1
|
Lanzillotti MB, Brodbelt JS. Nucleo-SAFARI: Automated Identification of Fragment Ions in Top-Down MS/MS Spectra of Nucleic Acids. Anal Chem 2024; 96:16115-16120. [PMID: 39365982 PMCID: PMC11533214 DOI: 10.1021/acs.analchem.4c03201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Recent progress in top-down mass spectrometry analysis of progressively larger nucleic acids has enabled in-depth characterization of intact, modified RNA molecules. Development of methods for desalting and MS/MS fragmentation allows rapid acquisition of high-quality top-down MS/MS spectra of nucleic acids up to 100 nt, which has spurred the need for development of software approaches to identify and validate nucleic acid fragment ions. We have implemented an R-based approach to aid in analysis of MS/MS spectra of nucleic acids based on fragment ions observed directly in the m/z domain. This program, entitled Shiny Application for Fragment Assignment by Relative Isotopes (Nucleo-SAFARI), utilizes the Shiny HTML framework for deployment of a user-friendly application for automated annotation of top-down MS/MS spectra of nucleic acids recorded on Orbitrap mass spectrometer platforms. This approach proceeds through in silico generation of fragment ions and their isotopic distributions, followed by algorithmic assessment of the experimental isotopic distributions. Nucleo-SAFARI is available for download at https://github.com/mblanzillotti/Nucleo-SAFARI.
Collapse
Affiliation(s)
- Michael B Lanzillotti
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712 United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712 United States
| |
Collapse
|
2
|
Hu Z, Li J, Jacob A, Wang P. Harnessing extracellular cold-inducible RNA binding protein by PS-OMe miR130: A promising shield against hemorrhage-induced lung injury. J Trauma Acute Care Surg 2024; 97:581-589. [PMID: 38685193 DOI: 10.1097/ta.0000000000004361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Hemorrhagic shock (HS) poses a life-threatening condition with the lungs being one of the most susceptible organs to its deleterious effects. Extracellular cold-inducible RNA binding protein has emerged as a pivotal mediator of inflammation, and its release has been observed as a case of HS-induced tissue injury. Previous studies unveiled a promising engineered microRNA, designated PS-OMe miR130, which inhibits extracellular cold-inducible RNA binding protein, thereby safeguarding vital organs. In this study, we hypothesized that PS-OMe miR130 serves as a protective shield against HS-induced lung injury by curtailing the overzealous inflammatory immune response. METHODS Hemorrhagic shock was induced in male C57BL6 mice by withdrawing blood via a femoral artery cannula to a mean arterial pressure of 30 mm Hg for 90 minutes. The mice were resuscitated with twice the shed blood volume with Ringer's lactate solution. They were then treated intravenously with either phosphate-buffered saline (vehicle) or 62.5 nmol PS-OMe miR130. At 4 hours later, blood and lungs were harvested. RESULTS Following PS-OMe miR130 treatment in HS mice, a substantial decrease was observed in serum injury markers including aspartate aminotransferase, alanine transaminase, lactate dehydrogenase, and blood urea nitrogen. Serum interleukin (IL)-6 exhibited a similar reduction. In lung tissues, PS-OMe miR130 led to a significant decrease in the messenger RNA expressions of pro-inflammatory cytokines (IL-6, IL-1β, and tumor necrosis factor α), chemokines (keratinocyte-derived chemokine and macrophage inflammatory protein 2), and an endothelial injury marker, E-selectin. PS-OMe miR130 also produced substantial inhibition of lung myeloperoxidase activity and resulted in a marked reduction in lung injury as evidenced by histological evaluation. This was further confirmed by the observation that PS-OMe miR130 significantly reduced the presence of lymphocyte antigen 6 family member G-positive neutrophils and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive apoptotic cells. CONCLUSION PS-OMe miR130 emerges as a potent safeguard against HS-induced lung injury by effectively inhibiting pro-inflammation and injuries, offering a promising therapeutic strategy in such critical clinical condition.
Collapse
Affiliation(s)
- Zhijian Hu
- From the Center for Immunology and Inflammation (Z.H., J.L., A.J., P.W.), Feinstein Institutes for Medical Research; and Departments of Surgery (A.J., P.W.) and Molecular Medicine (A.J., P.W.), Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | | | | | | |
Collapse
|
3
|
Chernikov IV, Bachkova IK, Sen’kova AV, Meschaninova MI, Savin IA, Vlassov VV, Zenkova MA, Chernolovskaya EL. Cholesterol-Modified Anti-Il6 siRNA Reduces the Severity of Acute Lung Injury in Mice. Cells 2024; 13:767. [PMID: 38727303 PMCID: PMC11083178 DOI: 10.3390/cells13090767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Small interfering RNA (siRNA) holds significant therapeutic potential by silencing target genes through RNA interference. Current clinical applications of siRNA have been primarily limited to liver diseases, while achievements in delivery methods are expanding their applications to various organs, including the lungs. Cholesterol-conjugated siRNA emerges as a promising delivery approach due to its low toxicity and high efficiency. This study focuses on developing a cholesterol-conjugated anti-Il6 siRNA and the evaluation of its potency for the potential treatment of inflammatory diseases using the example of acute lung injury (ALI). The biological activities of different Il6-targeted siRNAs containing chemical modifications were evaluated in J774 cells in vitro. The lead cholesterol-conjugated anti-Il6 siRNA after intranasal instillation demonstrated dose-dependent therapeutic effects in a mouse model of ALI induced by lipopolysaccharide (LPS). The treatment significantly reduced Il6 mRNA levels, inflammatory cell infiltration, and the severity of lung inflammation. IL6 silencing by cholesterol-conjugated siRNA proves to be a promising strategy for treating inflammatory diseases, with potential applications beyond the lungs.
