1
|
York J, Gowrishankar K, Micklethwaite K, Palmer S, Cunningham AL, Nasr N. Evolving Strategies to Eliminate the CD4 T Cells HIV Viral Reservoir via CAR T Cell Immunotherapy. Front Immunol 2022; 13:873701. [PMID: 35572509 PMCID: PMC9098815 DOI: 10.3389/fimmu.2022.873701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Although the advent of ART has significantly reduced the morbidity and mortality associated with HIV infection, the stable pool of HIV in latently infected cells requires lifelong treatment adherence, with the cessation of ART resulting in rapid reactivation of the virus and productive HIV infection. Therefore, these few cells containing replication-competent HIV, known as the latent HIV reservoir, act as the main barrier to immune clearance and HIV cure. While several strategies involving HIV silencing or its reactivation in latently infected cells for elimination by immune responses have been explored, exciting cell based immune therapies involving genetically engineered T cells expressing synthetic chimeric receptors (CAR T cells) are highly appealing and promising. CAR T cells, in contrast to endogenous cytotoxic T cells, can function independently of MHC to target HIV-infected cells, are efficacious and have demonstrated acceptable safety profiles and long-term persistence in peripheral blood. In this review, we present a comprehensive picture of the current efforts to target the HIV latent reservoir, with a focus on CAR T cell therapies. We highlight the current challenges and advances in this field, while discussing the importance of novel CAR designs in the efforts to find a HIV cure.
Collapse
Affiliation(s)
- Jarrod York
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Kavitha Gowrishankar
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Children’s Cancer Research Unit, Kids Research, The Children’s Hospital at Westmead, Sydney Children’s Hospitals Network, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Kenneth Micklethwaite
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- NSW Health Pathology Blood Transplant and Cell Therapies Laboratory – Institute of Clinical Pathology and Medical Research (ICPMR) Westmead, Sydney, NSW, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Preservation of lymphocyte functional fitness in perinatally-infected and treated HIV+ pediatric patients displaying sub-optimal viral control. COMMUNICATIONS MEDICINE 2022; 2. [PMID: 35434722 PMCID: PMC9012494 DOI: 10.1038/s43856-022-00085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Host–pathogen dynamics associated with HIV infection are quite distinct in children versus adults. We interrogated the functional fitness of the lymphocyte responses in two cohorts of perinatally infected HIV+ pediatric subjects with early anti-retroviral therapy (ART) initiation but divergent patterns of virologic control. We hypothesized that sub-optimal viral control would compromise immune functional fitness.
Methods
The immune responses in the two HIV+ cohorts (n = 6 in each cohort) were benchmarked against the responses measured in age-range matched, uninfected healthy control subjects (n = 11) by utilizing tests for normality, and comparison [the Kruskal–Wallis test, and the two-tailed Mann–Whitney U test (where appropriate)]. Lymphocyte responses were examined by intra-cellular cytokine secretion, degranulation assays as well as phosflow. A subset of these data were further queried by an automated clustering algorithm. Finally, we evaluated the humoral immune responses to four childhood vaccines in all three cohorts.
Results
We demonstrate that contrary to expectations pediatric HIV+ patients with sub-optimal viral control display no significant deficits in immune functional fitness. In fact, the patients that display better virologic control lack functional Gag-specific T cell responses and compared to healthy controls they display signaling deficits and an enrichment of mitogen-stimulated CD3 negative and positive lymphocyte clusters with suppressed cytokine production.
Conclusions
These results highlight the immune resilience in HIV+ children on ART with sub-optimal viral control. With respect to HIV+ children on ART with better viral control, our data suggest that this cohort might potentially benefit from targeted interventions that might mitigate cell-mediated immune functional quiescence.
Collapse
|
3
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
4
|
Perdomo-Celis F, Medina-Moreno S, Davis H, Bryant J, Taborda NA, Rugeles MT, Kottilil S, Zapata JC. High activation and skewed T cell differentiation are associated with low IL-17A levels in a hu-PBL-NSG-SGM3 mouse model of HIV infection. Clin Exp Immunol 2020; 200:185-198. [PMID: 31951011 DOI: 10.1111/cei.13416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
The humanized NOD/SCID/IL-2 receptor γ-chainnull (NSG) mouse model has been widely used for the study of HIV pathogenesis. Here, NSG mice with transgenic expression of human stem cell factor (SCF), granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-3 (NSG-SGM3) were injected with peripheral blood leukocytes (PBL mice) from two HIV-infected (HIV+ ) patients who were under anti-retroviral therapy (ART; referred as HIV+ mice) or one HIV-seronegative healthy volunteer (HIV- ). Such mice are either hu-PBL-NSG-SGM3 HIV+ or HIV- mice, depending on the source of PBL. The kinetics of HIV replication and T cell responses following engraftment were evaluated in peripheral blood and secondary lymphoid tissues. High HIV replication and low CD4 : CD8 ratios were observed in HIV+ mice in the absence of anti-retroviral therapy (ART). Consistent with high activation and skewed differentiation of T cells from the HIV-infected donor, HIV+ mice exhibited a higher T cell co-expression of human leukocyte antigen D-related (HLA-DR) and CD38 than HIV- mice, as well as a shifted differentiation to a CCR7- CD45RA+ terminal effector profile, even in the presence of ART. In addition, HIV replication and the activation/differentiation disturbances of T cells were associated with decreased plasma levels of IL-17A. Thus, this hu-PBL-NSG-SGM3 mouse model recapitulates some immune disturbances occurring in HIV-infected patients, underlying its potential use for studying pathogenic events during this infection.
