1
|
Souza Silva VR, Mota CM, Maia LP, Ferreira FB, Miranda VDS, Silva NM, Ferro EAV, Mineo JR, Mineo TWP. Macrophage migration inhibitory factor favors Neospora caninum infection in mice. Microb Pathog 2024; 189:106577. [PMID: 38367848 DOI: 10.1016/j.micpath.2024.106577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
Neospora caninum is a protozoan parasite with worldwide incidence, acting as a major cause of reproductive failures in ruminants and neuromuscular symptoms in dogs. Macrophage Migration Inhibitory Factor (MIF) is produced by several cell types and exhibits a central role in immune responses against intracellular pathogens. The present study aimed to comprehend the role of MIF in the relationship between N. caninum and its host. We used in vivo, in vitro and ex vivo experiments in a model of infection based on genetically deficient mice to analyze the infection kinetics and inflammatory markers. MIF production was measured in response to N. caninum during the acute and chronic phases of the infection. While Mif-/- mice survived lethal doses of NcLiv tachyzoites, sublethal infections in these mice showed that parasite burden was controlled in target tissues, alongside with reduced inflammatory infiltrates detected in lung and brain sections. TNF was increased at the initial site of the infection in genetically deficient mice and the MIF-dependent reduction was confirmed in vitro with macrophages and ex vivo with primed spleen cells. In sum, MIF negatively regulated host immunity against N. caninum, favoring disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eloísa A Vieira Ferro
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia. Av. Amazonas, Campus Umuarama., 38405-320, Uberlândia, Minas Gerais, Brazil
| | | | | |
Collapse
|
2
|
Reyaz E, Puri N, Selvapandiyan A. Global Remodeling of Host Proteome in Response to Leishmania Infection. ACS Infect Dis 2024; 10:5-19. [PMID: 38084821 DOI: 10.1021/acsinfecdis.3c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The protozoan parasite Leishmania possesses an intrinsic ability to modulate a multitude of pathways in the host, toward aiding its own proliferation. In response, the host reprograms its cellular, immunological, and metabolic machinery to evade the parasite's lethal impact. Besides inducing various antioxidant signaling pathways to counter the elevated stress response proteins like heme oxygenase-1 (HO-1), Leishmania also attempts to delay host cell apoptosis by promoting anti-apoptotic proteins like Bcl-2. The downstream modulation of apoptotic proteins is regulated by effector pathways, including the PI3K/Akt survival pathway, the mitogen-activated protein kinases (MAPKs) signaling pathway, and STAT phosphorylation. In addition, Leishmania assists in its infection in a time-dependent manner by modulating the level of various proteins of autophagic machinery. Immune effector cells, such as mast cells and neutrophils, entrap and kill the pathogen by secreting various granular proteins. In contrast, the host macrophages exert their leishmanicidal effect by secreting various cytokines, such as IL-2, IL-12, etc. An interplay of various signaling pathways occurs in an organized network that is highly specific to both pathogen and host species. This Review analyzes the modulation of expression of proteins, including the cytokines, providing a realistic approach toward understanding the pathophysiology of disease and predicting some prominent markers for disease intervention and vaccine support strategies.
Collapse
Affiliation(s)
- Enam Reyaz
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | |
Collapse
|
3
|
Fiuza JA, Gannavaram S, Gaze ST, de Ornellas LG, Alves ÉA, Ismail N, Nakhasi HL, Correa-Oliveira R. Deletion of MIF gene from live attenuated LdCen -/- parasites enhances protective CD4 + T cell immunity. Sci Rep 2023; 13:7362. [PMID: 37147351 PMCID: PMC10163264 DOI: 10.1038/s41598-023-34333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
Vaccination with live attenuated Leishmania parasites such as centrin deleted Leishmania donovani (LdCen-/-) against visceral leishmaniasis has been reported extensively. The protection induced by LdCen-/- parasites was mediated by both CD4+ and CD8+ T cells. While the host immune mediators of protection are known, parasite determinants that affect the CD4+ and CD8+ T cell populations remain unknown. Parasite encoded inflammatory cytokine MIF has been shown to modulate the T cell differentiation characteristics by altering the inflammation induced apoptosis during contraction phase in experimental infections with Leishmania or Plasmodium. Neutralization of parasite encoded MIF either by antibodies or gene deletion conferred protection in Plasmodium and Leishmania studies. We investigated if the immunogenicity and protection induced by LdCen-/- parasites is affected by deleting MIF genes from this vaccine strain. Our results showed that LdCen-/-MIF-/- immunized group presented higher percentage of CD4+ and CD8+ central memory T cells, increased CD8+ T cell proliferation after challenge compared to LdCen-/- immunization. LdCen-/-MIF-/- immunized group presented elevated production of IFN-γ+ and TNF-α+ CD4+ T cells concomitant with a reduced parasite load in spleen and liver compared to LdCen-/-group following challenge with L. infantum. Our results demonstrate the role of parasite induced factors involved in protection and long-term immunity of vaccines against VL.
Collapse
Affiliation(s)
- Jacqueline Araújo Fiuza
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil.
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| | - Soraya Torres Gaze
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| | | | - Érica Alessandra Alves
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Hira Lal Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Rodrigo Correa-Oliveira
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| |
Collapse
|
4
|
Li J, Zhang H, Wu J, Li L, Xu B, Song Q. Granzymes expression patterns predict immunotherapy response and identify the heterogeneity of CD8+ T cell subsets. Cancer Biomark 2023; 38:77-102. [PMID: 37545222 DOI: 10.3233/cbm-230036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Recent studies illustrated the effects of granzymes (GZMs) gene alterations on immunotherapy response of cancer patients. Thus, we aimed to systematically analyze the expression and prognostic value of GZMs for immunotherapy in different cancers, and identified heterogeneity of the GZMs expression-based CD8+ T cell subsets. METHODS First, we analyzed GZMs expression and prognostic value at pan-cancer level. Meanwhile, we established a GZMs score by using the single-sample gene set enrichment analysis (ssGSEA) algorithm to calculate the enrichment scores (ES) based on a gene set of five GZMs. The potential value of GZMs score for predicting survival and immunotherapy response was evaluated using the tumor immune dysfunction and exclusion (TIDE) and immunophenoscore (IPS) algorithm, and we validated it in immunotherapy cohorts. CellChat, scMetabolism, and SCENIC R packages were used for intercellular communication networks, quantifying metabolism activity, and regulatory network reconstruction, respectively. RESULTS The GZMs score was significantly associated with IPS, TIDE score. Patients with high GZMs score tended to have higher objective response rates of immunotherapy in melanoma and urothelial carcinoma. GZMs expression-based CD8+ T cell subsets presented heterogeneity in functions, metabolism, intercellular communications, and the tissue-resident memory programs in lung adenocarcinoma (LUAD). The transcription factors RUNX3 and ETS1, which may regulate the expression of GZMs, was found to be positively correlated with the tissue-resident memory T cells-related marker genes. CONCLUSIONS The higher GZMs score may indicate better response and overall survival (OS) outcome for immunotherapy in melanoma and urothelial carcinoma but worse OS in renal cell carcinoma (RCC). The GZMs score is a potential prognostic biomarker of diverse cancers. RUNX3 and ETS1 may be the potential targets to regulate the infiltration of GZMs expression-based CD8+ T cell subsets and affect the tissue-resident memory programs in LUAD, which may affect the prognosis of LUAD patients and the response to immunotherapy.
Collapse
Affiliation(s)
- Jing Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huibo Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technical University of Munich, Freising, Germany
| | - Jie Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Nagai K, Goto Y. Parasitomimetics: Can We Utilize Parasite-Derived Immunomodulatory Molecules for Interventions to Immunological Disorders? Front Immunol 2022; 13:824695. [PMID: 35386686 PMCID: PMC8977410 DOI: 10.3389/fimmu.2022.824695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Because our immune system has ability to expel microorganisms invading our body, parasites need evolution to maintain their symbiosis with the hosts. One such strategy of the parasites is to manipulate host immunity by producing immunomodulatory molecules and the ability of parasites to regulate host immunity has long been a target of research. Parasites can not only manipulate host immune response specific to them, but also influence the host's entire immune system. Such ability of the parasites may sometimes bring benefit to the hosts as many studies have indicated the "hygiene hypothesis" that a decreased opportunity of parasitic infections is associated with an increased incidence of allergy and autoimmune diseases. In other words, elucidating the mechanisms of parasites to regulate host immunity could be applied not only to resolution of parasitic infections but also to treatment of non-parasitic immunological disorders. In this review, we show how much progress has been made in the research on immunomodulation of host immunity by parasites. Here, we define the word 'parasitomimetics' as emulation of parasites' immunomodulatory systems to solve immunological problems in humans and discuss potential applications of parasite-derived molecules to other diseases.
Collapse
Affiliation(s)
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Aghaei M, Khanahmad H, Jalali A, Aghaei S, Narimani M, Hosseini SM, Namdar F, Hejazi SH. Effect of transgenic Leishmania major expressing mLLO-Bax-Smac fusion gene in the apoptosis of the infected macrophages. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1666-1675. [PMID: 35432807 PMCID: PMC8976903 DOI: 10.22038/ijbms.2021.56960.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/31/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Leishmaniasis is a complex infection against which no confirmed vaccine has been reported so far. Transgenic expression of proteins involved in macrophage apoptosis-like BAX through the parasite itself accelerates infected macrophage apoptosis and prevents Leishmania differentiation. So, in the present research, the impact of the transgenic Leishmania major including mLLO-BAX-SMAC proapoptotic proteins was assayed in macrophage apoptosis acceleration. MATERIALS AND METHODS The coding sequence mLLO-Bax-Smac was designed and integrated into the pLexyNeo2 plasmid. The designed sequence was inserted under the 18srRNA locus into the L. major genome using homologous recombination. Then, mLLO-BAX-SMAC expression was studied using the Western blot, and the transgenic parasite pathogenesis was investigated compared with wild-type L. major in vitro and also in vivo. RESULTS Western blot and PCR results approved mLLO-BAX-SMAC expression and proper integration of the mLLO-Bax-Smac fragment under the 18srRNA locus of L. major, respectively. The flow cytometry results revealed faster apoptosis of transgenic Leishmania-infected macrophages compared with wild-type parasite-infected macrophages. Also, the mild lesion with the less parasitic burden of the spleen was observed only in transgenic Leishmania-infected mice. The delayed progression of leishmaniasis was obtained in transgenic strain-injected mice after challenging with wild-type Leishmania. CONCLUSION This study recommended transgenic L. major including mLLO-BAX-SMAC construct as a pilot model for providing a protective vaccine against leishmaniasis.