Collapse
Affiliation(s)
- Ivan V. Chernikov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (I.V.C.); (I.K.B.); (A.V.S.); (M.I.M.); (I.A.S.); (M.A.Z.)
| | - Irina K. Bachkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (I.V.C.); (I.K.B.); (A.V.S.); (M.I.M.); (I.A.S.); (M.A.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova Str., 1, 630090 Novosibirsk, Russia
| | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (I.V.C.); (I.K.B.); (A.V.S.); (M.I.M.); (I.A.S.); (M.A.Z.)
| | - Mariya I. Meschaninova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (I.V.C.); (I.K.B.); (A.V.S.); (M.I.M.); (I.A.S.); (M.A.Z.)
| | - Innokenty A. Savin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (I.V.C.); (I.K.B.); (A.V.S.); (M.I.M.); (I.A.S.); (M.A.Z.)
| | - Valentin V. Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (I.V.C.); (I.K.B.); (A.V.S.); (M.I.M.); (I.A.S.); (M.A.Z.)
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (I.V.C.); (I.K.B.); (A.V.S.); (M.I.M.); (I.A.S.); (M.A.Z.)
| | - Elena L. Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (I.V.C.); (I.K.B.); (A.V.S.); (M.I.M.); (I.A.S.); (M.A.Z.)
| |
Collapse
|
4
|
Vaswani CM, Simone J, Pavelick JL, Wu X, Tan GW, Ektesabi AM, Gupta S, Tsoporis JN, Dos Santos CC. Tiny Guides, Big Impact: Focus on the Opportunities and Challenges of miR-Based Treatments for ARDS. Int J Mol Sci 2024; 25:2812. [PMID: 38474059 DOI: 10.3390/ijms25052812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is characterized by lung inflammation and increased membrane permeability, which represents the leading cause of mortality in ICUs. Mechanical ventilation strategies are at the forefront of supportive approaches for ARDS. Recently, an increasing understanding of RNA biology, function, and regulation, as well as the success of RNA vaccines, has spurred enthusiasm for the emergence of novel RNA-based therapeutics. The most common types of RNA seen in development are silencing (si)RNAs, antisense oligonucleotide therapy (ASO), and messenger (m)RNAs that collectively account for 80% of the RNA therapeutics pipeline. These three RNA platforms are the most mature, with approved products and demonstrated commercial success. Most recently, miRNAs have emerged as pivotal regulators of gene expression. Their dysregulation in various clinical conditions offers insights into ARDS pathogenesis and offers the innovative possibility of using microRNAs as targeted therapy. This review synthesizes the current state of the literature to contextualize the therapeutic potential of miRNA modulation. It considers the potential for miR-based therapeutics as a nuanced approach that incorporates the complexity of ARDS pathophysiology and the multifaceted nature of miRNA interactions.
Collapse
Affiliation(s)
- Chirag M Vaswani
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Julia Simone
- Department of Medicine, McMaster University, Hamilton, ON L8V 5C2, Canada
| | - Jacqueline L Pavelick
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xiao Wu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Greaton W Tan
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Amin M Ektesabi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sahil Gupta
- Faculty of Medicine, School of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - James N Tsoporis
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Claudia C Dos Santos
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Interdepartmental Division of Critical Care, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
5
|
Lopez A, Vauchez A, Ajram G, Shvetsova A, Leveau G, Fiore M, Strazewski P. From the RNA-Peptide World: Prebiotic Reaction Conditions Compatible with Lipid Membranes for the Formation of Lipophilic Random Peptides in the Presence of Short Oligonucleotides, and More. Life (Basel) 2024; 14:108. [PMID: 38255723 PMCID: PMC10817532 DOI: 10.3390/life14010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Deciphering the origins of life on a molecular level includes unravelling the numerous interactions that could occur between the most important biomolecules being the lipids, peptides and nucleotides. They were likely all present on the early Earth and all necessary for the emergence of cellular life. In this study, we intended to explore conditions that were at the same time conducive to chemical reactions critical for the origins of life (peptide-oligonucleotide couplings and templated ligation of oligonucleotides) and compatible with the presence of prebiotic lipid vesicles. For that, random peptides were generated from activated amino acids and analysed using NMR and MS, whereas short oligonucleotides were produced through solid-support synthesis, manually deprotected and purified using HPLC. After chemical activation in prebiotic conditions, the resulting mixtures were analysed using LC-MS. Vesicles could be produced through gentle hydration in similar conditions and observed using epifluorescence microscopy. Despite the absence of coupling or ligation, our results help to pave the way for future investigations on the origins of life that may gather all three types of biomolecules rather than studying them separately, as it is still too often the case.
Collapse
Affiliation(s)
- Augustin Lopez
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Antoine Vauchez
- Centre Commun de la Spectrométrie de Masse (CCSM), ICBMS, Bâtiment Edgar Lederer, 1 rue Victor Grignard, 69100 Villeurbanne, France;
| | - Ghinwa Ajram
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Anastasiia Shvetsova
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Gabrielle Leveau
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Michele Fiore
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Peter Strazewski
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| |
Collapse
|
6
|
Goel A, Rastogi A, Jain M, Niveriya K. RNA-based Therapeutics: Past, Present and Future Prospects, Challenges in Cancer Treatment. Curr Pharm Biotechnol 2024; 25:2125-2137. [PMID: 38347795 DOI: 10.2174/0113892010291042240130171709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 09/10/2024]
Abstract
It is becoming more and harder in today's climate to disregard the impact of cancer on social health. Even though a significant amount of money is spent annually on cancer research, it still ranks as the second leading cause of death worldwide. Additionally, only about half of the patients suffering from complex forms of cancer survive a year after receiving traditional cancer therapies. A method for silencing genes is called RNA interference (RNAi). Such a method is very effective in focusing on genes linked to cancer. Most gene products implicated in cancer have recently been used as RNA interference (RNAi) therapeutic targets. According to the findings from this research, RNAi application is necessary for today's cancer treatment to target functioning carcinogenic molecules and tumor resistance to chemotherapy and radiation. Proapoptotic and antiproliferative activity has been reported from previous research studies on cell culture systems, animal models, and clinical trials through the knockdown of gene products from RNAi technology. Numerous novel RNAi-based medications are now in the clinical trial stages thanks to the discovery of the RNAi mechanism and advancements in the area. In the future, genomic-based personalized medicines can be developed through this RNAi therapy. Hopefully, cancer sufferers will find this sort of therapy to be one of the most effective ones. Various kinds of RNA-based treatments, such as aptamers, small interfering RNAs, microRNAs, antisense oligonucleotides, and messenger RNA, are covered in broad terms in this study. We also present an overview of the RNA-based therapies that have received regulatory approval in the past or are now undergoing clinical studies.
