizantin blocked the LPS-induced release of TNF-α and IL-1β and inhibited death in mice. We also performed in silico docking simulation analysis of vizantin and MD-2 based on the structure of MD-2 complexed with the LPS antagonist E5564; the results suggested that vizantin could bind to the active pocket of MD-2. Our observations show that vizantin specifically binds to the TLR-4/MD-2 complex and that the vizantin receptor is identical to the LPS receptor. We conclude that vizantin could be an effective adjuvant and a therapeutic agent in the treatment of infectious diseases and the endotoxin shock caused by LPS.
Collapse
Affiliation(s)
- Masataka Oda
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan; Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Hirofumi Yamamoto
- Department of Chemistry and Functional Molecule, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Masahiro Shibutani
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Mayo Nakano
- Department of Chemistry and Functional Molecule, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Kenta Yabiku
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Takafumi Tarui
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Naoya Kameyama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Daiki Shirakawa
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Sumiyo Obayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Naoyuki Watanabe
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Hiroshi Nakase
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Midori Suenaga
- Department of Medical Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan; and
| | - Yoichi Matsunaga
- Department of Medical Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan; and
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Hironobu Takahashi
- Institute of Pharmacognosy, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Hiroshi Imagawa
- Department of Chemistry and Functional Molecule, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Mie Kurosawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Mugio Nishizawa
- Department of Chemistry and Functional Molecule, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Jun Sakurai
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan;
| |
Collapse
|
46
|
Fenhammar J, Rundgren M, Hultenby K, Forestier J, Taavo M, Kenne E, Weitzberg E, Eriksson S, Ozenci V, Wernerson A, Frithiof R. Renal effects of treatment with a TLR4 inhibitor in conscious septic sheep. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:488. [PMID: 25182709 PMCID: PMC4190385 DOI: 10.1186/s13054-014-0488-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022]
Abstract
Introduction Acute kidney injury (AKI) is a common and feared complication of sepsis. The pathogenesis of sepsis-induced AKI is largely unknown, and therapeutic interventions are mainly supportive. In the present study, we tested the hypothesis that pharmacological inhibition of Toll-like receptor 4 (TLR4) would improve renal function and reduce renal damage in experimental sepsis, even after AKI had already developed. Methods Sheep were surgically instrumented and subjected to a 36-hour intravenous infusion of live Escherichia coli. After 12 hours, they were randomized to treatment with a selective TLR4 inhibitor (TAK-242) or vehicle. Results The E. coli caused normotensive sepsis characterized by fever, increased cardiac index, hyperlactemia, oliguria, and decreased creatinine clearance. TAK-242 significantly improved creatinine clearance and urine output. The increase in N-acetyl-beta-D-glucosaminidas, a marker of tubular damage, was attenuated. Furthermore, TAK-242 reduced the renal neutrophil accumulation and glomerular endothelial swelling caused by sepsis. These effects were independent of changes in renal artery blood flow and renal microvascular perfusion in both cortex and medulla. TAK-242 had no effect per se on the measured parameters. Conclusions These results show that treatment with a TLR4 inhibitor is able to reverse a manifest impairment in renal function caused by sepsis. In addition, the results provide evidence that the mechanism underlying the effect of TAK-242 on renal function does not involve improved macro-circulation or micro-circulation, enhanced renal oxygen delivery, or attenuation of tubular necrosis. TLR4-mediated inflammation resulting in glomerular endothelial swelling may be an important part of the pathogenesis underlying Gram-negative septic acute kidney injury. Electronic supplementary material The online version of this article (doi:10.1186/s13054-014-0488-y) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
van Lieshout MHP, van der Poll T, van't Veer C. TLR4 inhibition impairs bacterial clearance in a therapeutic setting in murine abdominal sepsis. Inflamm Res 2014; 63:927-33. [PMID: 25118783 DOI: 10.1007/s00011-014-0766-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 06/25/2014] [Accepted: 07/29/2014] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE AND DESIGN To investigate the therapeutic effect of E5564 (a clinically used TLR4 inhibitor) in murine abdominal sepsis elicited by intraperitoneal infection with a highly virulent Escherichia coli in the context of concurrent antibiotic therapy. METHODS Mice were infected with different doses (~2 × 10(4)-2 × 10(6) CFU) of E. coli O18:K1 and treated after 8 h with ceftriaxone 20 mg/kg i.p. combined with either E5564 10 mg/kg i.v. or vehicle. For survival studies this treatment was repeated every 12 h. Bacterial loads and inflammatory parameters were determined after 20 h in peritoneal lavage fluid, blood, liver and lung tissue. Plasma creatinin, AST, ALT and LDH were determined to assess organ injury. RESULTS E5564 impaired bacterial clearance under the antibiotic regime after infection with a low dose E. coli (1.7 × 10(4) CFU) while renal function was slightly preserved. No differences were observed in bacterial load and organ damage after infection with a tenfold higher (1.7 × 10(5) E. coli) bacterial dose. While treatment with E5564 slightly attenuated inflammatory markers provoked by the sublethal doses of 104-105 E. coli under the antibiotic regime, it did not affect lethality evoked by infection with 1.7 × 106 E. coli. CONCLUSIONS The impact of TLR4 inhibition during abdominal sepsis by virulent E. coli bacteria is only beneficial at low infection grade at cost of bactericidal activity.