Collapse
Affiliation(s)
- F Perdomo-Celis
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - S Medina-Moreno
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - H Davis
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - J Bryant
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - N A Taborda
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - M T Rugeles
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - S Kottilil
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - J C Zapata
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
5
|
Perdomo-Celis F, Taborda NA, Rugeles MT. CD8 + T-Cell Response to HIV Infection in the Era of Antiretroviral Therapy. Front Immunol 2019; 10:1896. [PMID: 31447862 PMCID: PMC6697065 DOI: 10.3389/fimmu.2019.01896] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Although the combined antiretroviral therapy (cART) has decreased the deaths associated with the immune deficiency acquired syndrome (AIDS), non-AIDS conditions have emerged as an important cause of morbidity and mortality in HIV-infected patients under suppressive cART. Since these conditions are associated with a persistent inflammatory and immune activation state, major efforts are currently made to improve the immune reconstitution. CD8+ T-cells are critical in the natural and cART-induced control of viral replication; however, CD8+ T-cells are highly affected by the persistent immune activation and exhaustion state driven by the increased antigenic and inflammatory burden during HIV infection, inducing phenotypic and functional alterations, and hampering their antiviral response. Several CD8+ T-cell subsets, such as interleukin-17-producing and follicular CXCR5+ CD8+ T-cells, could play a particular role during HIV infection by promoting the gut barrier integrity, and exerting viral control in lymphoid follicles, respectively. Here, we discuss the role of CD8+ T-cells and some of their subpopulations during HIV infection in the context of cART-induced viral suppression, focusing on current challenges and alternatives for reaching complete reconstitution of CD8+ T-cells antiviral function. We also address the potential usefulness of CD8+ T-cell features to identify patients who will reach immune reconstitution or have a higher risk for developing non-AIDS conditions. Finally, we examine the therapeutic potential of CD8+ T-cells for HIV cure strategies.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
6
|
He S, Fu Y, Guo J, Spear M, Yang J, Trinité B, Qin C, Fu S, Jiang Y, Zhang Z, Xu J, Ding H, Levy DN, Chen W, Petricoin E, Liotta LA, Shang H, Wu Y. Cofilin hyperactivation in HIV infection and targeting the cofilin pathway using an anti-α 4β 7 integrin antibody. SCIENCE ADVANCES 2019; 5:eaat7911. [PMID: 30662943 PMCID: PMC6326757 DOI: 10.1126/sciadv.aat7911] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
A functional HIV cure requires immune reconstitution for lasting viremia control. A major immune dysfunction persisting in HIV infection is the impairment of T helper cell migration and homing to lymphoid tissues such as GALTs (gut-associated lymphoid tissues). ART (antiretroviral therapy) does not fully restore T cell motility for tissue repopulation. The molecular mechanism dictating this persistent T cell dysfunction is not understood. Cofilin is an actin-depolymerizing factor that regulates actin dynamics for T cell migration. Here, we demonstrate that blood CD4 T cells from HIV-infected patients (n = 193), with or without ART, exhibit significantly lower levels of cofilin phosphorylation (hyperactivation) than those from healthy controls (n = 100; ratio, 1.1:2.3; P < 0.001); cofilin hyperactivation is also associated with poor CD4 T cell recovery following ART. These results suggest an HIV-mediated systemic dysregulation of T cell motility that cannot be repaired solely by ART. We further demonstrate that stimulating blood CD4 T cells with an anti-human α4β7 integrin antibody can trigger signal transduction and modulate the cofilin pathway, partially restoring T cell motility in vitro. However, we also observed that severe T cell motility defect caused by high degrees of cofilin hyperactivation was not repairable by the anti-integrin antibody, demonstrating a mechanistic hindrance to restore immune functions in vivo. Our study suggests that cofilin is a key molecule that may need to be therapeutically targeted early for T cell tissue repopulation, immune reconstitution, and immune control of viremia.
Collapse
Affiliation(s)
- Sijia He
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Yajing Fu
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Jia Guo
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Mark Spear
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Jiuling Yang
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Benjamin Trinité
- Department of Basic Science, New York University College of Dentistry, New York, NY 10010, USA
| | - Chaolong Qin
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - Shuai Fu
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - Yongjun Jiang
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - Zining Zhang
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - Junjie Xu
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - Haibo Ding
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - David N. Levy
- Department of Basic Science, New York University College of Dentistry, New York, NY 10010, USA
| | - Wanjun Chen
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| |
Collapse
|
7
|
Correa-Rocha R, Lopez-Abente J, Gutierrez C, Pérez-Fernández VA, Prieto-Sánchez A, Moreno-Guillen S, Muñoz-Fernández MÁ, Pion M. CD72/CD100 and PD-1/PD-L1 markers are increased on T and B cells in HIV-1+ viremic individuals, and CD72/CD100 axis is correlated with T-cell exhaustion. PLoS One 2018; 13:e0203419. [PMID: 30161254 PMCID: PMC6117071 DOI: 10.1371/journal.pone.0203419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022] Open
Abstract
In our work, we analyzed the role of the CD100/CD72 and PD-1/PD-L1 axes in immune response dysfunction in human immunodeficiency virus (HIV)-1 infection in which high expressions of PD-1 and PD-L1 were associated with an immunosuppressive state via limitation of the HIV-1-specific T-cell responses. CD100 was demonstrated to play a relevant role in immune responses in various pathological processes and may be responsible for immune dysregulation during HIV-1 infection. We investigated the function of CD72/CD100, and PD-1/PDL-1 axes on T and B cells in HIV-infected individuals and in healthy individuals. We analyzed the frequencies and fluorescence intensities of these four markers on CD4+, CD8+ T and B cells. Marker expressions were increased during active HIV-1 infection. CD100 frequency on T cells was positively associated with the expression of PD-1 and PD-L1 on T cells from HIV-infected treatment-naïve individuals. In addition, the frequency of CD72-expressing T cells was associated with interferon gamma (IFN-γ) production in HIV-infected treatment-naïve individuals. Our data suggest that the CD72/CD100 and PD-1/PD-L1 axes may jointly participate in dysregulation of immunity during HIV-1 infection and could partially explain the immune systems' hyper-activation and exhaustion.
Collapse
Affiliation(s)
- Rafael Correa-Rocha
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Jacobo Lopez-Abente
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Carolina Gutierrez
- Department of Infectious Diseases, Hospital Ramón y Cajal, Alcalá de Henares University, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Verónica Astrid Pérez-Fernández
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Adrián Prieto-Sánchez
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Santiago Moreno-Guillen
- Department of Infectious Diseases, Hospital Ramón y Cajal, Alcalá de Henares University, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María-Ángeles Muñoz-Fernández
- Immuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Marjorie Pion
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
- Immuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain
| |
Collapse
|
8
|
Udenwobele DI, Su RC, Good SV, Ball TB, Varma Shrivastav S, Shrivastav A. Myristoylation: An Important Protein Modification in the Immune Response. Front Immunol 2017; 8:751. [PMID: 28713376 PMCID: PMC5492501 DOI: 10.3389/fimmu.2017.00751] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/13/2017] [Indexed: 01/24/2023] Open
Abstract
Protein N-myristoylation is a cotranslational lipidic modification specific to the alpha-amino group of an N-terminal glycine residue of many eukaryotic and viral proteins. The ubiquitous eukaryotic enzyme, N-myristoyltransferase, catalyzes the myristoylation process. Precisely, attachment of a myristoyl group increases specific protein–protein interactions leading to subcellular localization of myristoylated proteins with its signaling partners. The birth of the field of myristoylation, a little over three decades ago, has led to the understanding of the significance of protein myristoylation in regulating cellular signaling pathways in several biological processes especially in carcinogenesis and more recently immune function. This review discusses myristoylation as a prerequisite step in initiating many immune cell signaling cascades. In particular, we discuss the hitherto unappreciated implication of myristoylation during myelopoiesis, innate immune response, lymphopoiesis for T cells, and the formation of the immunological synapse. Furthermore, we discuss the role of myristoylation in inducing the virological synapse during human immunodeficiency virus infection as well as its clinical implication. This review aims to summarize existing knowledge in the field and to highlight gaps in our understanding of the role of myristoylation in immune function so as to further investigate into the dynamics of myristoylation-dependent immune regulation.