Collapse
Affiliation(s)
- Anjana Goel
- Department of Biotechnology, GLA University, Mathura, India
| | - Amisha Rastogi
- Department of Biotechnology, GLA University, Mathura, India
| | - Mansi Jain
- Department of Biotechnology, GLA University, Mathura, India
| | | |
Collapse
|
7
|
Sato H, Chandela A, Ueno Y. Synthesis and characterization of novel (S)-5'-C-aminopropyl-2'-fluorouridine modified oligonucleotides as therapeutic siRNAs. Bioorg Med Chem 2023; 87:117317. [PMID: 37196425 DOI: 10.1016/j.bmc.2023.117317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
The lack of stability of natural nucleosides limits their application in small interfering RNA (siRNA)-mediated RNA interference (RNAi). Various chemical modifications have been reported to improve their pharmacokinetic behavior; however, the development of potential candidates is still underway. In this study, we designed and synthesized (S)-5'-C-aminopropyl-2'-fluorouridine (5'-AP-2'-FU) and evaluated the properties of siRNAs containing this analog. A comparative thermodynamic study revealed the enhanced thermal stability of double-stranded RNAs (dsRNAs) containing 5'-AP-2'-FU in a position-specific manner, whereas (S)-5'-C-aminopropyl-2'-O-methyluridine (5'-AP-2'-MoU)-modified dsRNAs exhibited lower melting temperatures. This improved thermal stability of RNA duplexes is attributed to favorable entropy loss, which induces the duplex into an N-type (C3'-endo) conformation and enhances duplex binding in this case. The 5'-AP-2'-FU analog was also suitable for incorporation into the passenger strand to induce gene-silencing activity. Gene knockdown efficacy was comparable to that of unmodified siRNAs, and the best response was observed by introducing 5'-AP-2'-FU near the 3'-terminal end of the passenger strand. In addition, the single-stranded RNAs (ssRNAs) modified with 5'-AP-2'-FU showed strong resistance against decomposition by nucleases when treated with buffer containing bovine serum, which was similar to 5'-AP-2'-MoU.
Collapse
Affiliation(s)
- Hitotaka Sato
- United Graduate School of Agricultural Science, Gifu University, Japan
| | - Akash Chandela
- Course of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Japan
| | - Yoshihito Ueno
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, Japan; Course of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Japan; United Graduate School of Agricultural Science, Gifu University, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
8
|
Allahyari E, Velaei K, Sanaat Z, Jalilzadeh N, Mehdizadeh A, Rahmati M. RNA interference: Promising approach for breast cancer diagnosis and treatment. Cell Biol Int 2022; 47:833-847. [PMID: 36571107 DOI: 10.1002/cbin.11979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/15/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022]
Abstract
Today, cancer is one of the main health-related challenges, and in the meantime, breast cancer (BC) is one of the most common cancers among women, with an alarming number of incidences and deaths every year. For this reason, the discovery of novel and more effective approaches for the diagnosis, treatment, and monitoring of the disease are very important. In this regard, scientists are looking for diagnostic molecules to achieve the above-mentioned goals with higher accuracy and specificity. RNA interference (RNAi) is a posttranslational regulatory process mediated by microRNA intervention and small interfering RNAs. After transcription and edition, these two noncoding RNAs are integrated and activated with the RNA-induced silencing complex (RISC) and AGO2 to connect the target mRNA by their complementary sequence and suppress their translation, thus reducing the expression of their target genes. These two RNAi categories show different patterns in different BC types and stages compared to healthy cells, and hence, these molecules have high diagnostic, monitoring, and therapeutic potentials. This article aims to review the RNAi pathway and diagnostic and therapeutic potentials with a special focus on BC.
Collapse
Affiliation(s)
- Elham Allahyari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical, Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Hofmeister A, Jahn-Hofmann K, Brunner B, Helms M, Metz-Weidmann C, Krack A, Kurz M, Heubel C, Scheidler S. Small Interfering RNAs Containing Dioxane- and Morpholino-Derived Nucleotide Analogues Show Improved Off-Target Profiles and Chirality-Dependent In Vivo Knock-Down. J Med Chem 2022; 65:13736-13752. [PMID: 36223135 DOI: 10.1021/acs.jmedchem.2c00873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To expand the applicability of recently developed dioxane- and morpholino-based nucleotide analogues, their seed region destabilizing properties in small interfering RNAs (siRNAs) were investigated in order to improve potential off-target profiles. For this purpose, the corresponding adenosine analogues were synthesized in two diastereomeric series as building blocks for the automated oligonucleotide synthesis. The obtained nucleotide precursors were integrated at position 7 of an siRNA antisense strand, targeting transthyretin messenger RNA. Evaluation of the melting temperatures revealed significant differences in the obtained duplex stabilities between the two diastereomeric series, while the influence of the central scaffold was small. All siRNAs containing these novel nucleotide structures showed improved off-target profiles in vitro compared to their parent sequence with the common 2'-OMe-modified adenosine at the same position. In contrast, in vivo potencies were highly dependent on the chirality within the six-membered nucleotide scaffolds and showed high mRNA downregulations for the (2R,6R)-configured diastereomers.