Collapse
Affiliation(s)
- Maryam Aghaei
- Skin Diseases and Leishmaniasis Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Akram Jalali
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrzad Aghaei
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Manizheh Narimani
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sayed Mohsen Hosseini
- Department of Biostatistics & Epidemiology, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Namdar
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Hossein Hejazi
- Skin Diseases and Leishmaniasis Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran,Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding author: Seyed Hossein Hejazi. Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Baeza Garcia A, Siu E, Du X, Leng L, Franke-Fayard B, Janse CJ, Howland SW, Rénia L, Lolis E, Bucala R. Suppression of Plasmodium MIF-CD74 signaling protects against severe malaria. FASEB J 2021; 35:e21997. [PMID: 34719814 DOI: 10.1096/fj.202101072r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 11/11/2022]
Abstract
The deadliest complication of infection by Plasmodium parasites, cerebral malaria, accounts for the majority of malarial fatalities. Although our understanding of the cellular and molecular mechanisms underlying the pathology remains incomplete, recent studies support the contribution of systemic and neuroinflammation as the cause of cerebral edema and blood-brain barrier (BBB) dysfunction. All Plasmodium species encode an orthologue of the innate cytokine, Macrophage Migration Inhibitory Factor (MIF), which functions in mammalian biology to regulate innate responses. Plasmodium MIF (PMIF) similarly signals through the host MIF receptor CD74, leading to an enhanced inflammatory response. We investigated the PMIF-CD74 interaction in the onset of experimental cerebral malaria (ECM) and liver stage Plasmodium development by using a combination of CD74 deficient (Cd74-/- ) hosts and PMIF deficient parasites. Cd74-/- mice were found to be protected from ECM and the protection was associated with the inability of brain microvessels to present parasite antigen to sequestered and pathogenic Plasmodium-specific CD8+ T cells. Infection of WT hosts with PMIF-deficient sporozoites or infection of Cd74-/- hosts with WT sporozoites impacted the survival of infected hepatocytes and subsequently reduced blood-stage associated inflammation, contributing to protection from ECM. We recapitulated these finding with a novel pharmacologic PMIF-selective antagonist that reduced PMIF/CD74 signaling and fully protected mice from ECM. These findings reveal a conserved mechanism for Plasmodium usurpation of host CD74 signaling and suggest a tractable approach for new pharmacologic intervention.
Collapse
Affiliation(s)
- Alvaro Baeza Garcia
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA
| | - Edwin Siu
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA
| | - Xin Du
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA
| | - Lin Leng
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA
| | | | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Shanshan W Howland
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Elias Lolis
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA.,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Mining nematode protein secretomes to explain lifestyle and host specificity. PLoS Negl Trop Dis 2021; 15:e0009828. [PMID: 34587193 PMCID: PMC8504978 DOI: 10.1371/journal.pntd.0009828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/11/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Parasitic nematodes are highly successful pathogens, inflicting disease on humans, animals and plants. Despite great differences in their life cycles, host preference and transmission modes, these parasites share a common capacity to manipulate their host's immune system. This is at least partly achieved through the release of excretory/secretory proteins, the most well-characterized component of nematode secretomes, that are comprised of functionally diverse molecules. In this work, we analyzed published protein secretomes of parasitic nematodes to identify common patterns as well as species-specific traits. The 20 selected organisms span 4 nematode clades, including plant pathogens, animal parasites, and the free-living species Caenorhabditis elegans. Transthyretin-like proteins were the only component common to all adult secretomes; many other protein classes overlapped across multiple datasets. The glycolytic enzymes aldolase and enolase were present in all parasitic species, but missing from C. elegans. Secretomes from larval stages showed less overlap between species. Although comparison of secretome composition across species and life-cycle stages is challenged by the use of different methods and depths of sequencing among studies, our workflow enabled the identification of conserved protein families and pinpointed elements that may have evolved as to enable parasitism. This strategy, extended to more secretomes, may be exploited to prioritize therapeutic targets in the future.
Collapse
|
9
|
Cai J, Huang L, Tang H, Xu H, Wang L, Zheng M, Yu H, Liu H. Macrophage migration inhibitory factor of Thelazia callipaeda induces M2-like macrophage polarization through TLR4-mediated activation of the PI3K-Akt pathway. FASEB J 2021; 35:e21866. [PMID: 34416031 DOI: 10.1096/fj.202100676r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF), an immunoregulatory cytokine plays an important role in inflammation and the immune response, and has been described as having a potential role in immune evasion by parasites. Thelazia callipaeda, a vector-borne zoonotic eye worm with a broad host range, has been documented as an agent of ocular infection of thelaziosis. The ability of T. callipaeda to persist in an immunologically competent host has led to the suggestion that it has evolved specific measures to counter immune defenses. To date, whether the immune evasion of T. callipaeda is related to MIF and the possible related signaling pathway and molecular mechanism have remained unclear. In the present study, we examined the effect of T. callipaeda MIF (T. cp-MIF) on macrophages. We analyzed the antigenic epitopes of the candidate T. cp-MIF and found that it exhibited an ideal antigenic index. Morphology, Flow cytometry, and cytokine analysis showed that T. cp-MIF induced the dynamic polarization of THP-1 macrophages from the M1-like phenotype to the M2-like phenotype. The chemotaxis assay revealed an inhibitory effect of T. cp-MIF on THP-1 macrophages. Western blotting suggested that, compared to the control, THP-1 macrophages exposed to T. cp-MIF had higher TLR4 protein expression and the phosphatidylinositol 3'-kinase (PI3K) -Akt pathway activation. In conclusion, T. cp-MIF induces M2-like macrophage polarization through TLR4-mediated activation of the PI3K-Akt pathway, which might provide a basis for future research on how it affects the immune system of the host.
Collapse
Affiliation(s)
- Juan Cai
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| | - Lin Huang
- Qiannan Medical College for Nationalities, Duyun, China
| | - Hongri Tang
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| | - Hongling Xu
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| | - Lingjun Wang
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| | - Minghui Zheng
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Hui Liu
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
10
|
Gruner K, Leissing F, Sinitski D, Thieron H, Axstmann C, Baumgarten K, Reinstädler A, Winkler P, Altmann M, Flatley A, Jaouannet M, Zienkiewicz K, Feussner I, Keller H, Coustau C, Falter-Braun P, Feederle R, Bernhagen J, Panstruga R. Chemokine-like MDL proteins modulate flowering time and innate immunity in plants. J Biol Chem 2021; 296:100611. [PMID: 33798552 PMCID: PMC8122116 DOI: 10.1016/j.jbc.2021.100611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Human macrophage migration inhibitory factor (MIF) is an atypical chemokine implicated in intercellular signaling and innate immunity. MIF orthologs (MIF/D-DT-like proteins, MDLs) are present throughout the plant kingdom, but remain experimentally unexplored in these organisms. Here, we provide an in planta characterization and functional analysis of the three-member gene/protein MDL family in Arabidopsis thaliana. Subcellular localization experiments indicated a nucleo-cytoplasmic distribution of MDL1 and MDL2, while MDL3 is localized to peroxisomes. Protein–protein interaction assays revealed the in vivo formation of MDL1, MDL2, and MDL3 homo-oligomers, as well as the formation of MDL1-MDL2 hetero-oligomers. Functionally, Arabidopsismdl mutants exhibited a delayed transition from vegetative to reproductive growth (flowering) under long-day conditions, but not in a short-day environment. In addition, mdl mutants were more resistant to colonization by the bacterial pathogen Pseudomonas syringae pv. maculicola. The latter phenotype was compromised by the additional mutation of SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2), a gene implicated in the defense-induced biosynthesis of the key signaling molecule salicylic acid. However, the enhanced antibacterial immunity was not associated with any constitutive or pathogen-induced alterations in the levels of characteristic phytohormones or defense-associated metabolites. Interestingly, bacterial infection triggered relocalization and accumulation of MDL1 and MDL2 at the peripheral lobes of leaf epidermal cells. Collectively, our data indicate redundant functionality and a complex interplay between the three chemokine-like Arabidopsis MDL proteins in the regulation of both developmental and immune-related processes. These insights expand the comparative cross-kingdom analysis of MIF/MDL signaling in human and plant systems.
Collapse
Affiliation(s)
- Katrin Gruner
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Franz Leissing
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Dzmitry Sinitski
- Ludwig-Maximilians-University (LMU), LMU University Hospital, Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Munich, Germany
| | - Hannah Thieron
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Christian Axstmann
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Kira Baumgarten
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Anja Reinstädler
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Pascal Winkler
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany
| | - Melina Altmann
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Network Biology (INET), Munich-Neuherberg, Germany
| | - Andrew Flatley
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Munich-Neuherberg, Germany
| | - Maëlle Jaouannet
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | - Krzysztof Zienkiewicz
- University of Goettingen, Albrecht von Haller Institute and Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Goettingen, Germany
| | - Ivo Feussner
- University of Goettingen, Albrecht von Haller Institute and Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Goettingen, Germany
| | - Harald Keller
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | - Christine Coustau
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis, France
| | - Pascal Falter-Braun
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Network Biology (INET), Munich-Neuherberg, Germany; Ludwig-Maximilians-Universität (LMU), Faculty of Biology, Chair of Microbe-Host Interactions, Planegg-Martinsried, Germany
| | - Regina Feederle
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Munich-Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jürgen Bernhagen
- Ludwig-Maximilians-University (LMU), LMU University Hospital, Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Ralph Panstruga
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany.
| |
Collapse
|
11
|
Mirzaei A, Maleki M, Masoumi E, Maspi N. A historical review of the role of cytokines involved in leishmaniasis. Cytokine 2020; 145:155297. [PMID: 32972825 DOI: 10.1016/j.cyto.2020.155297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Leishmaniasis is an infectious disease caused by the Leishmania genus, affecting millions of persons in the world. Despite increased studies, no vaccine has been developed against leishmaniasis, and drug resistance is evolving in some Leishmania species (spp). Innate and acquired immune cells and their associated cytokines interplay together to determine the immune responses related outcomes in leishmaniasis. Interferon (IFN)-γ or macrophage activating factor (MAF) is the first effective lymphokine (LK), with a related function to leishmaniasis, discovered in 1979. This review article discussed the history of cytokines involved in Leishmania infection, and it is the first report demonstrating the involvement in the disease by focusing on cutaneous leishmaniasis. Up to now, the role of many cytokines has been determined and the literature review showed that IL-35 is the latest known cytokine involved in leishmaniasis. This review revealed that the cytokines have pleiotropic effects, depending upon the cytokine environment, generated during the infection and the host genetic background or infecting Leishmania spp. Overall, advances in our knowledge of immune cells and their secreted cytokines, contributing to the protection or pathological process of leishmaniasis may help to reach new approaches for immunotherapy.
Collapse
Affiliation(s)
- Asad Mirzaei
- Department of Parasitology, School of Paramedicine, Ilam University of Medical Sciences, Ilam, Iran; Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Maleki
- Department of Physiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Elham Masoumi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran; Research Committee, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Department of Medical Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Nahid Maspi
- Department of Parasitology, School of Paramedicine, Ilam University of Medical Sciences, Ilam, Iran; Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
12
|
Aghaei M, Khanahmad H, Aghaei S, Hosseini SM, Farahmand M, Hejazi SH. Evaluation of transgenic Leishmania infantum expressing mLLO-BAX-SMAC in the apoptosis of the infected macrophages in vitro and in vivo. Parasite Immunol 2020; 42:e12726. [PMID: 32367588 DOI: 10.1111/pim.12726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/31/2020] [Accepted: 04/28/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Leishmaniasis is an important infectious disease that develops because of escaping parasite from the host immune system or preventing host macrophages apoptosis. Recently, the development of transgenic methods and the manipulation of the parasite genome has provided many advantages. So, in this study, the effect of the transgenic Leishmania infantum expressing mLLO-BAX-SMAC proteins was examined in accelerating host cell apoptosis. METHOD The entire coding sequence of designed codon-optimized mLLO-Bax-Smac was cloned in the pLexyNeo2 vector and integrated downstream of the 18srRNA locus of L infantum genome by homologous recombination. Next, the expression of mLLO-BAX-SMAC fusion protein was evaluated by the Western blotting technique and the pathogenesis of transgenic parasite was surveyed in vitro and in vivo. RESULTS The results of PCR and Western blot confirmed proper integration and expression of mLLO-Bax-Smac sequence into the 18srRNA locus of L infantum. Flow cytometry showed accelerating apoptosis of transgenic Leishmania-infected macrophages compared to wild-type parasite. Also, transgenic parasites were less virulent as a fewer parasitic burden was found in the spleen and liver of transgenic-infected mice compared to the control. CONCLUSION The data suggested that the transgenic L infantum expressing BAX-SMAC can be used as an experimental model for developing vaccination against leishmaniasis.