Collapse
Affiliation(s)
- Miriam H P van Lieshout
- Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands,
| | | | | |
Collapse
|
48
|
Censoplano N, Epting CL, Coates BM. The Role of the Innate Immune System in Sepsis. CLINICAL PEDIATRIC EMERGENCY MEDICINE 2014. [DOI: 10.1016/j.cpem.2014.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Mihaylova S, Schweighöfer H, Hackstein H, Rosengarten B. Effects of anti-inflammatory vagus nerve stimulation in endotoxemic rats on blood and spleen lymphocyte subsets. Inflamm Res 2014; 63:683-90. [PMID: 24802890 DOI: 10.1007/s00011-014-0741-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/28/2014] [Accepted: 04/18/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Anti-inflammatory cytokine effects of vagus nerve stimulation in sepsis syndromes are well established. Effects on immune cells are less clear. Therefore, we studied changes in peripheral and spleen leukocyte subsets in an endotoxic rat sepsis model. METHODS Ventilated and sedated adult male SD rats received 5 mg/kg b.w. lipopolysaccharide intravenously to induce endotoxic sepsis. Controls and a group with both-sided vagotomy were compared to animals with both sided vagotomy and left distal vagus nerve stimulation. 4.5 h after sepsis induction immune cell counts and types in the peripheral blood and spleen were determined [T-lymphocytes (CD3+), T-helper cells (CD3+ CD4+), activated T-helper cells (CD3+ CD4+ CD134+), cytotoxic T-cells (CD3+ CD8+), activated cytotoxic T-cells (CD3+ CD8+ CD134+), B-lymphocytes (CD45R+ CD11cneg-dim), dendritic cells (CD11c+ OX-62 +), natural killer cells (CD161+ CD3neg) and granulocytes (His48 +)] together with cytokine and chemokine plasma levels (IL10; IFN-g, TNF-a, Cxcl5, Ccl5). RESULTS Blood cell counts declined in all LPS groups. However, vagus nerve stimulation but not vagotomy activated cytotoxic T-cells. Vagotomy also depleted natural killer cells. In the spleen, vagotomy resulted in a strong decline of all cell types which was not present in the other septic groups where only granulocyte numbers declined. CONCLUSION Vagotomy strongly declines immune cell counts in the septic spleen. This could not be explained by an evasion or apoptosis of cells. A marginalisation of spleen immune cells into the peripheral microcirculation might be therefore most likely. Further studies are warranted to clear this issue.
Collapse
Affiliation(s)
- S Mihaylova
- Departments of Neurology, Justus-Liebig University Giessen, Klinikstrasse 33, 35392, Giessen, Germany
| | | | | | | |
Collapse
|
50
|
Shang L, Daubeuf B, Triantafilou M, Olden R, Dépis F, Raby AC, Herren S, Dos Santos A, Malinge P, Dunn-Siegrist I, Benmkaddem S, Geinoz A, Magistrelli G, Rousseau F, Buatois V, Salgado-Pires S, Reith W, Monteiro R, Pugin J, Leger O, Ferlin W, Kosco-Vilbois M, Triantafilou K, Elson G. Selective antibody intervention of Toll-like receptor 4 activation through Fc γ receptor tethering. J Biol Chem 2014; 289:15309-18. [PMID: 24737331 DOI: 10.1074/jbc.m113.537936] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inflammation is mediated mainly by leukocytes that express both Toll-like receptor 4 (TLR4) and Fc γ receptors (FcγR). Dysregulated activation of leukocytes via exogenous and endogenous ligands of TLR4 results in a large number of inflammatory disorders that underlie a variety of human diseases. Thus, differentially blocking inflammatory cells while sparing structural cells, which are FcγR-negative, represents an elegant strategy when targeting the underlying causes of human diseases. Here, we report a novel tethering mechanism of the Fv and Fc portions of anti-TLR4 blocking antibodies that achieves increased potency on inflammatory cells. In the presence of ligand (e.g. lipopolysaccharide (LPS)), TLR4 traffics into glycolipoprotein microdomains, forming concentrated protein platforms that include FcγRs. This clustering produces a microenvironment allowing anti-TLR4 antibodies to co-engage TLR4 and FcγRs, increasing their avidity and thus substantially increasing their inhibitory potency. Tethering of antibodies to both TLR4 and FcγRs proves valuable in ameliorating inflammation in vivo. This novel mechanism of action therefore has the potential to enable selective intervention of relevant cell types in TLR4-driven diseases.
Collapse
Affiliation(s)
- Limin Shang
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland,
| | - Bruno Daubeuf
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | - Martha Triantafilou
- the Cardiff University School of Medicine, Department of Child Health, University Hospital of Wales, Cardiff, United Kingdom
| | - Robin Olden
- the Cardiff University School of Medicine, Department of Child Health, University Hospital of Wales, Cardiff, United Kingdom
| | - Fabien Dépis
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | - Anne-Catherine Raby
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | - Suzanne Herren
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | - Anaelle Dos Santos
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | - Pauline Malinge
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | | | - Sanae Benmkaddem
- INSERM UMR 699, Faculté de Médecine Paris Diderot, Site Xavier Bichat, 16 Rue Henri Huchard, Paris 75018 Cedex 18, France, and
| | - Antoine Geinoz
- the Department of Pathology and Immunology, University of Geneva Medical School, Geneva 1211, Switzerland
| | | | - François Rousseau
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | - Vanessa Buatois
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | | | - Walter Reith
- the Department of Pathology and Immunology, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Renato Monteiro
- INSERM UMR 699, Faculté de Médecine Paris Diderot, Site Xavier Bichat, 16 Rue Henri Huchard, Paris 75018 Cedex 18, France, and
| | - Jérôme Pugin
- the University Hospitals of Geneva, 1211 Geneva, Switzerland
| | - Olivier Leger
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | - Walter Ferlin
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | - Marie Kosco-Vilbois
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | - Kathy Triantafilou
- the Cardiff University School of Medicine, Department of Child Health, University Hospital of Wales, Cardiff, United Kingdom
| | - Greg Elson
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| |
Collapse
|