Collapse
Affiliation(s)
- Armin Hofmeister
- Sanofi R&D, Industrial Park Hoechst, Frankfurt am Main 65926, Germany
| | | | - Bodo Brunner
- Sanofi R&D, Industrial Park Hoechst, Frankfurt am Main 65926, Germany
| | - Mike Helms
- Sanofi R&D, Industrial Park Hoechst, Frankfurt am Main 65926, Germany
| | | | - Arne Krack
- Sanofi R&D, Industrial Park Hoechst, Frankfurt am Main 65926, Germany
| | - Michael Kurz
- Sanofi R&D, Industrial Park Hoechst, Frankfurt am Main 65926, Germany
| | - Christoph Heubel
- Sanofi R&D, Industrial Park Hoechst, Frankfurt am Main 65926, Germany
| | - Sabine Scheidler
- Sanofi R&D, Industrial Park Hoechst, Frankfurt am Main 65926, Germany
| |
Collapse
|
10
|
Chemical optimization of siRNA for safe and efficient silencing of placental sFLT1. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:135-149. [PMID: 35847173 PMCID: PMC9263991 DOI: 10.1016/j.omtn.2022.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022]
Abstract
Preeclampsia (PE) is a rising, potentially lethal complication of pregnancy. PE is driven primarily by the overexpression of placental soluble fms-like tyrosine kinase 1 (sFLT1), a validated diagnostic and prognostic marker of the disease when normalized to placental growth factor (PlGF) levels. Injecting cholesterol-conjugated, fully modified, small interfering RNAs (siRNAs) targeting sFLT1 mRNA into pregnant mice or baboons reduces placental sFLT1 and ameliorates clinical signs of PE, providing a strong foundation for the development of a PE therapeutic. siRNA delivery, potency, and safety are dictated by conjugate chemistry, siRNA duplex structure, and chemical modification pattern. Here, we systematically evaluate these parameters and demonstrate that increasing 2'-O-methyl modifications and 5' chemical stabilization and using sequence-specific duplex asymmetry and a phosphocholine-docosanoic acid conjugate enhance placental accumulation, silencing efficiency and safety of sFLT1-targeting siRNAs. The optimization strategy here provides a framework for the chemical optimization of siRNAs for PE as well as other targets and clinical indications.
Collapse
|
11
|
MicroRNA-Based Diagnosis and Therapy. Int J Mol Sci 2022; 23:ijms23137167. [PMID: 35806173 PMCID: PMC9266664 DOI: 10.3390/ijms23137167] [Citation(s) in RCA: 293] [Impact Index Per Article: 97.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of endogenous non-coding RNAs that regulate gene expression. Alteration in miRNA expression results in changes in the profile of genes involving a range of biological processes, contributing to numerous human disorders. With high stability in human fluids, miRNAs in the circulation are considered as promising biomarkers for diagnosis, as well as prognosis of disease. In addition, the translation of miRNA-based therapy from a research setting to clinical application has huge potential. The aim of the current review is to: (i) discuss how miRNAs traffic intracellularly and extracellularly; (ii) emphasize the role of circulating miRNAs as attractive potential biomarkers for diagnosis and prognosis; (iii) describe how circulating microRNA can be measured, emphasizing technical problems that may influence their relative levels; (iv) highlight some of the circulating miRNA panels available for clinical use; (v) discuss how miRNAs could be utilized as novel therapeutics, and finally (v) update those miRNA-based therapeutics clinical trials that could potentially lead to a breakthrough in the treatment of different human pathologies.
Collapse
|
12
|
Sartorius K, Antwi SO, Chuturgoon A, Roberts LR, Kramvis A. RNA Therapeutic Options to Manage Aberrant Signaling Pathways in Hepatocellular Carcinoma: Dream or Reality? Front Oncol 2022; 12:891812. [PMID: 35600358 PMCID: PMC9115561 DOI: 10.3389/fonc.2022.891812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the early promise of RNA therapeutics as a magic bullet to modulate aberrant signaling in cancer, this field remains a work-in-progress. Nevertheless, RNA therapeutics is now a reality for the treatment of viral diseases (COVID-19) and offers great promise for cancer. This review paper specifically investigates RNAi as a therapeutic option for HCC and discusses a range of RNAi technology including anti-sense oligonucleotides (ASOs), Aptamers, small interfering RNA (siRNA), ribozymes, riboswitches and CRISPR/Cas9 technology. The use of these RNAi based interventions is specifically outlined in three primary strategies, namely, repressing angiogenesis, the suppression of cell proliferation and the promotion of apoptosis. We also discuss some of the inherent chemical and delivery problems, as well as targeting issues and immunogenic reaction to RNAi interventions.