Collapse
Affiliation(s)
- Maryam Aghaei
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahrzad Aghaei
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sayed Mohsen Hosseini
- Department of Biostatistics & Epidemiology, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahin Farahmand
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Hossein Hejazi
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Atypical Membrane-Anchored Cytokine MIF in a Marine Dinoflagellate. Microorganisms 2020; 8:microorganisms8091263. [PMID: 32825358 PMCID: PMC7565538 DOI: 10.3390/microorganisms8091263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Macrophage Migration Inhibitory Factors (MIF) are pivotal cytokines/chemokines for vertebrate immune systems. MIFs are typically soluble single-domain proteins that are conserved across plant, fungal, protist, and metazoan kingdoms, but their functions have not been determined in most phylogenetic groups. Here, we describe an atypical multidomain MIF protein. The marine dinoflagellate Lingulodinium polyedra produces a transmembrane protein with an extra-cytoplasmic MIF domain, which localizes to cell-wall-associated membranes and vesicular bodies. This protein is also present in the membranes of extracellular vesicles accumulating at the secretory pores of the cells. Upon exposure to biotic stress, L. polyedra exhibits reduced expression of the MIF gene and reduced abundance of the surface-associated protein. The presence of LpMIF in the membranes of secreted extracellular vesicles evokes the fascinating possibility that LpMIF may participate in intercellular communication and/or interactions between free-living organisms in multispecies planktonic communities.
Collapse
|
14
|
Structural and functional insights into macrophage migration inhibitory factor from Oncomelania hupensis, the intermediate host of Schistosoma japonicum. Biochem J 2020; 477:2133-2151. [PMID: 32484230 DOI: 10.1042/bcj20200068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022]
Abstract
Oncomelania hupensis is the unique intermediate host of Schistosoma japonicum. As an irreplaceable prerequisite in the transmission and prevalence of schistosomiasis japonica, an in-depth study of this obligate host-parasite interaction can provide glimpse into the molecular events in the competition between schistosome infectivity and snail immune resistance. In previous studies, we identified a macrophage migration inhibitory factor (MIF) from O. hupensis (OhMIF), and showed that it was involved in the snail host immune response to the parasite S. japonicum. Here, we determined the crystal structure of OhMIF and revealed that there were distinct structural differences between the mammalian and O. hupensis MIFs. Noticeably, there was a projecting and structured C-terminus in OhMIF, which not only regulated the MIF's thermostability but was also critical in the activation of its tautomerase activity. Comparative studies between OhMIF and human MIF (hMIF) by analyzing the tautomerase activity, oxidoreductase activity, thermostability, interaction with the receptor CD74 and activation of the ERK signaling pathway demonstrated the functional differences between hMIF and OhMIF. Our data shed a species-specific light on structural, functional, and immunological characteristics of OhMIF and enrich the knowledge on the MIF family.
Collapse
|
15
|
Illescas O, Pacheco-Fernández T, Laclette JP, Rodriguez T, Rodriguez-Sosa M. Immune modulation by the macrophage migration inhibitory factor (MIF) family: D-dopachrome tautomerase (DDT) is not (always) a backup system. Cytokine 2020; 133:155121. [PMID: 32417648 DOI: 10.1016/j.cyto.2020.155121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 01/06/2023]
Abstract
Human macrophage migration inhibition factor (MIF) is a protein with cytokine and chemokine properties that regulates a diverse range of physiological functions related to innate immunity and inflammation. Most research has focused on the role of MIF in different inflammatory diseases. D-dopachrome tautomerase (DDT), a different molecule with structural similarities to MIF, which shares receptors and biological functions, has recently been reported, but little is known about its roles and mechanisms. In this review, we sought to understand the similarities and differences between these molecules by summarizing what is known about their different structures, receptors and mechanisms regulating their expression and biological activities with an emphasis on immunological aspects.
Collapse
Affiliation(s)
- Oscar Illescas
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico
| | - Thalia Pacheco-Fernández
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico
| | - Juan P Laclette
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City C.P. 04510, Mexico
| | - Tonathiu Rodriguez
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico
| | - Miriam Rodriguez-Sosa
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico.
| |
Collapse
|
16
|
Role of Host and Parasite MIF Cytokines during Leishmania Infection. Trop Med Infect Dis 2020; 5:tropicalmed5010046. [PMID: 32244916 PMCID: PMC7157535 DOI: 10.3390/tropicalmed5010046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an immunoregulatory cytokine that has been extensively characterized in human disease and in mouse models. Its pro-inflammatory functions in mammals includes the retention of tissue macrophages and a unique ability to counteract the immunosuppressive activity of glucocorticoids. MIF also acts as a survival factor by preventing activation-induced apoptosis and by promoting sustained expression of inflammatory factors such as TNF-α and nitric oxide. The pro-inflammatory activity of MIF has been shown to be protective against Leishmania major infection in mouse models of cutaneous disease, however the precise role of this cytokine in human infections is less clear. Moreover, various species of Leishmania produce their own MIF orthologs, and there is evidence that these may drive an inflammatory environment that is detrimental to the host response. Herein the immune response to Leishmania in mouse models and humans will be reviewed, and the properties and activities of mammalian and Leishmania MIF will be integrated into the current understandings in this field. Furthermore, the prospect of targeting Leishmania MIF for therapeutic purposes will be discussed.
Collapse
|
17
|
Ghosh S, Padalia J, Ngobeni R, Abendroth J, Farr L, Shirley DA, Edwards T, Moonah S. Targeting Parasite-Produced Macrophage Migration Inhibitory Factor as an Antivirulence Strategy With Antibiotic-Antibody Combination to Reduce Tissue Damage. J Infect Dis 2020; 221:1185-1193. [PMID: 31677380 PMCID: PMC7325720 DOI: 10.1093/infdis/jiz579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
Targeting virulence factors represents a promising alternative approach to antimicrobial therapy, through the inhibition of pathogenic pathways that result in host tissue damage. Yet, virulence inhibition remains an understudied area in parasitology. Several medically important protozoan parasites such as Plasmodium, Entamoeba, Toxoplasma, and Leishmania secrete an inflammatory macrophage migration inhibitory factor (MIF) cytokine homolog, a virulence factor linked to severe disease. The aim of this study was to investigate the effectiveness of targeting parasite-produced MIF as combination therapy with standard antibiotics to reduce disease severity. Here, we used Entamoeba histolytica as the model MIF-secreting protozoan, and a mouse model that mirrors severe human infection. We found that intestinal inflammation and tissue damage were significantly reduced in mice treated with metronidazole when combined with anti-E. histolytica MIF antibodies, compared to metronidazole alone. Thus, this preclinical study provides proof-of-concept that combining antiparasite MIF-blocking antibodies with current standard-of-care antibiotics might improve outcomes in severe protozoan infections.
Collapse
Affiliation(s)
- Swagata Ghosh
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Jay Padalia
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Renay Ngobeni
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, USA
| | - Laura Farr
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Debbie-Ann Shirley
- Department of Pediatrics, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Thomas Edwards
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, USA
| | - Shannon Moonah
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
- Correspondence: Shannon Moonah, MD, ScM, Division of Infectious Diseases, Department of Medicine, University of Virginia Health System, 345 Crispell Dr, Charlottesville, VA 22908 ()
| |
Collapse
|
18
|
Sinitski D, Gruner K, Brandhofer M, Kontos C, Winkler P, Reinstädler A, Bourilhon P, Xiao Z, Cool R, Kapurniotu A, Dekker FJ, Panstruga R, Bernhagen J. Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a human cytokine by its plant orthologs. J Biol Chem 2020; 295:850-867. [PMID: 31811089 PMCID: PMC6970916 DOI: 10.1074/jbc.ra119.009716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/17/2019] [Indexed: 01/07/2023] Open
Abstract
Human macrophage migration-inhibitory factor (MIF) is an evolutionarily-conserved protein that has both extracellular immune-modulating and intracellular cell-regulatory functions. MIF plays a role in various diseases, including inflammatory diseases, atherosclerosis, autoimmunity, and cancer. It serves as an inflammatory cytokine and chemokine, but also exhibits enzymatic activity. Secreted MIF binds to cell-surface immune receptors such as CD74 and CXCR4. Plants possess MIF orthologs but lack the associated receptors, suggesting functional diversification across kingdoms. Here, we characterized three MIF orthologs (termed MIF/d-dopachrome tautomerase-like proteins or MDLs) of the model plant Arabidopsis thaliana Recombinant Arabidopsis MDLs (AtMDLs) share similar secondary structure characteristics with human MIF, yet only have minimal residual tautomerase activity using either p-hydroxyphenylpyruvate or dopachrome methyl ester as substrate. Site-specific mutagenesis suggests that this is due to a distinct amino acid difference at the catalytic cavity-defining residue Asn-98. Surprisingly, AtMDLs bind to the human MIF receptors CD74 and CXCR4. Moreover, they activate CXCR4-dependent signaling in a receptor-specific yeast reporter system and in CXCR4-expressing human HEK293 transfectants. Notably, plant MDLs exert dose-dependent chemotactic activity toward human monocytes and T cells. A small molecule MIF inhibitor and an allosteric CXCR4 inhibitor counteract this function, revealing its specificity. Our results indicate cross-kingdom conservation of the receptor signaling and leukocyte recruitment capacities of human MIF by its plant orthologs. This may point toward a previously unrecognized interplay between plant proteins and the human innate immune system.
Collapse
Affiliation(s)
- Dzmitry Sinitski
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Katrin Gruner
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Markus Brandhofer
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Christos Kontos
- Division of Peptide Biochemistry, Technische Universität München (TUM), 85354 Freising, Germany
| | - Pascal Winkler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Anja Reinstädler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Priscila Bourilhon
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Zhangping Xiao
- Division of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Robbert Cool
- Division of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München (TUM), 85354 Freising, Germany
| | - Frank J. Dekker
- Division of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany, To whom correspondence may be addressed:
Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany. Tel.:
49-241-80-26655; Fax:
49-241-80-22637; E-mail:
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany,Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany, To whom correspondence may be addressed:
Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU) Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany. Tel.:
49-89-4400–46151; Fax:
49-89-4400–46010; E-mail:
| |
Collapse
|
19
|
Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a human cytokine by its plant orthologs. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49940-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
20
|
Aghaei M, KhanAhmad H, Aghaei S, Ali Nilforoushzadeh M, Mohaghegh MA, Hejazi SH. The role of Bax in the apoptosis of Leishmania-infected macrophages. Microb Pathog 2019; 139:103892. [PMID: 31778755 DOI: 10.1016/j.micpath.2019.103892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 10/30/2019] [Accepted: 11/23/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Leishmania is a protozoan parasite that nests in macrophages and is responsible for the Leishmaniasis disease. In spite of different defense pathways, last strategy of macrophage for killing parasite is apoptosis process. By permeableizing the mitochondrial outer membrane (MOM). As breaching MOM releases apoptogenic factors like cytochrome-c which activate caspases that result in the destruction of the cell. In this review, we summarized the appropriate manuscripts regarding the bax includes, its different types and the effect of bax on the apoptosis of Leishmania and parasite-infected macrophages. METHODS Information about the role of BAX in the apoptosis of parasite-infected macrophage of recent articles were surveyed by searching computerized bibliographic database PubMed and Google Scholar entering the keywords BAX and leishmaniasis. RESULTS The common studies revealed Leishmania use different survival strategies for inhibiting macrophage apoptosis. As Leishmania by preventing homooligomerization or upregulating the anti-apoptotic molecule Bcl-2 can prohibits proteins of host-cell apoptosis such as Bax that is required for mitochondrial permeabilisation during apoptosis. CONCLUSION With regard to the supportive role of bax in apoptosis and the preventive role of Leishmania in its function, it seems that expression of bax gene in parasite by technologies like transgenic or down regulating of anti-apoptotic molecule Bcl-2 by miRNA could be prompted the apoptosis process of infected-macrophages and inhibited extensive spread of Leishmania and the resulting lesions.