Collapse
Affiliation(s)
- Daniel Ikenna Udenwobele
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Ruey-Chyi Su
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Sara V Good
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Terry Blake Ball
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Shailly Varma Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,VastCon Inc., Winnipeg, MB, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
9
|
T cells Exhibit Reduced Signal Transducer and Activator of Transcription 5 Phosphorylation and Upregulated Coinhibitory Molecule Expression After Kidney Transplantation. Transplantation 2015; 99:1995-2003. [PMID: 25769075 DOI: 10.1097/tp.0000000000000674] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND T-cell depletion therapy is associated with diminished interleukin (IL)-7/IL-15-dependent homeostatic proliferation resulting in incomplete T-cell repopulation. Furthermore, it is associated with impaired T-cell functions. We hypothesized that this is the result of impaired cytokine responsiveness of T cells, through affected signal transducer and activator of transcription (STAT)5 phosphorylation and upregulation of coinhibitory molecules. MATERIALS AND METHODS Patients were treated with T cell-depleting rabbit antithymocyte globulin (rATG) (6 mg/kg, n = 17) or nondepleting, anti-CD25 antibody (basiliximab, 2 × 40 mg, n = 25) induction therapy, in combination with tacrolimus, mycophenolate mofetil, and steroids. Before and the first year after transplantation, IL-7 and IL-2 induced STAT5 phosphorylation, and the expression of the coinhibitory molecules programmed cell death protein 1 (PD-1), T cell immunoglobulin mucin-3 (TIM-3), lymphocyte activation gene-3 (LAG-3), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), cluster of differentiation (CD) 160, and CD244 was measured by flow cytometry. RESULTS The first year after rATG, CD4+, and CD8+ T cells were affected in their IL-7-dependent phosphorylation of STAT5 (pSTAT5) which was most outspoken in the CD8+ memory population. The capacity of CD4+ and CD8+ T cells to pSTAT5 in response to IL-2 decreased after both rATG and basiliximab therapy. After kidney transplantation, the percentage of TIM-3+, PD-1+, and CD160+CD4+ T cells and the percentage of CD160+ and CD244+CD8+ T cells increased, with no differences in expression between rATG- and basiliximab-treated patients. The decrease in pSTAT5 capacity CD8+ T cells and the increase in coinhibitory molecules were correlated. CONCLUSIONS We show that memory T cells in kidney transplant patients, in particular after rATG treatment, have decreased cytokine responsiveness by impaired phosphorylation of STAT5 and have increased expression of coinhibitory molecules, processes which were correlated in CD8+ T cells.
Collapse
|
10
|
Albareda MC, Perez-Mazliah D, Natale MA, Castro-Eiro M, Alvarez MG, Viotti R, Bertocchi G, Lococo B, Tarleton RL, Laucella SA. Perturbed T cell IL-7 receptor signaling in chronic Chagas disease. THE JOURNAL OF IMMUNOLOGY 2015; 194:3883-9. [PMID: 25769928 DOI: 10.4049/jimmunol.1402202] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/07/2015] [Indexed: 11/19/2022]
Abstract
We have previously demonstrated that immune responses in subjects with chronic Trypanosoma cruzi infection display features common to other persistent infections with signs of T cell exhaustion. Alterations in cytokine receptor signal transduction have emerged as one of the cell-intrinsic mechanisms of T cell exhaustion. In this study, we performed an analysis of the expression of IL-7R components (CD127 and CD132) on CD4(+) and CD8(+) T cells and evaluated IL-7-dependent signaling events in patients at different clinical stages of chronic chagasic heart disease. Subjects with no signs of cardiac disease showed a decrease in CD127(+)CD132(+) cells and a reciprocal gain of CD127(-)CD132(+) in CD8(+) and CD4(+) T cells compared with either patients exhibiting heart enlargement or uninfected controls. T. cruzi infection, in vitro, was able to stimulate the downregulation of CD127 and the upregulation of CD132 on T cells. IL-7-induced phosphorylation of STAT5 as well as Bcl-2 and CD25 expression were lower in T. cruzi-infected subjects compared with uninfected controls. The serum levels of IL-7 were also increased in chronic chagasic patients. The present study highlights perturbed IL-7/IL-7R T cell signaling through STAT5 as a potential mechanism of T cell exhaustion in chronic T. cruzi infection.
Collapse
Affiliation(s)
- M Cecilia Albareda
- Instituto Nacional de Parasitología Dr. M. Fatala Chaben, Buenos Aires 1063, Argentina; Hospital Interzonal General de Agudos Eva Perón, 1650 San Martin, Buenos Aires, Argentina; and
| | - Damián Perez-Mazliah
- Instituto Nacional de Parasitología Dr. M. Fatala Chaben, Buenos Aires 1063, Argentina
| | - M Ailén Natale
- Instituto Nacional de Parasitología Dr. M. Fatala Chaben, Buenos Aires 1063, Argentina
| | - Melisa Castro-Eiro
- Instituto Nacional de Parasitología Dr. M. Fatala Chaben, Buenos Aires 1063, Argentina
| | - María G Alvarez
- Hospital Interzonal General de Agudos Eva Perón, 1650 San Martin, Buenos Aires, Argentina; and
| | - Rodolfo Viotti
- Hospital Interzonal General de Agudos Eva Perón, 1650 San Martin, Buenos Aires, Argentina; and
| | - Graciela Bertocchi
- Hospital Interzonal General de Agudos Eva Perón, 1650 San Martin, Buenos Aires, Argentina; and
| | - Bruno Lococo
- Hospital Interzonal General de Agudos Eva Perón, 1650 San Martin, Buenos Aires, Argentina; and
| | - Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, Athens, GA 30602
| | - Susana A Laucella
- Instituto Nacional de Parasitología Dr. M. Fatala Chaben, Buenos Aires 1063, Argentina; Hospital Interzonal General de Agudos Eva Perón, 1650 San Martin, Buenos Aires, Argentina; and
| |
Collapse
|
11
|
HIV-1 Tat affects the programming and functionality of human CD8⁺ T cells by modulating the expression of T-box transcription factors. AIDS 2014; 28:1729-38. [PMID: 24841128 DOI: 10.1097/qad.0000000000000315] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE HIV infection is characterized by several immune dysfunctions of both CD8⁺ and CD4⁺ T cells as hyperactivation, impairment of functionality and expansion of memory T cells. CD8⁺ T-cell dysfunctions have been associated with increased expression of T-bet, Eomesdermin and pro-inflammatory cytokines, and with down-regulation of CD127. The HIV-1 trans-activator of transcription (Tat) protein, which is released by infected cells and detected in tissues of HIV-positive individuals, is known to contribute to the dysregulation of CD4⁺ T cells; however, its effects on CD8⁺ T cells have not been investigated. Thus, in this study, we sought to address whether Tat may affect CD8⁺ T-cell functionality and programming. METHODS CD8⁺ T cells were activated by T-cell receptor engagement in the presence or absence of Tat. Cytokine production, killing capacity, surface phenotype and expression of transcription factors important for T-cell programming were evaluated. RESULTS Tat favors the secretion of interleukin-2, interferon-γ and granzyme B in CD8⁺ T cells. Behind this functional modulation we observed that Tat increases the expression of T-bet, Eomesdermin, Blimp-1, Bcl-6 and Bcl-2 in activated but not in unstimulated CD8⁺ T lymphocytes. This effect is associated with the down-regulation of CD127 and the up-regulation of CD27. CONCLUSION Tat deeply alters the programming and functionality of CD8⁺ T lymphocytes.