Collapse
Affiliation(s)
- Kurt Sartorius
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa.,The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States.,Department of Surgery, KZN Kwazulu-Natal (UKZN) Gastrointestinal Cancer Research Centre, Durban, South Africa
| | - Samuel O Antwi
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States.,Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Lewis R Roberts
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States.,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
13
|
Fàbrega C, Aviñó A, Eritja R. Chemical Modifications in Nucleic Acids for Therapeutic and Diagnostic Applications. CHEM REC 2021; 22:e202100270. [DOI: 10.1002/tcr.202100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Carme Fàbrega
- Department of Surfactants and Nanobiotechnology Institute for Advanced Chemistry of Catalonia (IQAC) Spanish National Research Council (CSIC) Jordi Girona 18–26 E-08034 Barcelona Spain
- Networking Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) E-08034 Barcelona Spain
| | - Anna Aviñó
- Department of Surfactants and Nanobiotechnology Institute for Advanced Chemistry of Catalonia (IQAC) Spanish National Research Council (CSIC) Jordi Girona 18–26 E-08034 Barcelona Spain
- Networking Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) E-08034 Barcelona Spain
| | - Ramon Eritja
- Department of Surfactants and Nanobiotechnology Institute for Advanced Chemistry of Catalonia (IQAC) Spanish National Research Council (CSIC) Jordi Girona 18–26 E-08034 Barcelona Spain
- Networking Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) E-08034 Barcelona Spain
| |
Collapse
|
14
|
Mehta A, Michler T, Merkel OM. siRNA Therapeutics against Respiratory Viral Infections-What Have We Learned for Potential COVID-19 Therapies? Adv Healthc Mater 2021; 10:e2001650. [PMID: 33506607 PMCID: PMC7995229 DOI: 10.1002/adhm.202001650] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/06/2021] [Indexed: 12/30/2022]
Abstract
Acute viral respiratory tract infections (AVRIs) are a major burden on human health and global economy and amongst the top five causes of death worldwide resulting in an estimated 3.9 million lives lost every year. In addition, new emerging respiratory viruses regularly cause outbreaks such as SARS-CoV-1 in 2003, the "Swine flu" in 2009, or most importantly the ongoing SARS-CoV-2 pandemic, which intensely impact global health, social life, and economy. Despite the prevalence of AVRIs and an urgent need, no vaccines-except for influenza-or effective treatments were available at the beginning of the COVID-19 pandemic. However, the innate RNAi pathway offers the ability to develop nucleic acid-based antiviral drugs. siRNA sequences against conserved, essential regions of the viral genome can prevent viral replication. In addition, viral infection can be averted prophylactically by silencing host genes essential for host-viral interactions. Unfortunately, delivering siRNAs to their target cells and intracellular site of action remains the principle hurdle toward their therapeutic use. Currently, siRNA formulations and chemical modifications are evaluated for their delivery. This progress report discusses the selection of antiviral siRNA sequences, delivery techniques to the infection sites, and provides an overview of antiviral siRNAs against respiratory viruses.
Collapse
Affiliation(s)
- Aditi Mehta
- Department of PharmacyPharmaceutical Technology and BiopharmaceuticsLudwig‐Maximilians‐Universität MünchenButenandtstraße 5Munich81377Germany
| | - Thomas Michler
- Institute of VirologyTechnische Universität MünchenTrogerstr. 30Munich81675Germany
| | - Olivia M. Merkel
- Department of PharmacyPharmaceutical Technology and BiopharmaceuticsLudwig‐Maximilians‐Universität MünchenButenandtstraße 5Munich81377Germany
| |
Collapse
|
15
|
Abstract
The innate immune receptors in higher organisms have evolved to detect molecular signatures associated with pathogenic infection and trigger appropriate immune response. One common class of molecules utilized by the innate immune system for self vs. nonself discrimination is RNA, which is ironically present in all forms of life. To avoid self-RNA recognition, the innate immune sensors have evolved sophisticated discriminatory mechanisms that involve cellular RNA metabolic machineries. Posttranscriptional RNA modification and editing represent one such mechanism that allows cells to chemically tag the host RNAs as "self" and thus tolerate the abundant self-RNA molecules. In this chapter, we discuss recent advances in our understanding of the role of RNA editing/modification in the modulation of immune signaling pathways, and application of RNA editing/modification in RNA-based therapeutics and cancer immunotherapies.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The clinical significance, target pathways, recent successes, and challenges that preclude translation of RNAi bone regenerative approaches are overviewed. RECENT FINDINGS RNA interference (RNAi) is a promising new therapeutic approach for bone regeneration by stimulating or inhibiting critical signaling pathways. However, RNAi suffers from significant delivery challenges. These challenges include avoiding nuclease degradation, achieving bone tissue targeting, and reaching the cytoplasm for mRNA inhibition. Many drug delivery systems have overcome stability and intracellular localization challenges but suffer from protein adsorption that results in clearance of up to 99% of injected dosages, thus severely limiting drug delivery efficacy. While RNAi has myriad promising attributes for use in bone regenerative applications, delivery challenges continue to plague translation. Thus, a focus on drug delivery system development is critical to provide greater delivery efficiency and bone targeting to reap the promise of RNAi.
Collapse
Affiliation(s)
- Dominic W Malcolm
- Department of Biomedical Engineering, University of Rochester, 308 Robert B. Goergen Hall, Rochester, NY, 14627, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuchen Wang
- Department of Biomedical Engineering, University of Rochester, 308 Robert B. Goergen Hall, Rochester, NY, 14627, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Clyde Overby
- Department of Biomedical Engineering, University of Rochester, 308 Robert B. Goergen Hall, Rochester, NY, 14627, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Maureen Newman
- Department of Biomedical Engineering, University of Rochester, 308 Robert B. Goergen Hall, Rochester, NY, 14627, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, 308 Robert B. Goergen Hall, Rochester, NY, 14627, USA.
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Materials Science Program, University of Rochester, Rochester, NY, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA.
- Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
17
|
Yonezawa S, Koide H, Asai T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv Drug Deliv Rev 2020; 154-155:64-78. [PMID: 32768564 PMCID: PMC7406478 DOI: 10.1016/j.addr.2020.07.022] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Small interfering RNA (siRNA) has been expected to be a unique pharmaceutic for the treatment of broad-spectrum intractable diseases. However, its unfavorable properties such as easy degradation in the blood and negative-charge density are still a formidable barrier for clinical use. For disruption of this barrier, siRNA delivery technology has been significantly advanced in the past two decades. The approval of Patisiran (ONPATTRO™) for the treatment of transthyretin-mediated amyloidosis, the first approved siRNA drug, is a most important milestone. Since lipid-based nanoparticles (LNPs) are used in Patisiran, LNP-based siRNA delivery is now of significant interest for the development of the next siRNA formulation. In this review, we describe the design of LNPs for the improvement of siRNA properties, bioavailability, and pharmacokinetics. Recently, a number of siRNA-encapsulated LNPs were reported for the treatment of intractable diseases such as cancer, viral infection, inflammatory neurological disorder, and genetic diseases. We believe that these contributions address and will promote the development of an effective LNP-based siRNA delivery system and siRNA formulation.