Collapse
Affiliation(s)
- Maryam Aghaei
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein KhanAhmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahrzad Aghaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Mohammad-Ali Mohaghegh
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Seyed Hossein Hejazi
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Skin Disease and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
21
|
Ghosh S, Jiang N, Farr L, Ngobeni R, Moonah S. Parasite-Produced MIF Cytokine: Role in Immune Evasion, Invasion, and Pathogenesis. Front Immunol 2019; 10:1995. [PMID: 31497025 PMCID: PMC6712082 DOI: 10.3389/fimmu.2019.01995] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/07/2019] [Indexed: 12/28/2022] Open
Abstract
Protozoan parasites represent a major threat to health and contribute significantly to morbidity and mortality worldwide, especially in developing countries. This is further compounded by lack of effective vaccines, drug resistance and toxicity associated with current therapies. Multiple protozoans, including Plasmodium, Entamoeba, Toxoplasma, and Leishmania produce homologs of the cytokine MIF. These parasite MIF homologs are capable of altering the host immune response during infection, and play a role in immune evasion, invasion and pathogenesis. This minireview outlines well-established and emerging literature on the role of parasite MIF homologs in disease, and their potential as targets for therapeutic and preventive interventions.
Collapse
Affiliation(s)
- Swagata Ghosh
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Nona Jiang
- Department of Medicine, Yale University, New Haven, CT, United States
| | - Laura Farr
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Renay Ngobeni
- Department of Environmental, Water, and Earth Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Shannon Moonah
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
22
|
Christensen SM, Belew AT, El-Sayed NM, Tafuri WL, Silveira FT, Mosser DM. Host and parasite responses in human diffuse cutaneous leishmaniasis caused by L. amazonensis. PLoS Negl Trop Dis 2019; 13:e0007152. [PMID: 30845223 PMCID: PMC6405045 DOI: 10.1371/journal.pntd.0007152] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/11/2019] [Indexed: 02/01/2023] Open
Abstract
Diffuse cutaneous leishmaniasis (DCL) is a rare form of leishmaniasis where parasites grow uncontrolled in diffuse lesions across the skin. Meta-transcriptomic analysis of biopsies from DCL patients infected with Leishmania amazonensis demonstrated an infiltration of atypical B cells producing a surprising preponderance of the IgG4 isotype. DCL lesions contained minimal CD8+ T cell transcripts and no evidence of persistent TH2 responses. Whereas localized disease exhibited activated (so-called M1) macrophage presence, transcripts in DCL suggested a regulatory macrophage (R-Mϕ) phenotype with higher levels of ABCB5, DCSTAMP, SPP1, SLAMF9, PPARG, MMPs, and TM4SF19. The high levels of parasite transcripts in DCL and the remarkable uniformity among patients afforded a unique opportunity to study parasite gene expression in this disease. Patterns of parasite gene expression in DCL more closely resembled in vitro parasite growth in resting macrophages, in the absence of T cells. In contrast, parasite gene expression in LCL revealed 336 parasite genes that were differently upregulated, relative to DCL and in vitro macrophage growth, and these transcripts may represent transcripts that are produced by the parasite in response to host immune pressure.
Collapse
Affiliation(s)
- Stephen M. Christensen
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD United States of America
| | - Ashton T. Belew
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD United States of America
| | - Najib M. El-Sayed
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD United States of America
| | - Wagner L. Tafuri
- Departamento de Patologia Geral, Universidade Federal de Minas Geras, Belo Horizonte, Brazil
| | - Fernando T. Silveira
- Evandro Chagas Institute, Tropical Medicine Nucleus, Federal University of Pará, Belém, PA Brazil
| | - David M. Mosser
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD United States of America
| |
Collapse
|
23
|
Neutralization of the Plasmodium-encoded MIF ortholog confers protective immunity against malaria infection. Nat Commun 2018; 9:2714. [PMID: 30006528 PMCID: PMC6045615 DOI: 10.1038/s41467-018-05041-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 06/13/2018] [Indexed: 12/11/2022] Open
Abstract
Plasmodium species produce an ortholog of the cytokine macrophage migration inhibitory factor, PMIF, which modulates the host inflammatory response to malaria. Using a novel RNA replicon-based vaccine, we show the impact of PMIF immunoneutralization on the host response and observed improved control of liver and blood-stage Plasmodium infection, and complete protection from re-infection. Vaccination against PMIF delayed blood-stage patency after sporozoite infection, reduced the expression of the Th1-associated inflammatory markers TNF-α, IL-12, and IFN-γ during blood-stage infection, augmented Tfh cell and germinal center responses, increased anti-Plasmodium antibody titers, and enhanced the differentiation of antigen-experienced memory CD4 T cells and liver-resident CD8 T cells. Protection from re-infection was recapitulated by the adoptive transfer of CD8 or CD4 T cells from PMIF RNA immunized hosts. Parasite MIF inhibition may be a useful approach to promote immunity to Plasmodium and potentially other parasite genera that produce MIF orthologous proteins. Plasmodium species produce an ortholog of the cytokine macrophage migration inhibitory factor, PMIF, which modulates the host inflammatory response to malaria. Here, the authors show that inhibition of PMIF may have translational benefits for managing malaria infections.
Collapse
|
24
|
Wang D, Yang D, Wang Q, Zhao Y, Li C, Wei Q, Han Y, Zhao J. Two macrophage migration inhibitory factors (MIFs) from the clam Ruditapes philippinarum: Molecular characterization, localization and enzymatic activities. FISH & SHELLFISH IMMUNOLOGY 2018; 78:158-168. [PMID: 29679760 DOI: 10.1016/j.fsi.2018.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/24/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is an evolutionarily ancient cytokine-like factor and plays a critical role in both innate and adaptive immunity. In the present study, two MIFs (designed as RpMIF-1 and RpMIF-2, respectively) were identified and characterized from the clam Ruditapes philippinarum by rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of RpMIF-1 and RpMFI-2 consisted of 531 and 722 nucleotides, encoding a polypeptide of 113 and 114 amino acid residues, respectively. Multiple alignments and phylogenetic analysis revealed that both RpMIF-1 and RpMIF-2 belonged to the MIF family. The conserved catalytic-site Pro2 for tautomerase activity was identified in the deduced amino acid sequences of RpMIFs. Both RpMIF-1 and RpMIF-2 transcripts were constitutively expressed in examined tissues of R. philippinarum with dominant expression in hepatopancreas, gills and hemocytes. Immunolocalization analysis showed that RpMIF-1 and RpMIF-2 proteins were expressed in examined tissues with the exception of adductor muscle and foot. After Vibrio anguillarum and Micrococcus luteus challenge, the mRNA expression of RpMIFs was significantly modulated in hemocytes, gills and hepatopancreas. Recombinant RpMIF-1 and RpMIF-2 proteins possessed significant tautomerase activity and oxidoreductase activity, indicating that these two proteins was perhaps involved in inflammatory responses. In summary, our results suggested that RpMIF-1 and RpMIF-2 played an important role in the innate immunity of R. philippinarum.
Collapse
Affiliation(s)
- Dan Wang
- Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China
| | - Qing Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China.
| | - Ye Zhao
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Chenghua Li
- Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Qianyu Wei
- Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Yijing Han
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China.
| |
Collapse
|
25
|
Trichomonas vaginalis Macrophage Migration Inhibitory Factor Mediates Parasite Survival during Nutrient Stress. mBio 2018; 9:mBio.00910-18. [PMID: 29946046 PMCID: PMC6020296 DOI: 10.1128/mbio.00910-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Trichomonas vaginalis is responsible for the most prevalent non-viral sexually transmitted disease worldwide, and yet the mechanisms used by this parasite to establish and maintain infection are poorly understood. We previously identified a T. vaginalis homologue (TvMIF) of a human cytokine, human macrophage migration inhibitory factor (huMIF). TvMIF mimics huMIF’s role in increasing cell growth and inhibiting apoptosis in human host cells. To interrogate a role of TvMIF in parasite survival during infection, we asked whether overexpression of TvMIF (TvMIF-OE) confers an advantage to the parasite under nutrient stress conditions by comparing the survival of TvMIF-OE parasites to that of empty vector (EV) parasites. We found that under conditions of serum starvation, overexpression of TvMIF resulted in increased parasite survival. Serum-starved parasites secrete 2.5-fold more intrinsic TvMIF than unstarved parasites, stimulating autocrine and paracrine signaling. Similarly, we observed that addition of recombinant TvMIF increased the survival of the parasites in the absence of serum. Recombinant huMIF likewise increased the parasite survival in the absence of serum, indicating that the parasite may use this host survival factor to resist its own death. Moreover, TvMIF-OE parasites were found to undergo significantly less apoptosis and reactive oxygen species (ROS) generation under conditions of serum starvation, consistent with increased survival being the result of blocking ROS-induced apoptosis. These studies demonstrated that a parasitic MIF enhances survival under adverse conditions and defined TvMIF and huMIF as conserved survival factors that exhibit cross talk in host-pathogen interactions. Macrophage migration inhibitory factor (MIF) is a conserved protein found in most eukaryotes which has been well characterized in mammals but poorly studied in other eukaryotes. The limited analyses of MIF proteins found in unicellular eukaryotes have focused exclusively on the effect of parasitic MIF on the mammalian host. This was the first study to assess the function of a parasite MIF in parasite biology. We demonstrate that the Trichomonas vaginalis MIF functions to suppress cell death induced by apoptosis, thereby enhancing parasite survival under adverse conditions. Our research reveals a conserved survival mechanism, shared by a parasite and its host, and indicates a role for a conserved protein in mediating cross talk in host-pathogen interactions.
Collapse
|
26
|
Sparkes A, De Baetselier P, Roelants K, De Trez C, Magez S, Van Ginderachter JA, Raes G, Bucala R, Stijlemans B. Reprint of: The non-mammalian MIF superfamily. Immunobiology 2017; 222:858-867. [PMID: 28552269 DOI: 10.1016/j.imbio.2017.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 01/31/2023]
Abstract
Macrophage migration inhibitory factor (MIF) was first described as a cytokine 50 years ago, and emerged in mammals as a pleiotropic protein with pro-inflammatory, chemotactic, and growth-promoting activities. In addition, MIF has gained substantial attention as a pivotal upstream mediator of innate and adaptive immune responses and with pathologic roles in several diseases. Of less importance in mammals is an intrinsic but non-physiologic enzymatic activity that points to MIF's evolution from an ancient defense molecule. Therefore, it is not surprising that mif-like genes also have been found across a range of different organisms including bacteria, plants, protozoa, helminths, molluscs, arthropods, fish, amphibians and birds. While Genebank analysis identifying mif-like genes across species is extensive, contained herein is an overview of the non-mammalian MIF-like proteins that have been most well studied experimentally. For many of these organisms, MIF contributes to an innate defense system or plays a role in development. For parasitic organisms however, MIF appears to function as a virulence factor aiding in the establishment or persistence of infection by modulating the host immune response. Consequently, a combined targeting of both parasitic and host MIF could lead to more effective treatment strategies for parasitic diseases of socioeconomic importance.
