1
|
Xu Y, Qing Q, Liu X, Chen S, Chen Z, Niu X, Tan Y, He W, Liu X, Li Y, Chen R, Chen L. Bruton's agammaglobulinemia in an adult male due to a novel mutation: a case report. J Thorac Dis 2016; 8:E1207-E1212. [PMID: 27867589 DOI: 10.21037/jtd.2016.10.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
X-linked agammaglobulinemia (XLA) is caused by mutation in the gene coding for Bruton's tyrosine kinase (BTK), which impairs peripheral B cell maturation and hypogammaglobulinemia. In this report, we present a case of XLA in a 22-year-old adult male. Genetic testing revealed a novel mutation located at the conserved region (c.383T>C). The patient had a history of recurrent respiratory tract infection which eventually progressed to chronic type II respiratory failure. Several pathogenic bacteria were isolated on culture of respiratory secretions obtained on bronchoscopy. The patient improved on treatment with antibiotics.
Collapse
Affiliation(s)
- Yuanda Xu
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Qi Qing
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Xuesong Liu
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Sibei Chen
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Ziyi Chen
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xuefeng Niu
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Yaxia Tan
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Weiqun He
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Xiaoqing Liu
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Yimin Li
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Rongchang Chen
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China
| | - Ling Chen
- State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated to Guangzhou Medical University, Guangzhou 510120, China; ; Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
2
|
Classical and non-classical MHC I molecule manipulation by human cytomegalovirus: so many targets—but how many arrows in the quiver? Cell Mol Immunol 2014; 12:139-53. [PMID: 25418469 PMCID: PMC4654289 DOI: 10.1038/cmi.2014.105] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 02/07/2023] Open
Abstract
Major mechanisms for the recognition of pathogens by immune cells have evolved to employ classical and non-classical major histocompatibility complex class I (MHC I) molecules. Classical MHC I molecules present antigenic peptide ligands on infected cells to CD8+ T cells, whereas a key function for non-classical MHC I molecules is to mediate inhibitory or activating stimuli in natural killer (NK) cells. The structural diversity of MHC I puts immense pressure on persisting viruses, including cytomegaloviruses. The very large coding capacity of the human cytomegalovirus allows it to express a whole arsenal of immunoevasive factors assigned to individual MHC class I targets. This review summarizes achievements from more than two decades of intense research on how human cytomegalovirus manipulates MHC I molecules and escapes elimination by the immune system.
Collapse
|
3
|
Bennett NJ, Ashiru O, Morgan FJE, Pang Y, Okecha G, Eagle RA, Trowsdale J, Sissons JGP, Wills MR. Intracellular sequestration of the NKG2D ligand ULBP3 by human cytomegalovirus. THE JOURNAL OF IMMUNOLOGY 2010; 185:1093-102. [PMID: 20530255 DOI: 10.4049/jimmunol.1000789] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human CMV (HCMV) encodes multiple genes that control NK cell activation and cytotoxicity. Some of these HCMV-encoded gene products modulate NK cell activity as ligands expressed at the cell surface that engage inhibitory NK cell receptors, whereas others prevent the infected cell from upregulating ligands that bind to activating NK cell receptors. A major activating NKR is the homodimeric NKG2D receptor, which has eight distinct natural ligands in humans. It was shown that HCMV is able to prevent the surface expression of five of these ligands (MIC A/B and ULBP1, 2, and 6). In this article, we show that the HCMV gene product UL142 can prevent cell surface expression of ULBP3 during infection. We further show that UL142 interacts with ULBP3 and mediates its intracellular retention in a compartment that colocalizes with markers of the cis-Golgi complex. In doing so, UL142 prevents ULBP3 trafficking to the surface and protects transfected cells from NK-mediated cytotoxicity. This is the first description of a viral gene able to mediate downregulation of ULBP3.