Collapse
Affiliation(s)
| | | | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
18
|
Freund I, Buhl DK, Boutin S, Kotter A, Pichot F, Marchand V, Vierbuchen T, Heine H, Motorin Y, Helm M, Dalpke AH, Eigenbrod T. 2'- O-methylation within prokaryotic and eukaryotic tRNA inhibits innate immune activation by endosomal Toll-like receptors but does not affect recognition of whole organisms. RNA (NEW YORK, N.Y.) 2019; 25:869-880. [PMID: 31019095 PMCID: PMC6573781 DOI: 10.1261/rna.070243.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/20/2019] [Indexed: 05/10/2023]
Abstract
Bacterial RNA has emerged as an important activator of innate immune responses by stimulating Toll-like receptors TLR7 and TLR8 in humans. Guanosine 2'-O-methylation at position 18 (Gm18) in bacterial tRNA was shown to antagonize tRNA-induced TLR7/8 activation, suggesting a potential role of Gm18 as an immune escape mechanism. This modification also occurs in eukaryotic tRNA, yet a physiological immune function remained to be tested. We therefore set out to investigate the immune modulatory role of Gm18 in both prokaryotic and eukaryotic microorganisms, Escherichia coli and Saccharomyces cerevisiae, and in human cells. Using RiboMethSeq analysis we show that mutation of trmH in E. coli, trm3 in S. cereviase, and CRISPR/Cas9-induced knockout of TARBP1 in H. sapiens results in loss of Gm18 within tRNA. Lack of Gm18 across the kingdoms resulted in increased immunostimulation of peripheral blood mononuclear cells when activated by tRNA preparations. In E. coli, lack of 2'-O-methyltransferase trmH also enhanced immune stimulatory properties by whole cellular RNA. In contrast, lack of Gm18 in yeasts and human cells did not affect immunostimulation by whole RNA preparations. When using live E. coli bacteria, lack of trmH did not affect overall immune stimulation although we detected a defined TLR8/RNA-dependent gene expression signature upon E. coli infection. Together, these results demonstrate that Gm18 is a global immune inhibitory tRNA modification across the kingdoms and contributes to tRNA recognition by innate immune cells, but as an individual modification has insufficient potency to modulate recognition of the investigated microorganisms.
Collapse
Affiliation(s)
- Isabel Freund
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Daniel K Buhl
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Annika Kotter
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Florian Pichot
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
- IMoPA UMR7365 CNRS-Lorraine University, BioPole Lorraine University, 54500 Vandoeuvre-les-Nancy, France
| | - Virginie Marchand
- UMS2008 IBSLor, CNRS-Lorraine University-INSERM, BioPole Lorraine University, 54500 Vandoeuvre-les-Nancy, France
| | - Tim Vierbuchen
- Division of Innate Immunity, Research Center Borstel, 23845 Borstel, Germany
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel, 23845 Borstel, Germany
| | - Yuri Motorin
- IMoPA UMR7365 CNRS-Lorraine University, BioPole Lorraine University, 54500 Vandoeuvre-les-Nancy, France
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Alexander H Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Institute of Medical Microbiology and Hygiene, Technical University Dresden, 01307 Dresden, Germany
| | - Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Formulation of RNA interference-based drugs for pulmonary delivery: challenges and opportunities. Ther Deliv 2019; 9:731-749. [PMID: 30277138 DOI: 10.4155/tde-2018-0029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With recent advances in the field of RNAi-based therapeutics, it is possible to make any target gene 'druggable', at least in principle. The present review focuses on aspects critical for pulmonary delivery of formulations of nucleic acid-based drugs. The first part introduces the therapeutic potential of RNAi-based drugs for the treatment of lung diseases. Subsequently, we discuss opportunities for formulation-enabled pulmonary delivery of RNAi drugs in light of key physicochemical properties and physiological barriers. In the following section, an overview is included of methodologies for imparting inhalable characteristics to nucleic acid formulations. Finally, we review one of the bottlenecks in the early preclinical testing of inhalable nucleic acid-based formulations, in other words, devices suitable for pulmonary administration of powder-based formulations in rodents.
Collapse
|
20
|
Mahmoodi Chalbatani G, Dana H, Gharagouzloo E, Grijalvo S, Eritja R, Logsdon CD, Memari F, Miri SR, Rad MR, Marmari V. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Int J Nanomedicine 2019; 14:3111-3128. [PMID: 31118626 PMCID: PMC6504672 DOI: 10.2147/ijn.s200253] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/23/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer is one of the most complex diseases that has resulted in multiple genetic disorders and cellular abnormalities. Globally, cancer is the most common health concern disease that is affecting human beings. Great efforts have been made over the past decades in biology with the aim of searching novel and more efficient tools in therapy. Thus, small interfering RNAs (siRNAs) have been considered one of the most noteworthy developments which are able to regulate gene expression following a process known as RNA interference (RNAi). RNAi is a post-transcriptional mechanism that involves the inhibition of gene expression through promoting cleavage on a specific area of a target messenger RNA (mRNA). This technology has shown promising therapeutic results for a good number of diseases, especially in cancer. However, siRNA therapeutics have to face important drawbacks in therapy including stability and successful siRNA delivery in vivo. In this regard, the development of effective siRNA delivery systems has helped addressing these issues by opening novel therapeutic windows which have allowed to build up important advances in Nanomedicine. In this review, we discuss the progress of siRNA therapy as well as its medical application via nanoparticle-mediated delivery for cancer treatment.