Collapse
Affiliation(s)
- Amanda Sparkes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB Structural Biology Research Center, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB Structural Biology Research Center, Brussels, Belgium; Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Benoît Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
27
|
Machicado C, Marcos LA. A computational assessment of the predicted structures of Human Macrophage Migration Inhibitory Factor 1 orthologs in parasites and its affinity to human CD74 receptor. J Mol Recognit 2017; 30. [PMID: 28513076 DOI: 10.1002/jmr.2640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/09/2017] [Accepted: 04/21/2017] [Indexed: 11/10/2022]
Abstract
The human macrophage migration inhibitory factor 1 (Hu-MIF-1) is a protein involved in the inflammatory and immunology response to parasite infection. In the present study, the existence of Hu-MIF-1 from parasites have been explored by mining WormBase. A total of 35 helminths were found to have Hu-MIF-1 homologs, including some parasites of importance for public health. Physicochemical, structural, and biological properties of Hu-MIF-1 were compared with its orthologs in parasites showing that most of these are secretory proteins, with positive net charge and presence of the Cys-Xaa-Xaa-Cys motif that is critical for its oxidoreductase activity. The inhibitor-binding site present in Hu-MIF-1 is well conserved among parasite MIFs suggesting that Hu-MIF inhibitors may target orthologs in pathogens. The binding of Hu-MIF-1 to its cognate receptor CD74 was predicted by computer-assisted docking, and it resulted to be very similar to the predicted complexes formed by parasite MIFs and human CD74. More than 1 plausible conformation of MIFs in the extracellular loops of CD74 may be possible as demonstrated by the different predicted conformations of MIF orthologs in complex with CD74. Parasite MIFs in complex with CD74 resulted with some charged residues oriented to CD74, which was not observed in the Hu-MIF-1/CD74 complex. Our findings predict the binding mode of Hu-MIF-1 and orthologs with CD74, which can assist in the design of novel MIF inhibitors. Whether the parasite MIFs function specifically subvert host immune responses to suit the parasite is an open question that needs to be further investigated. Future research should lead to a better understanding of parasite MIF action in the parasite biology.
Collapse
Affiliation(s)
- Claudia Machicado
- Research and Development Laboratories, Faculty of Science and Philosophy, Cayetano Heredia Peruvian University, Lima, Peru.,Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Luis A Marcos
- Department of Medicine (Infectious Diseases), Stony Brook University, Stony Brook, NY, USA.,Department of Microbiology and Molecular Genetics, Stony Brook University, Stony Brook, NY, USA.,Global Health Institute, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
28
|
Sparkes A, De Baetselier P, Roelants K, De Trez C, Magez S, Van Ginderachter JA, Raes G, Bucala R, Stijlemans B. The non-mammalian MIF superfamily. Immunobiology 2017; 222:473-482. [PMID: 27780588 PMCID: PMC5293613 DOI: 10.1016/j.imbio.2016.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 01/09/2023]
Abstract
Macrophage migration inhibitory factor (MIF) was first described as a cytokine 50 years ago, and emerged in mammals as a pleiotropic protein with pro-inflammatory, chemotactic, and growth-promoting activities. In addition, MIF has gained substantial attention as a pivotal upstream mediator of innate and adaptive immune responses and with pathologic roles in several diseases. Of less importance in mammals is an intrinsic but non-physiologic enzymatic activity that points to MIF's evolution from an ancient defense molecule. Therefore, it is not surprising that mif-like genes also have been found across a range of different organisms including bacteria, plants, protozoa, helminths, molluscs, arthropods, fish, amphibians and birds. While Genebank analysis identifying mif-like genes across species is extensive, contained herein is an overview of the non-mammalian MIF-like proteins that have been most well studied experimentally. For many of these organisms, MIF contributes to an innate defense system or plays a role in development. For parasitic organisms however, MIF appears to function as a virulence factor aiding in the establishment or persistence of infection by modulating the host immune response. Consequently, a combined targeting of both parasitic and host MIF could lead to more effective treatment strategies for parasitic diseases of socioeconomic importance.
Collapse
Affiliation(s)
- Amanda Sparkes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB Structural Biology Research Center, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB Structural Biology Research Center, Brussels, Belgium; Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Benoît Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium.
| |
Collapse
|
29
|
Bloom J, Sun S, Al-Abed Y. MIF, a controversial cytokine: a review of structural features, challenges, and opportunities for drug development. Expert Opin Ther Targets 2016; 20:1463-1475. [PMID: 27762152 DOI: 10.1080/14728222.2016.1251582] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Macrophage migration inhibitory factor (MIF) has emerged as a promising drug target in diseases including sepsis, rheumatoid arthritis, and cancer. MIF has multiple properties that favor development of specific, targeted therapies: it is expressed broadly among human cells, has noted roles in diverse inflammatory and oncological processes, and has intrinsic enzymatic activity amenable to high-throughput screening. Despite these advantages, anti-MIF therapy remains well behind other cytokine-targeted therapeutics, with no small molecules in the pipeline for clinical development and anti-MIF antibodies only recently beginning clinical trials. Areas covered: In this review we summarize current literature regarding MIF structure and function-including challenges and controversies that have arisen in studies of anti-MIF therapeutics-and propose a strategy for development of clinically relevant anti-MIF drugs. Expert opinion: We believe that the field of anti-MIF therapeutics would benefit from capitalizing on the protein's multiple assets while acknowledging their flaws. The tautomerase enzymatic site of MIF may not be active biologically, but can nonetheless offer a high-throughput method to highlight molecules of interest that can affect its other, frequently intertwined bioactivities. Future work should also focus on developing more robust assays for MIF bioactivity that can be used for second-pass screening and specificity studies.
Collapse
Affiliation(s)
- Joshua Bloom
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| | - Shan Sun
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| | - Yousef Al-Abed
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| |
Collapse
|
30
|
Zou L, Liu B. The polymorphisms of a MIF gene and their association with Vibrio resistance in the clam Meretrix meretrix. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:116-126. [PMID: 27103597 DOI: 10.1016/j.dci.2016.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is an important proinflammatory cytokine that mediates both innate and adaptive immune responses. In this study, a homolog of MIF was identified in the clam Meretrix meretrix. Ten SNPs in the DNA partial sequence of MmMIF were found to be significantly associated with Vibrio resistance (P < 0.05). Distinct expression patterns of MmMIF among different haplotypes were observed after Vibrio challenge. The results showed that haplotypes did not affect MmMIF expression in the negative control group, while the expression of MmMIF in clams with Hap1 and Hap1/Hap2 was significantly lower than that with Hap2 at 24 h in the PBS-injected group but significantly higher than that with Hap2 in the Vibrio-injected group. The results also indicate that Hap1 and Hap1/Hap2 can specifically respond to mechanical stimulation while Hap2 can specifically respond to Vibrio infection. The effect of a missense mutation was detected by site-directed mutagenesis using fusion expression of the protein, which showed that the SNP g.737 (I > V) has no effect on redox activity and tautomerase activity. These studies identified a potential marker that is enriched in Vibrio-resistant clams that can be used for the genetic breeding of Meretrix meretrix.
Collapse
Affiliation(s)
- Linhu Zou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
31
|
Rajasekaran D, Gröning S, Schmitz C, Zierow S, Drucker N, Bakou M, Kohl K, Mertens A, Lue H, Weber C, Xiao A, Luker G, Kapurniotu A, Lolis E, Bernhagen J. Macrophage Migration Inhibitory Factor-CXCR4 Receptor Interactions: EVIDENCE FOR PARTIAL ALLOSTERIC AGONISM IN COMPARISON WITH CXCL12 CHEMOKINE. J Biol Chem 2016; 291:15881-95. [PMID: 27226569 PMCID: PMC4957068 DOI: 10.1074/jbc.m116.717751] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/19/2016] [Indexed: 12/28/2022] Open
Abstract
An emerging number of non-chemokine mediators are found to bind to classical chemokine receptors and to elicit critical biological responses. Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that exhibits chemokine-like activities through non-cognate interactions with the chemokine receptors CXCR2 and CXCR4, in addition to activating the type II receptor CD74. Activation of the MIF-CXCR2 and -CXCR4 axes promotes leukocyte recruitment, mediating the exacerbating role of MIF in atherosclerosis and contributing to the wealth of other MIF biological activities. Although the structural basis of the MIF-CXCR2 interaction has been well studied and was found to engage a pseudo-ELR and an N-like loop motif, nothing is known about the regions of CXCR4 and MIF that are involved in binding to each other. Using a genetic strain of Saccharomyces cerevisiae that expresses a functional CXCR4 receptor, site-specific mutagenesis, hybrid CXCR3/CXCR4 receptors, pharmacological reagents, peptide array analysis, chemotaxis, fluorescence spectroscopy, and circular dichroism, we provide novel molecular information about the structural elements that govern the interaction between MIF and CXCR4. The data identify similarities with classical chemokine-receptor interactions but also provide evidence for a partial allosteric agonist compared with CXCL12 that is possible due to the two binding sites of CXCR4.
Collapse
Affiliation(s)
- Deepa Rajasekaran
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sabine Gröning
- the Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Corinna Schmitz
- the Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany, Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Strasse 17, and
| | - Swen Zierow
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Natalie Drucker
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Maria Bakou
- the Division of Peptide Biochemistry, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - Kristian Kohl
- the Division of Peptide Biochemistry, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - André Mertens
- the Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Hongqi Lue
- the Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Christian Weber
- the Institute for Cardiovascular Prevention, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Pettenkofer Strasse 8, 80336 Munich, Germany
| | - Annie Xiao
- the Center for Molecular Imaging, Departments of Radiology, Biomedical Engineering, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109
| | - Gary Luker
- the Center for Molecular Imaging, Departments of Radiology, Biomedical Engineering, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109
| | - Aphrodite Kapurniotu
- the Division of Peptide Biochemistry, Technische Universität München, 85354 Freising-Weihenstephan, Germany,
| | - Elias Lolis
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520,
| | - Jürgen Bernhagen
- the Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany, Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Strasse 17, and the Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| |
Collapse
|
32
|
Abstract
Diseases caused by Leishmania present a worldwide problem, and current therapeutic approaches are unable to achieve a sterile cure. Leishmania is able to persist in host cells by evading or exploiting host immune mechanisms. A thorough understanding of these mechanisms could lead to better strategies for effective management of Leishmania infections. Current research has focused on parasite modification of host cell signaling pathways, entry into phagocytic cells, and modulation of cytokine and chemokine profiles that alter immune cell activation and trafficking to sites of infection. Immuno-therapeutic approaches that target these mechanisms of immune evasion by Leishmania offer promising areas for preclinical and clinical research.
Collapse
|
33
|
Abstract
To survive and complete their life cycle, herbivorous insects face the difficult challenge of coping with the arsenal of plant defences. A new study reports that aphids secrete evolutionarily conserved cytokines in their saliva to suppress host immune responses.
Collapse
Affiliation(s)
- Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland.