Collapse
|
12
|
Acting locally: innate mucosal immunity in resistance to HIV-1 infection in Kenyan commercial sex workers. Mucosal Immunol 2014; 7:268-79. [PMID: 23801306 DOI: 10.1038/mi.2013.44] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/20/2013] [Indexed: 02/04/2023]
Abstract
Cohort studies of female commercial sex workers (CSWs) in Kenya were among the first to identify highly HIV-1-exposed seronegative (HESN) individuals. As natural resistance is usually mediated by innate immune mechanisms, we focused on determining whether expression and function of innate signaling pathways were altered locally in the genital mucosa of HESN CSWs. Our results demonstrated that selected pattern-recognition receptors (PRRs) were significantly reduced in expression in cervical mononuclear cells (CMCs) from HESN compared with the new HIV-negative (HIV-N) and HIV-positive (HIV-P) groups. Although baseline levels of secreted cytokines were reduced in CMCs of HESN, they were highly stimulated following exposure to ssRNA40 in vitro. Importantly, cervical epithelial cells from HESN also expressed reduced levels of PRRs, but Toll-like receptor 3 (TLR3) and TLR7 as well as nuclear factor-κB and activator protein 1 were highly expressed and activated. Lastly, inflammatory cytokines interleukin (IL)-1β, IL-8, and RANTES (regulated and normal T cell expressed and secreted) were detected at lower levels in cervicovaginal lavage of HESN compared with the HIV-N and HIV-P groups. Overall, our study reveals a local microenvironment of HIV resistance in the genital mucosa consisting of a finely controlled balance of basal immune quiescence with a focused and potent innate anti-viral response critical to resistance to sexual transmission of HIV-1.
Collapse
|
13
|
Crawford TQ, Jalbert E, Ndhlovu LC, Barbour JD. Concomitant evaluation of PMA+ionomycin-induced kinase phosphorylation and cytokine production in T cell subsets by flow cytometry. Cytometry A 2014; 85:268-76. [DOI: 10.1002/cyto.a.22444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/04/2013] [Accepted: 01/02/2013] [Indexed: 01/25/2023]
Affiliation(s)
- Timothy Q. Crawford
- Hawaii Center for HIV/AIDS Immunology and Genetics Laboratory, Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine; University of Hawaii at Manoa; Honolulu Hawaii
| | - Emilie Jalbert
- Hawaii Center for HIV/AIDS Immunology and Genetics Laboratory, Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine; University of Hawaii at Manoa; Honolulu Hawaii
| | - Lishomwa C. Ndhlovu
- Hawaii Center for HIV/AIDS Immunology and Genetics Laboratory, Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine; University of Hawaii at Manoa; Honolulu Hawaii
| | - Jason D. Barbour
- Hawaii Center for HIV/AIDS Immunology and Genetics Laboratory, Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine; University of Hawaii at Manoa; Honolulu Hawaii
| |
Collapse
|
14
|
A deficient translocation of CD3ζ, ZAP-70 and Grb2 to lipid raft, as a hallmark of defective adaptive immune response during chronic hepatitis B infection. Cell Immunol 2013; 284:9-19. [PMID: 23916875 DOI: 10.1016/j.cellimm.2013.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 05/24/2013] [Accepted: 05/30/2013] [Indexed: 01/28/2023]
Abstract
Hepatitis B is considered to be a worldwide public health problem. An immunosuppressor microenvironment has been proposed to contribute to viral persistence during chronic disease. Understanding the intracellular signaling cascade in T-cells from HBV-infected patients, will contribute to unravel the mechanisms that control the development of immune response during hepatitis B. We analyze lipid rafts formation and early activation signals in chronic HBV infected patients, compared to naturally immune subjects (NIS). Patients show: (1) diminished GM1 clustering, (2) A deficient lipid rafts recruitment of CD3ζ/ZAP-70/Grb2, and (3) these proteins do not merge with GM1 within the lipid rafts. Finally, immunoprecipitation assays proved that ZAP-70 does not associate to CD3ζ. These results show for the first time, defects regarding early key events in T-cell activation, in chronically infected HBV patients, which may contribute not only to understand HBV immune tolerance, but to reveal new potential therapeutic targets to control the infection.
Collapse
|
15
|
Gaardbo JC, Hartling HJ, Ronit A, Thorsteinsson K, Madsen HO, Springborg K, Gjerdrum LMR, Birch C, Laye M, Ullum H, Andersen ÅB, Nielsen SD. Different immunological phenotypes associated with preserved CD4+ T cell counts in HIV-infected controllers and viremic long term non-progressors. PLoS One 2013; 8:e63744. [PMID: 23696852 PMCID: PMC3655944 DOI: 10.1371/journal.pone.0063744] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/04/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND HIV-infected controllers control viral replication and maintain normal CD4+ T cell counts. Long Term Non-Progressors (LTNP) also maintain normal CD4+ T cell counts, but have on-going viral replication. We hypothesized that different immunological mechanisms are responsible for preserved CD4+ T cell counts in controllers and LTNP. METHODS 25 HIV-infected controllers and 14 LTNP were included in this cross-sectional study. For comparison, 25 progressors and 34 healthy controls were included. Production and destruction of T cells were addressed by determination of T cell receptor excision circles (TREC), recent thymic emigrants, naïve cells, immune activation, senescence and apoptosis. Furthermore, telomere length was determined, and the amount of lymphoid tissue in tonsil biopsies was quantified. RESULTS Controllers presented with partly preserved thymic output, preserved expression of the IL-7 receptor and IL-7 receptor density, and lower levels of destruction of cells than progressors resembling HIV-negative healthy controls. In contrast, LTNP appeared much like progressors, and different from controllers in immune activation, senescence, and apoptosis. Interestingly, CD8+ RTE, TREC and telomere length were partly preserved. Finally, both controllers and LTNP displayed decreased amounts of lymphoid tissue compared to healthy controls. CONCLUSIONS Controllers presented with an immunological profile different from LTNP. While controllers resembled healthy controls, LTNP were similar to progressors, suggesting different immunological mechanisms to be responsible for preserved CD4+ T cell counts in LTNP and controllers. However, both controllers and LTNP presented with reduced amounts of lymphoid tissue despite preserved CD4+ T cell counts, indicating HIV to cause damage even in non-progressors.
Collapse
Affiliation(s)
- Julie Christine Gaardbo
- Viro-immunology Research Group, Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Hans J. Hartling
- Viro-immunology Research Group, Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Andreas Ronit
- Viro-immunology Research Group, Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Kristina Thorsteinsson
- Department of Infectious Diseases, Hvidovre Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Hans Ole Madsen
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Karoline Springborg
- Department of Oto-rhinolaryngology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | | | - Carsten Birch
- Viro-immunology Research Group, Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Matthew Laye
- Center of Inflammation and Metabolism, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Henrik Ullum
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Åse Bengaard Andersen
- Department of Infectious Diseases, Odense Hospital, University of Southern Denmark, Odense, Denmark
| | - Susanne Dam Nielsen
- Viro-immunology Research Group, Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
16
|
Miller CN, Hartigan-O'Connor DJ, Lee MS, Laidlaw G, Cornelissen IP, Matloubian M, Coughlin SR, McDonald DM, McCune JM. IL-7 production in murine lymphatic endothelial cells and induction in the setting of peripheral lymphopenia. Int Immunol 2013; 25:471-83. [PMID: 23657000 DOI: 10.1093/intimm/dxt012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IL-7 is a required factor for T-cell homeostasis. Because of low expression levels and poor reagent availability, the cellular sources of IL-7 have proven challenging to characterize. In this study, we describe a reporter mouse in which enhanced GFP is expressed from the endogenous Il7 locus. We show that IL-7 is produced by lymphatic endothelial cells (LECs) distributed throughout the systemic lymphatic vasculature as well as by fibroblastic reticular cells, and that phosphorylation of STAT5 in lymphocytes is higher in lymphatics than in blood. Furthermore, in nodes depleted of lymphocytes, Il7 transcription is increased in stromal but not in myeloid subsets. These data support recent findings that lymphocyte homeostasis is influenced by access to secondary lymphoid organs and point to LECs as an important in vivo source of IL-7, bathing trafficking immune cells under both resting and lymphopenic conditions.