Collapse
Affiliation(s)
- Neil J Bennett
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Gould CM, Diella F, Via A, Puntervoll P, Gemünd C, Chabanis-Davidson S, Michael S, Sayadi A, Bryne JC, Chica C, Seiler M, Davey NE, Haslam N, Weatheritt RJ, Budd A, Hughes T, Pas J, Rychlewski L, Travé G, Aasland R, Helmer-Citterich M, Linding R, Gibson TJ. ELM: the status of the 2010 eukaryotic linear motif resource. Nucleic Acids Res 2009; 38:D167-80. [PMID: 19920119 PMCID: PMC2808914 DOI: 10.1093/nar/gkp1016] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict de novo in protein sequences due to the difficulty of obtaining robust statistical assessments. The ELM resource at http://elm.eu.org/ provides an expanding knowledge base, currently covering 146 known motifs, with annotation that includes >1300 experimentally reported instances. ELM is also an exploratory tool for suggesting new candidates of known linear motifs in proteins of interest. Information about protein domains, protein structure and native disorder, cellular and taxonomic contexts is used to reduce or deprecate false positive matches. Results are graphically displayed in a 'Bar Code' format, which also displays known instances from homologous proteins through a novel 'Instance Mapper' protocol based on PHI-BLAST. ELM server output provides links to the ELM annotation as well as to a number of remote resources. Using the links, researchers can explore the motifs, proteins, complex structures and associated literature to evaluate whether candidate motifs might be worth experimental investigation.
Collapse
Affiliation(s)
- Cathryn M Gould
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
NKG2D ligand MICA is retained in the cis-Golgi apparatus by human cytomegalovirus protein UL142. J Virol 2009; 83:12345-54. [PMID: 19793804 DOI: 10.1128/jvi.01175-09] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) evades T-cell recognition by down-regulating expression of major histocompatibility complex (MHC) class I and II molecules on the surfaces of infected cells. Contrary to the "missing-self" hypothesis, HCMV-infected cells are refractory to lysis by natural killer (NK) cells. Inhibition of NK cell function is mediated by a number of HCMV immune evasion molecules, which operate by delivering inhibitory signals to NK cells and preventing engagement of activating ligands. One such molecule is UL142, which is an MHC class I-related glycoprotein encoded by clinical isolates and low-passage-number strains of HCMV. UL142 is known to down-modulate surface expression of MHC class I-related chain A (MICA), which is a ligand of the activating NK receptor NKG2D. However, the mechanism by which UL142 interferes with MICA is unknown. Here, we show that UL142 localizes predominantly to the endoplasmic reticulum (ER) and cis-Golgi apparatus. The transmembrane domain of UL142 mediates its ER localization, while we propose that the UL142 luminal domain is involved in its cis-Golgi localization. We also confirm that UL142 down-modulates surface expression of full-length MICA alleles while having no effect on the truncated allele MICA*008. However, we demonstrate for the first time that UL142 retains full-length MICA alleles in the cis-Golgi apparatus. In addition, we propose that UL142 interacts with nascent MICA en route to the cell surface but not mature MICA at the cell surface. Our data also demonstrate that the UL142 luminal and transmembrane domains are involved in recognition and intracellular sequestration of full-length MICA alleles.
Collapse
|
6
|
Characterization of a novel Golgi apparatus-localized latency determinant encoded by human cytomegalovirus. J Virol 2009; 83:5615-29. [PMID: 19297488 DOI: 10.1128/jvi.01989-08] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) exists indefinitely in infected individuals by a yet poorly characterized latent infection in hematopoietic cells. We previously demonstrated a requirement for the putative UL138 open reading frame (ORF) in promoting a latent infection in CD34(+) hematopoietic progenitor cells (HPCs) infected in vitro. In our present study, we have identified two coterminal transcripts of 2.7 and 3.6 kb and a 21-kilodalton (kDa) protein (pUL138) that are derived from the UL138 locus with early-late gene kinetics during productive infection. The UL138 transcripts and protein are detected in both fibroblasts and HPCs. A recombinant virus, FIX-UL138(STOP), that synthesizes the UL138 transcripts but not the protein exhibited a partial loss-of-latency phenotype in HPCs, similar to the phenotype observed for the UL138-null recombinant virus. This finding suggests that the UL138 protein is required for latency, but it does not exclude the possibility that the UL138 transcripts or other ORFs also contribute to latency. The mechanisms by which pUL138 contributes to latency remain unknown. While the 86- and 72-kDa immediate-early proteins were not detected in HPCs infected with HCMV in vitro, pUL138 did not function directly to suppress expression from the major immediate-early promoter in reporter assays. Interestingly, pUL138 localizes to the Golgi apparatus in infected cells but is not incorporated into virus particles. The localization of pUL138 to the Golgi apparatus suggests that pUL138 contributes to HCMV latency by a novel mechanism. pUL138 is the first HCMV protein demonstrated to promote an infection with the hallmarks of latency in CD34(+) HPCs.