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois, and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
Holowka T, Castilho TM, Garcia AB, Sun T, McMahon-Pratt D, Bucala R. Leishmania-encoded orthologs of macrophage migration inhibitory factor regulate host immunity to promote parasite persistence. FASEB J 2016; 30:2249-65. [PMID: 26956417 DOI: 10.1096/fj.201500189r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/12/2016] [Indexed: 11/11/2022]
Abstract
Leishmania major encodes 2 orthologs of the cytokine macrophage migration inhibitory factor (MIF), whose functions in parasite growth or in the host-parasite interaction are unknown. To determine the importance of Leishmania-encoded MIF, both LmMIF genes were removed to produce an mif(-/-) strain of L. major This mutant strain replicated normally in vitro but had a 2-fold increased susceptibility to clearance by macrophages. Mice infected with mif(-/-) L. major, when compared to the wild-type strain, also showed a 3-fold reduction in parasite burden. Microarray and functional analyses revealed a reduced ability of mif(-/-) L. major to activate antigen-presenting cells, resulting in a 2-fold reduction in T-cell priming. In addition, there was a reduction in inflammation and effector CD4 T-cell formation in mif(-/-) L. major-infected mice when compared to mice infected with wild-type L. major Notably, effector CD4 T cells that developed during infection with mif(-/-) L. major demonstrated statistically significant differences in markers of functional exhaustion, including increased expression of IFN-γ and IL-7R, reduced expression of programmed death-1, and decreased apoptosis. These data support a role for LmMIF in promoting parasite persistence by manipulating the host response to increase the exhaustion and depletion of protective CD4 T cells.-Holowka, T., Castilho, T. M., Baeza Garcia, A., Sun, T., McMahon-Pratt, D., Bucala, R. Leishmania-encoded orthologs of macrophage migration inhibitory factor regulate host immunity to promote parasite persistence.
Collapse
Affiliation(s)
- Thomas Holowka
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; and
| | - Tiago M Castilho
- Department of Epidemiology of Microbial Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alvaro Baeza Garcia
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; and
| | - Tiffany Sun
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; and
| | - Diane McMahon-Pratt
- Department of Epidemiology of Microbial Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; and Department of Epidemiology of Microbial Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
35
|
O'Reilly C, Doroudian M, Mawhinney L, Donnelly SC. Targeting MIF in Cancer: Therapeutic Strategies, Current Developments, and Future Opportunities. Med Res Rev 2016; 36:440-60. [PMID: 26777977 DOI: 10.1002/med.21385] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/28/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022]
Abstract
Strong evidence has been presented linking chronic inflammation to the onset and pathogenesis of cancer. The multifunctional pro-inflammatory protein macrophage migration inhibitory factor (MIF) occupies a central role in the inflammatory pathway and has been implicated in the tumorigenesis, angiogenesis, and metastasis of many cancer phenotypes. This review highlights the current state of the art, which presents MIF, and the second member of the MIF structural superfamily, D-DT (MIF2), as significant mediators in the inflammatory-cancer axis. Although the mechanism by which MIF asserts its biological activity has yet to be fully understood, it has become clear in recent years that for certain phenotypes of cancer, MIF represents a valid therapeutic target. Current research efforts have focused on small molecule approaches that target MIF's unique tautomerase active site and neutralization of MIF with anti-MIF antibodies. These approaches have yielded promising results in a number of preclinical murine cancer models and have helped to increase our understanding of MIF biological activity. More recently, MIF's involvement in a number of key protein-protein interactions, such as with CD74 and HSP90, has been highlighted and provides a novel platform for the development of anti-MIF chemotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Ciaran O'Reilly
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Mohammad Doroudian
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Leona Mawhinney
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Seamas C Donnelly
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.,Department of Clinical Medicine, Trinity Centre for Health Sciences, Tallaght Hospital, Tallaght, Dublin 24, Ireland
| |
Collapse
|
36
|
Role of cysteine-58 and cysteine-95 residues in the thiol di-sulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti. Acta Trop 2016; 153:14-20. [PMID: 26432350 DOI: 10.1016/j.actatropica.2015.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/25/2023]
Abstract
Macrophage Migration Inhibitory Factor (MIF) is the first human cytokine reported and was thought to have a central role in the regulation of inflammatory responses. Homologs of this molecule have been reported in bacteria, invertebrates and plants. Apart from cytokine activity, it also has two catalytic activities viz., tautomerase and di-sulfide oxidoreductase, which appear to be involved in immunological functions. The CXXC catalytic site is responsible for di-sulfide oxidoreductase activity of MIF. We have recently reported thiol-disulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti (Wba-MIF-2), although it lacks the CXXC motif. We hypothesized that three conserved cysteine residues might be involved in the formation of di-sulfide oxidoreductase catalytic site. Homology modeling of Wba-MIF-2 showed that among the three cysteine residues, Cys58 and Cys95 residues came in close proximity (3.23Å) in the tertiary structure with pKa value 9, indicating that these residues might play a role in the di-sulfide oxidoreductase catalytic activity. We carried out site directed mutagenesis of these residues (Cys58Ser & Cys95Ser) and expressed mutant proteins in Escherichia coli. The mutant proteins did not show any oxidoreductase activity in the insulin reduction assay, thus indicating that these two cysteine residues are vital for the catalytic activity of Wba-MIF-2.
Collapse
|
37
|
Song X, Zhang R, Xu L, Yan R, Li X. Chimeric DNA vaccines encoding Eimeria acervulina macrophage migration inhibitory factor (E.MIF) induce partial protection against experimental Eimeria infection. Acta Parasitol 2015. [PMID: 26204190 DOI: 10.1515/ap-2015-0071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chimeric DNA vaccines co-expressing Eimeria acervulina macrophage migration inhibitory factor (E.MIF) and chicken IL-2 (IL-2) or interferon-γ (IFN-γ) were constructed and their efficacies against E. acervulina were evaluated. The open reading frame (ORF) of E.MIF was cloned from E. acervulina merozoites and subcloned into the eukaryotic expression vector pVAX1 with chicken cytokine gene IFN-γ or IL-2 to construct the DNA vaccines pVAX-E.MIF-IFN-γ, pVAX-E.MIF-IL-2 and pVAX-E.MIF. The in vivo transfection of the target genes was detected by use of reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Immunizations were carried out by vaccinating chickens twice with a dose rate of 100 μg intramuscularly. Seven days post second immunization, all chickens except the unchallenged control group were challenged orally with 1 × 105 sporulated oocysts of E. acervulina. Seven days later, the duodenum was collected. The results showed that the target genes were expressed effectively in vivo. DNA vaccines and the recombinant E.MIF protein could alleviate body weight loss and duodenal lesions significantly compared to the control groups. Furthermore, pVAX-E.MIF-IL-2 and pVAX-E.MIF-IFN-γ induced anticoccidial indexs (ACIs) of 179.12 and 170, respectively, which were significantly higher than that of pVAX-E.MIF (ACI = 162.31). Our results demonstrated that E.MIF is a potential vaccine candidate against E. acervulina and chicken IFN-γ or IL- 2 may be used as genetic adjuvants to improve the efficacies of DNA vaccines against avian coccidiosis.
Collapse
|
38
|
Frank B, Marcu A, de Oliveira Almeida Petersen AL, Weber H, Stigloher C, Mottram JC, Scholz CJ, Schurigt U. Autophagic digestion of Leishmania major by host macrophages is associated with differential expression of BNIP3, CTSE, and the miRNAs miR-101c, miR-129, and miR-210. Parasit Vectors 2015; 8:404. [PMID: 26226952 PMCID: PMC4521392 DOI: 10.1186/s13071-015-0974-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/30/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Autophagy participates in innate immunity by eliminating intracellular pathogens. Consequently, numerous microorganisms have developed strategies to impair the autophagic machinery in phagocytes. In the current study, interactions between Leishmania major (L. m.) and the autophagic machinery of bone marrow-derived macrophages (BMDM) were analyzed. METHODS BMDM were generated from BALB/c mice, and the cells were infected with L. m. promastigotes. Transmission electron microscopy (TEM) and electron tomography were used to investigate the ultrastructure of BMDM and the intracellular parasites. Affymetrix chip analyses were conducted to identify autophagy-related messenger RNAs (mRNAs) and microRNAs (miRNAs). The protein expression levels of autophagy related 5 (ATG5), BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), cathepsin E (CTSE), mechanistic target of rapamycin (MTOR), microtubule-associated proteins 1A/1B light chain 3B (LC3B), and ubiquitin (UB) were investigated through western blot analyses. BMDM were transfected with specific small interfering RNAs (siRNAs) against autophagy-related genes and with mimics or inhibitors of autophagy-associated miRNAs. The infection rates of BMDM were determined by light microscopy after a parasite-specific staining. RESULTS The experiments demonstrated autophagy induction in BMDM after in vitro infection with L. m.. The results suggested a putative MTOR phosphorylation-dependent counteracting mechanism in the early infection phase and indicated that intracellular amastigotes were cleared by autophagy in BMDM in the late infection phase. Transcriptomic analyses and specific downregulation of protein expression with siRNAs suggested there is an association between the infection-specific over expression of BNIP3, as well as CTSE, and the autophagic activity of BMDM. Transfection with mimics of mmu-miR-101c and mmu-miR-129-5p, as well as with an inhibitor of mmu-miR-210-5p, demonstrated direct effects of the respective miRNAs on parasite clearance in L. m.-infected BMDM. Furthermore, Affymetrix chip analyses revealed a complex autophagy-related RNA network consisting of differentially expressed mRNAs and miRNAs in BMDM, which indicates high glycolytic and inflammatory activity in the host macrophages. CONCLUSIONS Autophagy in L. m.-infected host macrophages is a highly regulated cellular process at both the RNA level and the protein level. Autophagy has the potential to clear parasites from the host. The results obtained from experiments with murine host macrophages could be translated in the future to develop innovative and therapeutic antileishmanial strategies for human patients.
Collapse
Affiliation(s)
- Benjamin Frank
- Institute for Molecular Infection Biology, University of Wuerzburg, Josef-Schneider-Str. 2/D15, 97080, Wuerzburg, Germany.
| | - Ana Marcu
- Institute for Molecular Infection Biology, University of Wuerzburg, Josef-Schneider-Str. 2/D15, 97080, Wuerzburg, Germany.
| | - Antonio Luis de Oliveira Almeida Petersen
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK.
- Laboratório de Patologia e Biointervenção, Fundação Oswaldo Cruz-BA, Salvador, Bahia, Brazil.
| | - Heike Weber
- Interdisciplinary Center for Clinical Research (IZKF), University of Wuerzburg, Wuerzburg, Germany.
| | - Christian Stigloher
- Division of Electron Microscopy, Biocenter of the University of Wuerzburg, Wuerzburg, Germany.
| | - Jeremy C Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK.
| | - Claus Juergen Scholz
- Interdisciplinary Center for Clinical Research (IZKF), University of Wuerzburg, Wuerzburg, Germany.
| | - Uta Schurigt
- Institute for Molecular Infection Biology, University of Wuerzburg, Josef-Schneider-Str. 2/D15, 97080, Wuerzburg, Germany.
| |
Collapse
|
39
|
A Secreted MIF Cytokine Enables Aphid Feeding and Represses Plant Immune Responses. Curr Biol 2015; 25:1898-903. [PMID: 26119751 DOI: 10.1016/j.cub.2015.05.047] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/23/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022]
Abstract
Aphids attack virtually all plant species and cause serious crop damages in agriculture. Despite their dramatic impact on food production, little is known about the molecular processes that allow aphids to exploit their host plants. To date, few aphid salivary proteins have been identified that are essential for aphid feeding, and their nature and function remain largely unknown. Here, we show that a macrophage migration inhibitory factor (MIF) is secreted in aphid saliva. In vertebrates, MIFs are important pro-inflammatory cytokines regulating immune responses. MIF proteins are also secreted by parasites of vertebrates, including nematodes, ticks, and protozoa, and participate in the modulation of host immune responses. The finding that a plant parasite secretes a MIF protein prompted us to question the role of the cytokine in the plant-aphid interaction. We show here that expression of MIF genes is crucial for aphid survival, fecundity, and feeding on a host plant. The ectopic expression of aphid MIFs in leaf tissues inhibits major plant immune responses, such as the expression of defense-related genes, callose deposition, and hypersensitive cell death. Functional complementation analyses in vivo allowed demonstrating that MIF1 is the member of the MIF protein family that allows aphids to exploit their host plants. To our knowledge, this is the first report of a cytokine that is secreted by a parasite to modulate plant immune responses. Our findings suggest a so-far unsuspected conservation of infection strategies among parasites of animal and plant species.