Collapse
Affiliation(s)
| | - Hassan Dana
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Elahe Gharagouzloo
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona08034, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Madrid, Spain
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona08034, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Madrid, Spain
| | - Craig D Logsdon
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
- Department of GI Medical Oncology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Fereidoon Memari
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | | | - Vahid Marmari
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
21
|
Chernikov IV, Vlassov VV, Chernolovskaya EL. Current Development of siRNA Bioconjugates: From Research to the Clinic. Front Pharmacol 2019; 10:444. [PMID: 31105570 PMCID: PMC6498891 DOI: 10.3389/fphar.2019.00444] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Small interfering RNAs (siRNAs) acting via RNA interference mechanisms are able to recognize a homologous mRNA sequence in the cell and induce its degradation. The main problems in the development of siRNA-based drugs for therapeutic use are the low efficiency of siRNA delivery to target cells and the degradation of siRNAs by nucleases in biological fluids. Various approaches have been proposed to solve the problem of siRNA delivery in vivo (e.g., viruses, cationic lipids, polymers, nanoparticles), but all have limitations for therapeutic use. One of the most promising approaches to solve the problem of siRNA delivery to target cells is bioconjugation; i.e., the covalent connection of siRNAs with biogenic molecules (lipophilic molecules, antibodies, aptamers, ligands, peptides, or polymers). Bioconjugates are "ideal nanoparticles" since they do not need a positive charge to form complexes, are less toxic, and are less effectively recognized by components of the immune system because of their small size. This review is focused on strategies and principles for constructing siRNA bioconjugates for in vivo use.
Collapse
Affiliation(s)
- Ivan V Chernikov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valentin V Vlassov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena L Chernolovskaya
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
22
|
Efficient Inhibition of Avian and Seasonal Influenza A Viruses by a Virus-Specific Dicer-Substrate Small Interfering RNA Swarm in Human Monocyte-Derived Macrophages and Dendritic Cells. J Virol 2019; 93:JVI.01916-18. [PMID: 30463970 DOI: 10.1128/jvi.01916-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 11/20/2022] Open
Abstract
Influenza A viruses (IAVs) are viral pathogens that cause epidemics and occasional pandemics of significant mortality. The generation of efficacious vaccines and antiviral drugs remains a challenge due to the rapid appearance of new influenza virus types and antigenic variants. Consequently, novel strategies for the prevention and treatment of IAV infections are needed, given the limitations of the presently available antivirals. Here, we used enzymatically produced IAV-specific double-stranded RNA (dsRNA) molecules and Giardia intestinalis Dicer for the generation of a swarm of small interfering RNA (siRNA) molecules. The siRNAs target multiple conserved genomic regions of the IAVs. In mammalian cells, the produced 25- to 27-nucleotide-long siRNA molecules are processed by endogenous Dicer into 21-nucleotide siRNAs and are thus designated Dicer-substrate siRNAs (DsiRNAs). We evaluated the efficacy of the above DsiRNA swarm at preventing IAV infections in human primary monocyte-derived macrophages and dendritic cells. The replication of different IAV strains, including avian influenza H5N1 and H7N9 viruses, was significantly inhibited by pretransfection of the cells with the IAV-specific DsiRNA swarm. Up to 7 orders of magnitude inhibition of viral RNA expression was observed, which led to a dramatic inhibition of IAV protein synthesis and virus production. The IAV-specific DsiRNA swarm inhibited virus replication directly through the RNA interference pathway although a weak induction of innate interferon responses was detected. Our results provide direct evidence for the feasibility of the siRNA strategy and the potency of DsiRNA swarms in the prevention and treatment of influenza, including the highly pathogenic avian influenza viruses.IMPORTANCE In spite of the enormous amount of research, influenza virus is still one of the major challenges for medical virology due to its capacity to generate new variants, which potentially lead to severe epidemics and pandemics. We demonstrated here that a swarm of small interfering RNA (siRNA) molecules, including more than 100 different antiviral RNA molecules targeting the most conserved regions of the influenza A virus genome, could efficiently inhibit the replication of all tested avian and seasonal influenza A variants in human primary monocyte-derived macrophages and dendritic cells. The wide antiviral spectrum makes the virus-specific siRNA swarm a potentially efficient treatment modality against both avian and seasonal influenza viruses.
Collapse
|
23
|
RNA Modifications Modulate Activation of Innate Toll-Like Receptors. Genes (Basel) 2019; 10:genes10020092. [PMID: 30699960 PMCID: PMC6410116 DOI: 10.3390/genes10020092] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
Self/foreign discrimination by the innate immune system depends on receptors that identify molecular patterns as associated to pathogens. Among others, this group includes endosomal Toll-like receptors, among which Toll-like receptors (TLR) 3, 7, 8, and 13 recognize and discriminate mammalian from microbial, potentially pathogen-associated, RNA. One of the discriminatory principles is the recognition of endogenous RNA modifications. Previous work has identified a couple of RNA modifications that impede activation of TLR signaling when incorporated in synthetic RNA molecules. Of note, work that is more recent has now shown that RNA modifications in their naturally occurring context can have immune-modulatory functions: Gm, a naturally occurring ribose-methylation within tRNA resulted in a lack of TLR7 stimulation and within a defined sequence context acted as antagonist. Additional RNA modifications with immune-modulatory functions have now been identified and recent work also indicates that RNA modifications within the context of whole prokaryotic or eukaryotic cells are indeed used for immune-modulation. This review will discuss new findings and developments in the field of immune-modulatory RNA modifications.
Collapse
|
24
|
Artiga Á, Serrano-Sevilla I, De Matteis L, Mitchell SG, de la Fuente JM. Current status and future perspectives of gold nanoparticle vectors for siRNA delivery. J Mater Chem B 2019; 7:876-896. [PMID: 32255093 DOI: 10.1039/c8tb02484g] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Discovering the vast therapeutic potential of siRNA opened up new clinical research areas focussing on a number of diseases and applications; however significant problems with siRNA stability and delivery have hindered its clinical applicability. As a result, interest in the development of practical siRNA delivery systems has grown in recent years. Of the numerous siRNA delivery strategies currently on offer, gold nanoparticles (AuNPs) stand out thanks to their biocompatibility and capacity to protect siRNA against degradation; not to mention the versatility offered by their tuneable shape, size and optical properties. Herein this review provides a complete summary of the methodologies for functionalizing AuNPs with siRNA, paying singular attention to the AuNP shape, size and surface coating, since these key factors heavily influence cellular interaction, internalization and, ultimately, the efficacy of the hybrid particle. The most noteworthy hybridization strategies have been highlighted along with the most innovative and outstanding in vivo studies with a view to increasing clinical interest in the use of AuNPs as siRNA nanocarriers.