Collapse
Affiliation(s)
- Corey N Miller
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA 94110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Next-generation sequencing of small RNAs from HIV-infected cells identifies phased microrna expression patterns and candidate novel microRNAs differentially expressed upon infection. mBio 2013; 4:e00549-12. [PMID: 23386435 PMCID: PMC3560529 DOI: 10.1128/mbio.00549-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HIV infection of CD4+ T cells induces a range of host transcriptional changes in mRNAs as well as microRNAs that may coordinate changes in mRNAs. To survey these dynamic changes, we applied next-generation sequencing, analyzing the small RNA fraction of HIV-infected cells at 5, 12, and 24 h postinfection (RNA-Seq). These time points afforded a view of the transcriptomic changes occurring both before and during viral replication. In the resulting small RNA-Seq data set, we detected a phased pattern of microRNA expression. Largely distinct sets of microRNAs were found to be suppressed at 5 and 12 h postinfection, and both sets of changes rebounded later in infection. A larger set of microRNA changes was observed at 24 h postinfection. When integrated with mRNA expression data, the small RNA-Seq data indicated a role for microRNAs in transcriptional regulation, T cell activation, and cell cycle during HIV infection. As a unique benefit of next-generation sequencing, we also detected candidate novel host microRNAs differentially expressed during infection, including one whose downregulation at 24 h postinfection may allow full replication of HIV to proceed. Collectively, our data provide a uniquely comprehensive view of the changes in host microRNAs induced by HIV during cellular infection. New sequencing technologies allow unprecedented views into changes occurring in virus-infected cells, including comprehensive and largely unbiased measurements of different types of RNA. In this study, we used next-generation sequencing to profile dynamic changes in cellular microRNAs occurring in HIV-infected cells. The sensitivity afforded by sequencing allowed us to detect changes in microRNA expression early in infection, before the onset of viral replication. A phased pattern of expression was evident among these microRNAs, and many that were initially suppressed were later overexpressed at the height of infection, providing unique signatures of infection. By integrating additional mRNA data with the microRNA data, we identified a role for microRNAs in transcriptional regulation during infection and specifically a network of microRNAs involved in the expression of a known HIV cofactor. Finally, as a distinct benefit of sequencing, we identified candidate nonannotated microRNAs, including one whose downregulation may allow HIV-1 replication to proceed fully.
Collapse
|
18
|
Drannik AG, Nag K, Yao XD, Henrick BM, Ball TB, Plummer FA, Wachihi C, Kimani J, Rosenthal KL. Anti-HIV-1 activity of elafin depends on its nuclear localization and altered innate immune activation in female genital epithelial cells. PLoS One 2012; 7:e52738. [PMID: 23300756 PMCID: PMC3531372 DOI: 10.1371/journal.pone.0052738] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 11/21/2012] [Indexed: 11/18/2022] Open
Abstract
Elafin (E) and its precursor trappin-2 (Tr) are alarm antiproteases with antimicrobial and immunomodulatory activities. Tr and E (Tr/E) have been associated with HIV-1 resistance. We recently showed that Tr/E reduced IL-8 secretion and NF-κB activation in response to a mimic of viral dsRNA and contributed to anti-HIV activity of cervicovaginal lavage fluid (CVL) of HIV-resistant (HIV-R) commercial sex workers (CSWs). Additionally, Tr, and more so E, were found to inhibit attachment/entry and transcytosis of HIV-1 in human endometrial HEC-1A cells, acting through virus or cells. Given their immunomodulatory activity, we hypothesized that Tr/E could exert anti-HIV-1 activity at multiple levels. Here, using tagged and untagged Tr/E proteins, we comparatively evaluated their protease inhibitory, anti-HIV-1, and immunomodulatory activities, and cellular distribution. E appeared to function as an autocrine/paracrine factor in HEC-1A cells, and anti-HIV-1 activity of E depended on its unmodified N-terminus and altered cellular innate activation, but not its antiprotease activity. Specifically, exogenously added N-terminus-unmodified E was able to enter the nucleus and to reduce viral attachment/entry and transcytosis, preferentially affecting R5-HIV-1(ADA), but not X4-HIV-1(IIIB). Further, anti-HIV-1 activity of E was associated with significantly decreased HIV-1-triggered IL-8 release, attenuated NF-κB/p65 nuclear translocation, and significantly modulated mRNA expression of innate sensors TLR3 and RIG-I in HEC-1A cells. Most importantly, we found that elevated Tr/E in CVLs of HIV-R CSWs were associated with lower mRNA levels of TLRs 2, 3, 4 and RIG-I in the genital ECs from this cohort, suggesting a link between Tr/E, HIV-1 resistance and modulated innate viral recognition in the female genital mucosa. Collectively, our data indicate that unmodified N-terminus is critical for intranuclear localization and anti-HIV-1 activity of E. We also propose that E-mediated altered cellular innate activation most likely contributes to the HIV-R phenotype of these subjects.
Collapse
Affiliation(s)
- Anna G. Drannik
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Kakon Nag
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Xiao-Dan Yao
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Bethany M. Henrick
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - T. Blake Ball
- Department of Medical Microbiology, University of Manitoba and Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Francis A. Plummer
- Department of Medical Microbiology, University of Manitoba and Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Charles Wachihi
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Joshua Kimani
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Kenneth L. Rosenthal
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
Thirty Years with HIV Infection-Nonprogression Is Still Puzzling: Lessons to Be Learned from Controllers and Long-Term Nonprogressors. AIDS Res Treat 2012; 2012:161584. [PMID: 22693657 PMCID: PMC3368166 DOI: 10.1155/2012/161584] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/22/2012] [Indexed: 01/08/2023] Open
Abstract
In the early days of the HIV epidemic, it was observed that a minority of the infected patients did not progress to AIDS or death and maintained stable CD4+ cell counts. As the technique for measuring viral load became available it was evident that some of these nonprogressors in addition to preserved CD4+ cell counts had very low or even undetectable viral replication. They were therefore termed controllers, while those with viral replication were termed long-term nonprogressors (LTNPs). Genetics and virology play a role in nonprogression, but does not provide a full explanation. Therefore, host differences in the immunological response have been proposed. Moreover, the immunological response can be divided into an immune homeostasis resistant to HIV and an immune response leading to viral control. Thus, non-progression in LTNP and controllers may be due to different immunological mechanisms. Understanding the lack of disease progression and the different interactions between HIV and the immune system could ideally teach us how to develop a functional cure for HIV infection. Here we review immunological features of controllers and LTNP, highlighting differences and clinical implications.