Collapse
|
40
|
Cho MK, Park MK, Kang SA, Park SK, Lyu JH, Kim DH, Park HK, Yu HS. TLR2-dependent amelioration of allergic airway inflammation by parasitic nematode type II MIF in mice. Parasite Immunol 2015; 37:180-91. [PMID: 25559209 DOI: 10.1111/pim.12172] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 12/24/2014] [Indexed: 12/29/2022]
Abstract
In our previous studies, the recombinant type II macrophage migration inhibitory factor homologue (rAs-MIF) secreted from Anisakis simplex suppressed experimental inflammation mouse model through IL-10 production and CD4(+)CD25(+)Foxp3(+) T-cell recruitment. Also, TLR2 gene expression was significantly increased following rAs-MIF treatment. To know the relation between TLR2 and amelioration mechanisms of rAs-MIF, we induced allergic airway inflammation by ovalbumin and alum with or without rAs-MIF under TLR2 blocking systems [anti-TLR2-specific antibody (α-mTLR2 Ab) treatment and using TLR2 knockout mice]. As a result, the amelioration effects of rAs-MIF in allergic airway inflammation model (diminished inflammation and Th2 response in the lung, increased IL-10 secretion, CD4(+)CD25(+)Foxp3(+) T-cell recruitment) were diminished under two of the TLR2 blocking model. The expression of TLR2 on the surface of lung epithelial cell was significantly elevated by rAs-MIF treatment or Pam3CSK (TLR2-specific agonist) treatment, but they might have some competition effect on the elevation of TLR2 expression. In addition, the elevation of IL-10 gene expression by rAs-MIF treatment was significantly inhibited by α-mTLR2 Ab or Pam3CSK pretreatment. In conclusion, anti-inflammatory effects of the rAs-MIF on OVA-induced allergic airway inflammation might be closely related to TLR2.
Collapse
Affiliation(s)
- M K Cho
- Department of Parasitology, School of Medicine, Pusan National University, Yangsan-si, Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Panstruga R, Baumgarten K, Bernhagen J. Phylogeny and evolution of plant macrophage migration inhibitory factor/D-dopachrome tautomerase-like proteins. BMC Evol Biol 2015; 15:64. [PMID: 25888527 PMCID: PMC4407349 DOI: 10.1186/s12862-015-0337-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/19/2015] [Indexed: 02/02/2023] Open
Abstract
Background The human (Homo sapiens) chemokine-like protein macrophage migration inhibitory factor (HsMIF) is a pivotal mediator of inflammatory, infectious and immune diseases including septic shock, colitis, malaria, rheumatoid arthritis, and atherosclerosis, as well as tumorigenesis. HsMIF has been found to exhibit several sequential and three-dimensional sequence motifs that in addition to its receptor binding sites include catalytic sites for oxidoreductase and tautomerase activity, which provide this 12.5 kDa protein with a remarkable functional complexity. A human MIF paralog, D-dopachrome tautomerase (HsDDT), has been identified, but its physiological relevance is incompletely understood. MIF/DDT-like proteins have been described in animals, protists and bacteria. Although based on sequence data banks the presence of MIF/DDT-like proteins has also been recognized in the model plant species Arabidopsis thaliana, details on these plant proteins have not been reported. Results To broaden the understanding of the biological role of these proteins across kingdoms we performed a comprehensive in silico analysis of plant MIF/DDT-like (MDL) genes/proteins. We found that the A. thaliana genome harbors three MDL genes, of which two are chiefly constitutively expressed in aerial plant organs, while the third gene shows stress-inducible transcript accumulation. The product of the latter gene likely localizes to peroxisomes. Structure prediction suggests that all three Arabidopsis proteins resemble the secondary and tertiary structure of human MIF. MIF-like proteins are found in all species across the plant kingdom, with an increasing family complexity towards evolutionarily advanced plant taxa. Plant MDL proteins are predicted to lack oxidoreductase activity, but possibly share tautomerase activity with human MIF/DDT. Conclusions Peroxisome localization seems to be a specific feature of a subset of MIF/DDT orthologs found in dicotyledonous plant species, which together with its stress-inducible gene expression might point to convergent evolution in higher plants and vertebrates towards neofunctionalization of MIF/MDL proteins in stress response pathways including innate immunity. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0337-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Institute of Biology I, Unit of Plant Molecular Cell Biology, Worringerweg 1, 52074, Aachen, Germany.
| | - Kira Baumgarten
- RWTH Aachen University, Institute of Biology I, Unit of Plant Molecular Cell Biology, Worringerweg 1, 52074, Aachen, Germany.
| | - Jürgen Bernhagen
- RWTH Aachen University, Institute of Biochemistry and Molecular Cell Biology, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
42
|
Chauhan N, Sharma R, Hoti S. Identification and biochemical characterization of macrophage migration inhibitory factor-2 (MIF-2) homologue of human lymphatic filarial parasite, Wuchereria bancrofti. Acta Trop 2015; 142:71-8. [PMID: 25446175 DOI: 10.1016/j.actatropica.2014.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/24/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022]
Abstract
Homologues of human macrophage migration inhibitory factor (hMIF) have been reported from vertebrates, invertebrates and prokaryotes, as well as plants. Filarial parasites produce two homologues of hMIF viz., MIF-1 and MIF-2, which play important role in the host immune modulation. Earlier, we have characterized MIF-1 (Wba-mif-1) from Wuchereria bancrofti, the major causal organism of human lymphatic filariasis. Here, we are reporting the molecular and biochemical characterization of MIF-2 from this parasite (Wba-mif-2). The complete Wba-mif-2 gene and its cDNA were amplified, cloned and sequenced. The size of Wba-mif-2 gene and cDNA were found to be 4.275 kb and 363 bp, respectively. The gene annotation revealed the presence of a large intron of 3.912 kb interspersed with two exons of 183 bp and 180 bp. The alignment of derived amino acid sequences of Wba-MIF-2 with Wba-MIF-1 showed 44% homology. The conserved CXXC oxido-reductase catalytic site present in Wba-mif-1 was found absent in Wba-mif-2 coding sequence. The amplified Wba-mif-2 cDNA was cloned into an expression vector pRSET-B and transformed into salt inducible Escherichia coli strain GJ1158. The expressed recombinant Wba-MIF-2 protein showed tautomerase activity against L-dopachrome methyl ester and the specific activity was determined to be 18.57±0.77 μmol/mg/min. Three known inhibitors of hMIF tautomerase activity significantly inhibited the tautomerase activity of recombinant Wba-MIF-2. Although the conserved CXXC oxido-reductase motif is absent in Wba-mif-2, the recombinant protein showed significant oxido-reductase activity in the insulin reduction assay, possibly because of the presence of vicinal cysteine residues.
Collapse
|
43
|
Podinovskaia M, Descoteaux A. Leishmania and the macrophage: a multifaceted interaction. Future Microbiol 2015; 10:111-29. [DOI: 10.2217/fmb.14.103] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
ABSTRACT Leishmania, the causative agent of leishmaniases, is an intracellular parasite of macrophages, transmitted to humans via the bite of its sand fly vector. This protozoan organism has evolved strategies for efficient uptake into macrophages and is able to regulate phagosome maturation in order to make the phagosome more hospitable for parasite growth and to avoid destruction. As a result, macrophage defenses such as oxidative damage, antigen presentation, immune activation and apoptosis are compromised whereas nutrient availability is improved. Many Leishmania survival factors are involved in shaping the phagosome and reprogramming the macrophage to promote infection. This review details the complexity of the host–parasite interactions and summarizes our latest understanding of key events that make Leishmania such a successful intracellular parasite.
Collapse
Affiliation(s)
- Maria Podinovskaia
- INRS – Institut Armand-Frappier & Center for Host–Parasite Interactions, 531 boul. des Prairies, Laval, Quebec, H7V 1B7, Canada
| | - Albert Descoteaux
- INRS – Institut Armand-Frappier & Center for Host–Parasite Interactions, 531 boul. des Prairies, Laval, Quebec, H7V 1B7, Canada
| |
Collapse
|
44
|
Aguiar BGA, Coelho DL, Costa DL, Drumond BP, Coelho LFL, Figueiredo LC, Zacarias DA, Silva JCD, Alonso DP, Ribolla PEM, Ishikawa EAY, Gaído SB, Costa CHN. Genes that encodes NAGT, MIF1 and MIF2 are not virulence factors for kala-azar caused by Leishmania infantum. Rev Soc Bras Med Trop 2014; 47:593-8. [PMID: 25467261 DOI: 10.1590/0037-8682-0183-2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/13/2014] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Kala-azar is a disease resulting from infection by Leishmania donovani and Leishmania infantum. Most patients with the disease exhibit prolonged fever, wasting, anemia and hepatosplenomegaly without complications. However, some patients develop severe disease with hemorrhagic manifestations, bacterial infections, jaundice, and edema dyspnea, among other symptoms, followed by death. Among the parasite molecules that might influence the disease severity are the macrophage migration inhibitory factor-like proteins (MIF1 and MIF2) and N-acetylglucosamine-1-phosphotransferase (NAGT), which act in the first step of protein N-glycosylation. This study aimed to determine whether MIF1, MIF2 and NAGT are virulence factors for severe kala-azar. METHODS To determine the parasite genotype in kala-azar patients from Northeastern Brazil, we sequenced the NAGT genes of L. infantum from 68 patients as well as the MIF1 and MIF2 genes from 76 different subjects with diverse clinical manifestations. After polymerase chain reaction (PCR), the fragments were sequenced, followed by polymorphism identification. RESULTS The nucleotide sequencing of the 144 amplicons revealed the absence of genetic variability of the NAGT, MIF1 and MIF2 genes between the isolates. The conservation of these genes suggests that the clinical variability of kala-azar does not depend upon these genes. Additionally, this conservation suggests that these genes may be critical for parasite survival. CONCLUSIONS NAGT, MIF1 and MIF2 do not alter the severity of kala-azar. NAGT, MIF1 and MIF2 are highly conserved among different isolates of identical species and exhibit potential for use in phylogenetic inferences or molecular diagnosis.