Collapse
|
7
|
Kim Y, Park B, Cho S, Shin J, Cho K, Jun Y, Ahn K. Human cytomegalovirus UL18 utilizes US6 for evading the NK and T-cell responses. PLoS Pathog 2008; 4:e1000123. [PMID: 18688275 PMCID: PMC2483941 DOI: 10.1371/journal.ppat.1000123] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 07/11/2008] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I molecules at the cell surface. Cells lacking MHC class I molecules are susceptible to NK cell lysis. HCMV expresses UL18, a MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite a high level of sequence and structural homology between UL18 and MHC class I molecules, surface expression of MHC class I, but not UL18, is down regulated by US6. Here, we describe a mechanism of action by which HCMV UL18 avoids attack by the self-derived TAP inhibitor US6. UL18 abrogates US6 inhibition of ATP binding by TAP and, thereby, restores TAP-mediated peptide translocation. In addition, UL18 together with US6 interferes with the physical association between MHC class I molecules and TAP that is required for optimal peptide loading. Thus, regardless of the recovery of TAP function, surface expression of MHC class I molecules remains decreased. UL18 represents a unique immune evasion protein that has evolved to evade both the NK and the T cell immune responses. HCMV establishes a lifelong latent infection and causes serious disease in immunocompromised individuals. Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells are the primary effectors for the immune defense against HCMV. However, HCMV has evolved to evade both the innate and adaptive cellular immunity to viral infection. HCMV US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I, while HCMV UL18 is an MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite significant sequence and structural homology between UL18 and MHC class I molecules, US6 down regulates surface expression of MHC class I, but not UL18. Here, we describe a mechanism by which UL18 circumvents the self-derived TAP inhibitor, US6. UL18 abrogates US6 inhibition of TAP-ATP binding and restores TAP-mediated peptide translocation, thereby making peptides available for the assembly and subsequent surface expression of UL18. Together UL18 and US6 inhibit binding of MHC class I to TAP, thus down regulating surface expression of MHC class I molecules. UL18 represents a unique immune evasion protein resistant to both the NK and T cell immune responses. Our data provide a molecular basis for persistent HCMV infection and will aid in the development of a therapeutic vaccine.
Collapse
Affiliation(s)
- Youngkyun Kim
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Boyoun Park
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Sunglim Cho
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jinwook Shin
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kwangmin Cho
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Youngsoo Jun
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kwangseog Ahn
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
8
|
Occhino M, Ghiotto F, Soro S, Mortarino M, Bosi S, Maffei M, Bruno S, Nardini M, Figini M, Tramontano A, Ciccone E. Dissecting the structural determinants of the interaction between the human cytomegalovirus UL18 protein and the CD85j immune receptor. THE JOURNAL OF IMMUNOLOGY 2008; 180:957-68. [PMID: 18178836 DOI: 10.4049/jimmunol.180.2.957] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
UL18 is a glycoprotein encoded by the human cytomegalovirus genome and is thought to play a pivotal role during human cytomegalovirus infection, although its exact function is still a matter of debate. UL18 shares structural similarity with MHC class I and binds the receptor CD85j on immune cells. Besides UL18, CD85j binds MHC class I molecules. The binding properties of CD85j to MHC class I molecules have been thoroughly studied. Conversely, very little information is available on the CD85j/UL18 complex, namely that UL18 binds CD85j through its alpha3 domain with an affinity that is approximately 1000-fold higher than the MHC class I affinity for CD85j. Deeper knowledge of features of the UL18/CD85j complex would help to disclose the function of UL18 when it binds to CD85j. In this study we first demonstrated that the UL18alpha3 domain is not sufficient per se for binding and that beta2-microglobulin is necessary for UL18-CD85j interaction. We then dissected structural determinants of binding UL18 to CD85j. To this end, we constructed a three-dimensional model of the complex. The model was used to design mutants in selected regions of the putative interaction interface, the effects of which were measured on binding. Six regions in both the alpha2 and alpha3 domains and specific amino acids within them were identified that are potentially involved in the UL18-CD85j interaction. The higher affinity of UL18 to CD85j, compared with MHC class I, seems to be due not to additional interaction regions but to an overall better fit of the two molecules.
Collapse
Affiliation(s)
- Marzia Occhino
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|