Collapse
|
20
|
Nyakeriga AM, Ying J, Shire NJ, Fichtenbaum CJ, Chougnet CA. Highly active antiretroviral therapy in patients infected with human immunodeficiency virus increases CD40 ligand expression and IL-12 production in cells ex vivo. Viral Immunol 2011; 24:281-9. [PMID: 21830900 DOI: 10.1089/vim.2010.0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Highly active anti-retroviral therapy (HAART) restores CD4(+) T-cell numbers in the periphery; however, its efficacy in restoring functional immunity is not fully elucidated. Here we evaluated longitudinal changes in the expression of several key markers of T-cell activation, namely CD40 ligand (CD154), OX40 (CD134), or CD69, after anti-CD3/CD28 activation, as well as levels of IL-12 production after Staphylococcus aureus Cowan stimulation in 28 HIV-infected adult patients. Patients were followed up to 12 mo post-HAART initiation. Viral burdens and CD4 cell counts were measured at the same time points. A control group of 15 HIV-uninfected adult subjects was included for comparison. Significant increases in CD40L and OX40 expression, but not of CD69 expression, were observed over time in the overall patient population, and more particularly in patients with baseline CD4 counts lower than or equal to 200 cells/μL, or those with baseline viral loads lower than or equal to 10(5) RNA copies/mL. Similar increases were seen for IL-12 production. Viral loads were inversely associated with CD40L expression or IL-12 production in a mixed linear model analysis, while CD4 counts were directly associated. CD40L expression and IL-12 production were significantly correlated. In conclusion, HAART-mediated control of viral replication led to partial restoration of CD40L upregulation/expression, and to increased IL-12 production, but the magnitude of the response depended on the baseline characteristics of the treated patients.
Collapse
Affiliation(s)
- Alice M Nyakeriga
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
21
|
T-cell signalling in antiretroviral-treated, aviraemic HIV-1-positive individuals is present in a raised state of basal activation that contributes to T-cell hyporesponsiveness. AIDS 2011; 25:1981-6. [PMID: 21811141 DOI: 10.1097/qad.0b013e32834b35a9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Successful antiretroviral therapy (ART) suppresses plasma HIV-1 RNA below detection limits, reducing the chronic insult to the immune systems of infected individuals and supporting a degree of immunological recovery. However, the surface phenotypic profile of T cells in ART-treated patients does not resemble that of healthy, uninfected individuals, but rather shows upregulation of proteins associated with an exhausted immune system. We sought to address whether aviraemic HIV-1 infection, therefore, contributed to long-term alterations in intracellular signalling events within the T cells of infected individuals that contributed to the exhausted phenotype. DESIGN A flow cytometric approach was employed to assess levels of phosphorylation within T-cell signalling proteins in ART-treated HIV-1-positive patients and HIV-negative individuals. METHODS The relative phosphorylation levels of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), p38, zeta-chain-associated protein kinase 70 (ZAP70), linker of activated T cells, SLP76, nuclear factor kappaB were measured within resting and stimulated CD4(+) and CD8(+) T cells from aviraemic HIV-1-positive and healthy individuals by intracellular staining and flow cytometric analysis. RESULTS Basal levels of phospho-ZAP70, phospho-ERK and phospho-JNK were two-fold to three-fold higher in HIV-1-positive individuals compared with healthy controls, with phospho-p38 also showing a tendency to increase in HIV-1-positive individuals. Interestingly, in contrast to healthy controls, peripheral blood mononuclear cells from aviraemic, infected individuals were refractory to stimulation with IL-2 and CD3/CD28 showing no enhancement of phosphorylation. CONCLUSION CD4(+) and CD8(+) T cells from HIV-1-positive individuals are poorly responsive to direct stimulation through the T-cell receptor due to chronically raised basal activation levels of intracellular signalling molecules.
Collapse
|
22
|
HIV-1 infection abrogates CD8+ T cell mitogen-activated protein kinase signaling responses. J Virol 2011; 85:12343-50. [PMID: 21937661 DOI: 10.1128/jvi.05682-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways are dynamic and sensitive regulators of T cell function and differentiation. Altered MAPK signaling has been associated with the inflammatory and autoimmune diseases lupus and arthritis and with some pathogenic viral infections. HIV-1 infection is characterized by chronic immune inflammation, aberrantly heightened CD8(+) T cell activation levels, and altered T cell function. The relationship between MAPK pathway function, HIV-1-induced activation (CD38 and HLA-DR), and exhaustion (Tim-3) markers in circulating CD8(+) T cells remains unknown. Phosphorylation of the MAPK effector proteins ERK and p38 was examined by "phosflow" flow cytometry in 79 recently HIV-1-infected, antiretroviral-treatment-naïve adults and 21 risk-matched HIV-1-negative controls. We identified a subset of CD8(+) T cells refractory to phorbol 12-myristate 13-acetate plus ionomycin-induced ERK1/2 phosphorylation (referred to as p-ERK1/2-refractory cells) that was greatly expanded in HIV-1-infected adults. The CD8(+) p-ERK1/2-refractory cells were highly activated (CD38(+) HLA-DR(+)) but not exhausted (Tim-3 negative), tended to have low CD8 expression, and were enriched in intermediate and late transitional memory states of differentiation (CD45RA(-) CD28(-) CD27(+/-)). Targeting MAPK pathways to restore ERK1/2 signaling may normalize immune inflammation levels and restore CD8(+) T cell function during HIV-1 infection.
Collapse
|
23
|
Rodriguez B, Bazdar DA, Funderburg N, Asaad R, Luciano AA, Yadavalli G, Kalayjian RC, Lederman MM, Sieg SF. Frequencies of FoxP3+ naive T cells are related to both viral load and naive T cell proliferation responses in HIV disease. J Leukoc Biol 2011; 90:621-8. [PMID: 21653240 DOI: 10.1189/jlb.1210661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
HIV infection results in depletion and dysfunction of naïve CD4(+) T cells. The mechanisms underlying these deficiencies are not understood. We investigated the frequencies of CD4(+) naïve subsets in HIV disease as defined by expression of CD25 and/or FoxP3 and the relationship of these frequencies to naïve T cell proliferation function. We observed increased proportions of CD25(+)FoxP3(+) and CD25(+)FoxP3(-) cells and decreased proportions of CD25(-)FoxP3(-) cells within the naïve CD4(+) cell compartment from HIV-infected persons compared with findings in healthy donors. These perturbations were related to higher plasma HIV RNA levels but not with higher immune activation, as measured by the proportions of CD38(+) memory CD4(+) T cells. Naïve T cell proliferation responses to mitogen stimulation were inversely related to the frequencies and absolute numbers of FoxP3(+) naïve T cells. MDA, a marker of oxidative stress, and sCD14, a marker of monocyte activation and a surrogate for microbial translocation, were increased in serum samples from HIV(+) donors; however, neither marker was related to naïve T cell function in HIV(+) donors. These observations suggest that alterations in naïve T cell subset frequencies could contribute to naïve T cell dysfunction in HIV disease, but these alterations are not necessarily the result of chronic immune activation.