Collapse
Affiliation(s)
- Bruno Guedes Alcoforado Aguiar
- Laboratório de Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - Daniela Lemos Coelho
- Laboratório de Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - Dorcas Lamounier Costa
- Laboratório de Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - Betânia Paiva Drumond
- Laboratório de Virologia, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | | | - Lívio Carvalho Figueiredo
- Departamento de Agricultura, Centro de Ciências Humanas, Sociais e Agrárias, Universidade Federal da Paraíba, Bananeiras, PB, Brasil
| | - Danielle Alves Zacarias
- Laboratório de Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - Jailthon Carlos da Silva
- Laboratório de Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - Diego Peres Alonso
- Departamento de Parasitologia, Instituto de Biociências, Universidade Estadual Paulista, São Paulo, SP, Brazil
| | | | - Edna Aoba Yassui Ishikawa
- Laboratório de Biologia Molecular, Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, PA, Brazil
| | - Samara Belchior Gaído
- Laboratório de Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - Carlos Henrique Nery Costa
- Laboratório de Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina, PI, Brasil
| |
Collapse
|
45
|
Kim S, Cox CM, Jenkins MC, Fetterer RH, Miska KB, Dalloul RA. Both host and parasite MIF molecules bind to chicken macrophages via CD74 surface receptor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:319-326. [PMID: 25086294 DOI: 10.1016/j.dci.2014.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is recognized as a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. Our group has identified both chicken and Eimeria MIFs, and characterized their function in enhancing innate immune responses during inflammation. In this study, we report that chicken CD74 (ChCD74), a type II transmembrane protein, functions as a macrophage surface receptor that binds to MIF molecules. First, to examine the binding of MIF to chicken monocytes/macrophages, fresh isolated chicken peripheral blood mononuclear cells (PBMCs) were stimulated with rChIFN-γ and then incubated with recombinant chicken MIF (rChMIF). Immunofluorescence staining with anti-ChMIF followed by flow cytometry revealed the binding of MIF to stimulated PBMCs. To verify that ChCD74 acts as a surface receptor for MIF molecules, full-length ChCD74p41 was cloned, expressed and its recombinant protein (rChCD74p41) transiently over-expressed with green fluorescent protein in chicken fibroblast DF-1 cells. Fluorescence analysis revealed a higher population of cells double positive for CD74p41 and rChMIF, indicating the binding of rChMIF to DF-1 cells via rChCD74p41. Using a similar approach, it was found that Eimeria MIF (EMIF), which is secreted by Eimeria sp. during infection, bound to chicken macrophages via ChCD74p41 as a surface receptor. Together, this study provides conclusive evidence that both host and parasite MIF molecules bind to chicken macrophages via the surface receptor ChCD74.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Cell Line
- Cells, Cultured
- Chickens/genetics
- Chickens/immunology
- Chickens/parasitology
- Coccidiosis/genetics
- Coccidiosis/immunology
- Coccidiosis/parasitology
- Eimeria/immunology
- Eimeria/metabolism
- Fibroblasts/immunology
- Fibroblasts/metabolism
- Fibroblasts/parasitology
- Gene Expression Regulation
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/immunology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Host-Parasite Interactions
- Immunity, Innate
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/parasitology
- Macrophage Migration-Inhibitory Factors/genetics
- Macrophage Migration-Inhibitory Factors/immunology
- Macrophage Migration-Inhibitory Factors/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/parasitology
- Protein Binding
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Sungwon Kim
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chasity M Cox
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mark C Jenkins
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Ray H Fetterer
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Katarzyna B Miska
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Rami A Dalloul
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
46
|
Cecílio P, Pérez-Cabezas B, Santarém N, Maciel J, Rodrigues V, Cordeiro da Silva A. Deception and manipulation: the arms of leishmania, a successful parasite. Front Immunol 2014; 5:480. [PMID: 25368612 PMCID: PMC4202772 DOI: 10.3389/fimmu.2014.00480] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/19/2014] [Indexed: 12/12/2022] Open
Abstract
Leishmania spp. are intracellular parasitic protozoa responsible for a group of neglected tropical diseases, endemic in 98 countries around the world, called leishmaniasis. These parasites have a complex digenetic life cycle requiring a susceptible vertebrate host and a permissive insect vector, which allow their transmission. The clinical manifestations associated with leishmaniasis depend on complex interactions between the parasite and the host immune system. Consequently, leishmaniasis can be manifested as a self-healing cutaneous affliction or a visceral pathology, being the last one fatal in 85–90% of untreated cases. As a result of a long host–parasite co-evolutionary process, Leishmania spp. developed different immunomodulatory strategies that are essential for the establishment of infection. Only through deception and manipulation of the immune system, Leishmania spp. can complete its life cycle and survive. The understanding of the mechanisms associated with immune evasion and disease progression is essential for the development of novel therapies and vaccine approaches. Here, we revise how the parasite manipulates cell death and immune responses to survive and thrive in the shadow of the immune system.
Collapse
Affiliation(s)
- Pedro Cecílio
- Parasite Disease Group, Institute for Molecular and Cell Biology (IBMC), University of Porto , Porto , Portugal
| | - Begoña Pérez-Cabezas
- Parasite Disease Group, Institute for Molecular and Cell Biology (IBMC), University of Porto , Porto , Portugal
| | - Nuno Santarém
- Parasite Disease Group, Institute for Molecular and Cell Biology (IBMC), University of Porto , Porto , Portugal
| | - Joana Maciel
- Parasite Disease Group, Institute for Molecular and Cell Biology (IBMC), University of Porto , Porto , Portugal
| | - Vasco Rodrigues
- Parasite Disease Group, Institute for Molecular and Cell Biology (IBMC), University of Porto , Porto , Portugal
| | - Anabela Cordeiro da Silva
- Parasite Disease Group, Institute for Molecular and Cell Biology (IBMC), University of Porto , Porto , Portugal ; Department of Biological Sciences, Faculty of Pharmacy, University of Porto , Porto , Portugal
| |
Collapse
|
47
|
Zhang YY, Shen W, Zhang LC, Pan ZY, Long CL, Cui WY, Zhang YF, Wang H. Proteomics reveals potential non-neuronal cholinergic receptor-effectors in endothelial cells. Acta Pharmacol Sin 2014; 35:1137-49. [PMID: 25088000 DOI: 10.1038/aps.2014.38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 03/31/2014] [Indexed: 12/29/2022] Open
Abstract
AIM The non-neuronal acetylcholine system (NNAS) in endothelial cells participates in modulating endothelial function, vascular tone, angiogenesis and inflammation, thus plays a critical role in cardiovascular diseases. In this study, we used a proteomic approach to study potential downstream receptor-effectors of NNAS that were involved in regulating cellular function in endothelial cells. METHODS Human umbilical vein endothelial cells were incubated in the presence of acetylcholine, oxotremorine, pilocarpine or nicotine at the concentration of 10 μmol/L for 12 h, and the expressed proteins in the cells were separated and identified with two-dimensional electrophoresis (2-DE) and LC-MS. The protein spots with the largest changes were identified by LC-MS. Biowork software was used for database search of the peptide mass fingerprints. RESULTS Over 1200 polypeptides were reproducibly detected in 2-DE with a pH range of 3-10. Acetylcholine, oxotremorine, pilocarpine and nicotine treatment caused 16, 9, 8 and 9 protein spots, respectively, expressed differentially. Four protein spots were identified as destrin, FK506 binding protein 1A (FKBP1A), macrophage migration inhibitory factor (MIF) and profilin-1. Western blotting analyses showed that treatment of the cells with cholinergic agonists significantly decreased the expression of destrin, FKBP1A and MIF, and increased the expression of profilin-1. CONCLUSION A set of proteins differentially expressed in endothelial cells in response to cholinergic agonists may have important implications for the downstream biological effects of NNAS.
Collapse
|
48
|
Twu O, Dessí D, Vu A, Mercer F, Stevens GC, de Miguel N, Rappelli P, Cocco AR, Clubb RT, Fiori PL, Johnson PJ. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses. Proc Natl Acad Sci U S A 2014; 111:8179-84. [PMID: 24843155 PMCID: PMC4050605 DOI: 10.1073/pnas.1321884111] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human-infective parasite Trichomonas vaginalis causes the most prevalent nonviral sexually transmitted infection worldwide. Infections in men may result in colonization of the prostate and are correlated with increased risk of aggressive prostate cancer. We have found that T. vaginalis secretes a protein, T. vaginalis macrophage migration inhibitory factor (TvMIF), that is 47% similar to human macrophage migration inhibitory factor (HuMIF), a proinflammatory cytokine. Because HuMIF is reported to be elevated in prostate cancer and inflammation plays an important role in the initiation and progression of cancers, we have explored a role for TvMIF in prostate cancer. Here, we show that TvMIF has tautomerase activity, inhibits macrophage migration, and is proinflammatory. We also demonstrate that TvMIF binds the human CD74 MIF receptor with high affinity, comparable to that of HuMIF, which triggers activation of ERK, Akt, and Bcl-2-associated death promoter phosphorylation at a physiologically relevant concentration (1 ng/mL, 80 pM). TvMIF increases the in vitro growth and invasion through Matrigel of benign and prostate cancer cells. Sera from patients infected with T. vaginalis are reactive to TvMIF, especially in males. The presence of anti-TvMIF antibodies indicates that TvMIF is released by the parasite and elicits host immune responses during infection. Together, these data indicate that chronic T. vaginalis infections may result in TvMIF-driven inflammation and cell proliferation, thus triggering pathways that contribute to the promotion and progression of prostate cancer.
Collapse
Affiliation(s)
| | - Daniele Dessí
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy; and
| | - Anh Vu
- Department of Microbiology, Immunology, and Molecular Genetics, and
| | - Frances Mercer
- Department of Microbiology, Immunology, and Molecular Genetics, and
| | - Grant C Stevens
- Department of Microbiology, Immunology, and Molecular Genetics, and
| | - Natalia de Miguel
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, 1650 Chascomús, Argentina
| | - Paola Rappelli
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy; and
| | - Anna Rita Cocco
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy; and
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Pier Luigi Fiori
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy; and
| | - Patricia J Johnson
- Molecular Biology Institute,Department of Microbiology, Immunology, and Molecular Genetics, and
| |
Collapse
|
49
|
The macrophage migration inhibitory factor homolog of Entamoeba histolytica binds to and immunomodulates host macrophages. Infect Immun 2014; 82:3523-30. [PMID: 24818664 DOI: 10.1128/iai.01812-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The host inflammatory response contributes to the tissue damage that occurs during amebic colitis, with tumor necrosis factor alpha (TNF-α) being a key mediator of the gut inflammation observed. Mammalian macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that plays an important role in the exacerbation of a wide range of inflammatory diseases, including colitis. We identified a MIF gene homolog in the Entamoeba histolytica genome, raising the question of whether E. histolytica MIF (EhMIF) has proinflammatory activity similar to that of mammalian MIF. In this report, we describe the first functional characterization of EhMIF. Antibodies were prepared against recombinantly expressed EhMIF and used to demonstrate that EhMIF is expressed as a 12-kDa protein localized to the cytoplasm of trophozoites. In a manner similar to that of mammalian MIF, EhMIF interacted with the MIF receptor CD74 and bound to macrophages. EhMIF induced interleukin-6 (IL-6) production. In addition, EhMIF enhanced TNF-α secretion by amplifying TNF-α production by lipopolysaccharide (LPS)-stimulated macrophages and by inhibiting the glucocorticoid-mediated suppression of TNF-α secretion. EhMIF was expressed during human infection, as evidenced by the presence of anti-EhMIF antibodies in the sera of children living in an area where E. histolytica infection is endemic. Anti-EhMIF antibodies did not cross-react with human MIF. The ability of EhMIF to modulate host macrophage function may promote an exaggerated proinflammatory immune response and contribute to the tissue damage seen in amebic colitis.
Collapse
|
50
|
Pallial mucus of the oyster Crassostrea virginica regulates the expression of putative virulence genes of its pathogen Perkinsus marinus. Int J Parasitol 2014; 44:305-17. [DOI: 10.1016/j.ijpara.2014.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/10/2014] [Accepted: 01/15/2014] [Indexed: 01/11/2023]
|