Collapse
Affiliation(s)
- Benigno Rodriguez
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Miller RC, Schlaepfer E, Baenziger S, Crameri R, Zeller S, Byland R, Audigé A, Nadal D, Speck RF. HIV interferes with SOCS-1 and -3 expression levels driving immune activation. Eur J Immunol 2011; 41:1058-69. [PMID: 21337543 DOI: 10.1002/eji.201041198] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/14/2010] [Accepted: 01/18/2011] [Indexed: 01/25/2023]
Abstract
HIV infection is characterized by sustained immune activation, which is reflected by activated T cells and, in particular, by increased levels of phosphorylated STAT proteins. Here, we hypothesized that T-cell activation in HIV infection is partially due to the inability of SOCS-1 and SOCS-3 to control the JAK/STAT pathway. We found higher levels of SOCS-1/3 mRNA levels in CD4(+) T cells of HIV-infected patients than in healthy controls. However, SOCS protein levels were lower, explaining the lack of attenuation of the JAK/STAT pathway. Infection of CD4(+) T cells alone did not activate STATs, while ex vivo infection of PBMC did, indicating that non-T cells critical for shaping the immune response, e.g. DC were responsible for the STAT-1 activation. Supernatants from ex vivo-infected PBMC transferred to CD4(+) T cells induced JAK/STAT activation, pointing to a central role of soluble factors. Notably, over-expression of SOCS-1/3 in CD4(+) T cells prevented JAK/STAT activation. Thus, HIV infection interferes with SOCS-1/3 expression driving immune activation. Sustained immune activation disrupts the lymphoid system and favors HIV replication since HIV preferentially infects activated cells. We speculate that regulating SOCS may be a potential way to counteract immune activation in HIV disease.
Collapse
Affiliation(s)
- Regina C Miller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
HIV disease progression correlates with the generation of dysfunctional naive CD8(low) T cells. Blood 2011; 117:2189-99. [PMID: 21200021 DOI: 10.1182/blood-2010-06-288035] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
HIV infection can result in depletion of total CD4(+) T cells and naive CD8(+) T cells, and in the generation of dysfunctional effector CD8(+) T cells. In this study, we show that naive CD8(+) T cells in subjects with progressive HIV disease express low levels of CD8α and CD8β chains. Such naive CD8(low) T cells display broad signaling defects across the T-cell receptor complex, and their appearance correlates with generalized up-regulation of major histocompatibility complex class I (MHC-I) antigens on peripheral blood mononuclear cells (PBMCs). To explore a causal link between increased MHC-I up-regulation and the generation of naive CD8(low) T cells, we used the humanized SCID-hu Thy/Liv mouse model to show that HIV infection of the thymus and interferon α (IFNα) treatment alone result in MHC-I up-regulation and in the generation of dysfunctional CD3(high)CD8(+)CD4(-) single-positive 8 (SP8) thymocytes with low expression of CD8. We suggest that dysfunctional naive CD8(low) T cells are generated as a result of IFNα-mediated up-regulation of MHC-I on stromal cells in the thymus and antigen-presenting cells in the periphery, and that dysfunction in this naive compartment contributes to the immunodeficiency of HIV disease. This study is registered at www.clinicaltrials.gov as NCT00187512.
Collapse
|
26
|
Failure of highly active antiretroviral therapy in reconstituting immune response to Clostridium tetani vaccine in aged AIDS patients. J Acquir Immune Defic Syndr 2010; 54:10-7. [PMID: 20224419 DOI: 10.1097/qai.0b013e3181d6003b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to evaluate the impact of age on tetanus-specific immune response in successfully highly active antiretroviral therapy-treated AIDS patients, using healthy age-matched individuals as controls. Whole Peripheral blood mononuclear cells or CD8(+) cell-depleted peripheral blood mononuclear cells from previously tetanus toxoid (TT)-immunized individuals were activated with TT plus IL-2, and cell proliferation, cytokine production, and in vitro HIV-1 replication were measured. The in vivo magnitude of the humoral immune response was also assessed by antibody measurements. Our results showed that, compared with other groups, both in vitro TT-specific lymphoproliferation and serum antibody concentration were lower in older AIDS patients. Although the IL-1beta and tumour necrosis factor alpha (TNF-alpha) production were higher in cultures from aged HIV-1-infected patients, a dramatic damage on the interferon gamma (IFN-gamma) release was observed, when compared with younger patients. CD8(+) T lymphocytes depletion reduced IL-1beta and TNF-alpha release in the older groups, however, it did not significantly alter their IFN-gamma production. Furthermore, the neutralization of endogenous IL-10 did not change the IFN-gamma deficiency in older AIDS patients. Finally, the lower cellular immune response in this patient group was not related to in vitro HIV-1 replication. The results suggest that successfully highly active antiretroviral therapy-treated aged AIDS patients do not reconstitute the immune response to TT, making them probably more susceptible to tetanus even after vaccination.
Collapse
|
27
|
Radziewicz H, Ibegbu CC, Hon H, Bédard N, Bruneau J, Workowski KA, Knechtle SJ, Kirk AD, Larsen CP, Shoukry NH, Grakoui A. Transient CD86 expression on hepatitis C virus-specific CD8+ T cells in acute infection is linked to sufficient IL-2 signaling. THE JOURNAL OF IMMUNOLOGY 2010; 184:2410-22. [PMID: 20100932 DOI: 10.4049/jimmunol.0902994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Costimulatory signals via B7/CD28 family molecules (signal 2) are critical for effective adaptive CD8(+) T cell immune responses. In addition to costimulatory signals, B7/CD28 family coinhibitory receptor/ligands that modulate immune responses have been identified. In acute hepatitis C virus (HCV) infection, programmed death receptor 1, an inhibitory receptor in the CD28 family, is highly expressed on virus-specific CD8(+) T cells, yet vigorous immune responses often develop. We hypothesized that other costimulatory signals present during the acute phase of HCV infection would be important to counter this negative signaling. In this study, we found that CD86 was highly expressed on HCV-specific CD8(+) T cells early in acute HCV infection and was lost on transition to chronic HCV infection; the expression of CD86 was different from other activation markers, because expression was delayed after in vitro TCR stimulation and required sufficient IL-2 signaling; and HCV-specific CD8(+) T cells in the liver of patients with chronic HCV infection were highly activated (CD69, CD38, and HLA-DR expression), but only a minority expressed CD86 or showed evidence of recent IL-2 signaling (low basal phosphorylated STAT5), despite persistent viremia. Our study identified B7 ligand expression on HCV-specific CD8(+) T cells as a distinct marker of effective T cell stimulation with IL-2 signaling in acute HCV infection. Expression of costimulatory molecules, such as CD86, early in HCV infection may be essential in overcoming inhibitory signals from the high level of programmed death receptor 1 expression also seen at this phase of infection.
Collapse
Affiliation(s)
- Henry Radziewicz
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dual mechanism of impairment of interleukin-7 (IL-7) responses in human immunodeficiency virus infection: decreased IL-7 binding and abnormal activation of the JAK/STAT5 pathway. J Virol 2010; 84:96-108. [PMID: 19864382 DOI: 10.1128/jvi.01475-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Interleukin-7 (IL-7) plays a central role in controlling the homeostasis of both naive and long-term-memory CD4(+) T cells. To better understand how human immunodeficiency virus (HIV) perturbs CD4(+) T-cell homeostasis, we performed a detailed analysis of IL-7R expression, IL-7 binding, and IL-7-dependent early and late signaling events in CD4(+) T-cell subsets from viremic and efficiently treated patients. HIV infection differentially affected the expression of IL-7 receptor (IL-7R) chains, with decreases in IL-7Ralpha/CD127 expression in the memory subset and increases in gammac/CD132 expression in all CD4(+) T cells. This resulted in preserved IL-7 binding in the naive compartment and decreased IL-7 binding in the memory compartment of viremic patients. Accordingly, the percentages of cells signaling in response to IL-7, as measured by pSTAT5 induction, were decreased in memory subsets, including conventional CD4(+) T cells and regulatory T cells. However, the levels of pSTAT5 induction per responding cell, as measured by pSTAT5 fluorescence intensity, were increased within all naive and memory CD4(+) T-cell subsets of viremic patients. The basal level of pSTAT5 was also increased, indicating a constitutive activation of the JAK/STAT5 pathway. IL-7 functional responses, as measured by Bcl-2, CD25, and Foxp3 induction, were impaired in viremic patient CD4(+) T cells, suggesting that chronic activation led to downstream defects in the STAT5 signaling pathway. Thus, HIV infection perturbs IL-7 responses at both receptor binding and signaling steps, which likely compromises the regenerative capacity of the CD4(+) T-cell pool and may contribute to CD4(+) T-cell depletion.
Collapse
|
29
|
Inverse association of repressor growth factor independent-1 with CD8 T cell interleukin (IL)-7 receptor [alpha] expression and limited signal transducers and activators of transcription signaling in response to IL-7 among [gamma]-chain cytokines in HIV patients. AIDS 2009; 23:1341-7. [PMID: 19579270 DOI: 10.1097/qad.0b013e32832b51be] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND CD8 T lymphocytes from chronically infected HIV-positive patients degenerate into a preapoptotic state and exhibit impaired functionality. Particularly in viremic patients, this was associated with an increased proportion of interleukin-7 receptor-alpha low-expressing (IL-7Ralpha(low)) effector-like CD8 T cells. As cytokine signaling through signal transducers and activators of transcription (STAT) is essential for cellular function, we hypothesized that activation of this pathway may be impaired in these cells. OBJECTIVES To evaluate cytokine-induced STAT activation in IL-7Ralpha(low) and IL-7Ralpha(high) CD8 T cells from chronically infected HIV-positive patients and investigate the potential molecular mechanism involved in the reduced IL-7Ralpha expression. METHODS CD8 T cells from HIV-positive patients on and off antiretroviral therapy were assayed respectively for STAT activation, cytokine receptor, and transcription factor expression by flow cytometry and real-time PCR. RESULTS IL-7 stimulation failed to activate STAT5 in a substantial proportion of patient CD8 T cells. This correlated with reduced IL-7Ralpha mRNA and surface protein expression. Interestingly, IL-7Ralpha(low) cells appeared to be fully capable of recruiting the STAT pathway in response to IL-2, IL-4, IL-10, and IL-15. mRNA expression suggested a potential role for growth factor independent (Gfi)-1 as an IL-7Ralpha transcriptional repressor, but not that of other transcriptional regulators studied, including Gfi-1B and GA-binding protein alpha. Programmed death-1 inhibitory receptor, though upregulated in CD8 T cells from HIV-positive patients, appeared unrelated to IL-7Ralpha expression and STAT signaling capacity.
Collapse
|
30
|
Contreras X, Schweneker M, Chen CS, McCune JM, Deeks SG, Martin J, Peterlin BM. Suberoylanilide hydroxamic acid reactivates HIV from latently infected cells. J Biol Chem 2009; 284:6782-9. [PMID: 19136668 DOI: 10.1074/jbc.m807898200] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus (HIV) persists in a latent form in infected individuals treated effectively with highly active antiretroviral therapy (HAART). In part, these latent proviruses account for the rebound in viral replication observed after treatment interruption. A major therapeutic challenge is to purge this reservoir. In this study, we demonstrate that suberoylanilide hydroxamic acid (SAHA) reactivates HIV from latency in chronically infected cell lines and primary cells. Indeed, P-TEFb, a critical transcription cofactor for HIV, is released and then recruited to the viral promoter upon stimulation with SAHA. The phosphatidylinositol 3-kinase/Akt pathway is involved in the initiation of these events. Using flow cytometry-based single cell analysis of protein phosphorylation, we demonstrate that SAHA activates this pathway in several subpopulations of T cells, including memory T cells that are the major viral reservoir in peripheral blood. Importantly, SAHA activates HIV replication in peripheral blood mononuclear cells from individuals treated effectively with HAART. Thus SAHA, which is a Food and Drug Administration-approved drug, might be considered to accelerate the decay of the latent reservoir in HAART-treated infected humans.
Collapse
Affiliation(s)
- Xavier Contreras
- Department of Medicine, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Infection of humans by the human immunodeficiency virus (HIV) causes a progressive, multifactorial impairment of the immune system eventually leading to the acquired immunodeficiency syndrome (AIDS). No cure or vaccine exists yet against HIV infection. More worrisome is the fact that despite having identified HIV as the cause of the AIDS, we still do not understand what pathogenic mechanisms lead to the debacle of the immune system. In this review we consider the extent and the limits of our knowledge of HIV pathogenesis, and how this knowledge may be used to design preventive and therapeutic approaches.
Collapse
Affiliation(s)
- A Boasso
- Department of Immunology, Faculty of Medicine, Imperial College, Chelsea and Westminster Hospital, London, UK
| | | | | |
Collapse
|
32
|
Jones RB, Ndhlovu LC, Barbour JD, Sheth PM, Jha AR, Long BR, Wong JC, Satkunarajah M, Schweneker M, Chapman JM, Gyenes G, Vali B, Hyrcza MD, Yue FY, Kovacs C, Sassi A, Loutfy M, Halpenny R, Persad D, Spotts G, Hecht FM, Chun TW, McCune JM, Kaul R, Rini JM, Nixon DF, Ostrowski MA. Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. ACTA ACUST UNITED AC 2008; 205:2763-79. [PMID: 19001139 PMCID: PMC2585847 DOI: 10.1084/jem.20081398] [Citation(s) in RCA: 618] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Progressive loss of T cell functionality is a hallmark of chronic infection with human immunodeficiency virus 1 (HIV-1). We have identified a novel population of dysfunctional T cells marked by surface expression of the glycoprotein Tim-3. The frequency of this population was increased in HIV-1-infected individuals to a mean of 49.4 +/- SD 12.9% of CD8(+) T cells expressing Tim-3 in HIV-1-infected chronic progressors versus 28.5 +/- 6.8% in HIV-1-uninfected individuals. Levels of Tim-3 expression on T cells from HIV-1-infected inviduals correlated positively with HIV-1 viral load and CD38 expression and inversely with CD4(+) T cell count. In progressive HIV-1 infection, Tim-3 expression was up-regulated on HIV-1-specific CD8(+) T cells. Tim-3-expressing T cells failed to produce cytokine or proliferate in response to antigen and exhibited impaired Stat5, Erk1/2, and p38 signaling. Blocking the Tim-3 signaling pathway restored proliferation and enhanced cytokine production in HIV-1-specific T cells. Thus, Tim-3 represents a novel target for the therapeutic reversal of HIV-1-associated T cell dysfunction.
Collapse
Affiliation(s)
- R Brad Jones
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|