Collapse
Affiliation(s)
- Álvaro Artiga
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Zaragoza and CIBER-BBN, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | | | | | | | | |
Collapse
|
25
|
Abstract
RNA interference (RNAi) is the biological process of mRNA degradation induced by complementary sequences double-stranded (ds) small interfering RNAs (siRNA) and suppression of target gene expression. Exogenous siRNAs (perfectly paired dsRNAs of ∼21–25 nt in length) play an important role in host defense against RNA viruses and in transcriptional and post-transcriptional gene regulation in plants and other eukaryotes. Using RNAi technology by transfecting synthetic siRNAs into eukaryotic cells to silence genes has become an indispensable tool to investigate gene functions, and siRNA-based therapy is being developed to knockdown genes implicated in diseases. Other examples of RNAi technology include method of producing highly potent and purified siRNAs directly from Escherichiacoli cells, based on an unexpected discovery that ectopic expression of p19, a plant viral siRNA-binding protein, stabilizes a cryptic siRNA-like RNA species in bacteria. Those siRNAs, named as pro-siRNA for “prokaryotic siRNA”, are bacterial RNase III products that have chemical and functional properties that like eukaryotic siRNAs.
Collapse
|
26
|
Abstract
Oligonucleotides (ONs) can interfere with biomolecules representing the entire extended central dogma. Antisense gapmer, steric block, splice-switching ONs, and short interfering RNA drugs have been successfully developed. Moreover, antagomirs (antimicroRNAs), microRNA mimics, aptamers, DNA decoys, DNAzymes, synthetic guide strands for CRISPR/Cas, and innate immunity-stimulating ONs are all in clinical trials. DNA-targeting, triplex-forming ONs and strand-invading ONs have made their mark on drug development research, but not yet as medicines. Both design and synthetic nucleic acid chemistry are crucial for achieving biologically active ONs. The dominating modifications are phosphorothioate linkages, base methylation, and numerous 2'-substitutions in the furanose ring, such as 2'-fluoro, O-methyl, or methoxyethyl. Locked nucleic acid and constrained ethyl, a related variant, are bridged forms where the 2'-oxygen connects to the 4'-carbon in the sugar. Phosphorodiamidate morpholino oligomers, carrying a modified heterocyclic backbone ring, have also been commercialized. Delivery remains a major obstacle, but systemic administration and intrathecal infusion are used for treatment of the liver and brain, respectively.
Collapse
Affiliation(s)
- C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden; .,Stellenbosch Institute for Advanced Study, Wallenberg Research Centre, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden; .,Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
27
|
Gatta AK, Hariharapura RC, Udupa N, Reddy MS, Josyula VR. Strategies for improving the specificity of siRNAs for enhanced therapeutic potential. Expert Opin Drug Discov 2018; 13:709-725. [PMID: 29902093 DOI: 10.1080/17460441.2018.1480607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION RNA interference has become a tool of choice in the development of drugs in various therapeutic areas of Post Transcriptional Gene Silencing (PTGS). The critical element in developing successful RNAi therapeutics lies in designing small interfering RNA (siRNA) using an efficient algorithm satisfying the designing criteria. Further, translation of siRNA from bench-side to bedside needs an efficient delivery system and/or chemical modification. Areas covered: This review emphasizes the importance of dicer, the criteria for efficient siRNA design, the currently available algorithms and strategies to overcome off-target effects, immune stimulatory effects and endosomal trap. Expert opinion: Specificity and stability are the primary concerns for siRNA therapeutics. The design criteria and algorithms should be chosen rationally to have a siRNA sequence that binds to the corresponding mRNA as it happens in the Watson and Crick base pairing. However, it must evade a few more hurdles (Endocytosis, Serum stability etc.) to be functional in the cytosol.
Collapse
Affiliation(s)
- Aditya Kiran Gatta
- a Cell and Molecular Biology lab, Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Raghu Chandrashekhar Hariharapura
- a Cell and Molecular Biology lab, Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Nayanabhirama Udupa
- b Research Directorate of Health Sciences , Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Meka Sreenivasa Reddy
- c Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Venkata Rao Josyula
- a Cell and Molecular Biology lab, Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal , Karnataka , India
| |
Collapse
|
28
|
Schmitt FCF, Freund I, Weigand MA, Helm M, Dalpke AH, Eigenbrod T. Identification of an optimized 2'- O-methylated trinucleotide RNA motif inhibiting Toll-like receptors 7 and 8. RNA (NEW YORK, N.Y.) 2017; 23:1344-1351. [PMID: 28576825 PMCID: PMC5558904 DOI: 10.1261/rna.061952.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/26/2017] [Indexed: 05/20/2023]
Abstract
Bacterial RNA serves an important function as activator of the innate immune system. In humans bacterial RNA is sensed by the endosomal receptors TLR7 and TLR8. Differences in the posttranscriptional modification profile of prokaryotic when compared with eukaryotic RNA allow innate immune cells to discriminate between "host" and "foreign" RNA. Ribose 2'-O-methylation is of particular importance and has been reported to antagonize TLR7/8 activation. Yet, the exact sequence context in which 2'-O-methylation has to occur to mediate its inhibitory activity remains largely undefined. On the basis of a naturally occurring 2'-O-methylated RNA sequence, we performed a systematic permutation of the methylated nucleotide as well as adjacent bases and hereby identify two minimal trinucleotide motifs within a 9-mer oligoribonucleotide that are necessary and sufficient to antagonize TLR7 and TLR8 activation, respectively. Given the growing interest in the development of inhibitors of nucleic acid-sensing TLRs for therapeutic purposes, these results will facilitate the rational design of such antagonists in the future.
Collapse
Affiliation(s)
- Felix C F Schmitt
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Isabel Freund
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Alexander H Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
29
|
Pirher N, Pohar J, Manček-Keber M, Benčina M, Jerala R. Activation of cell membrane-localized Toll-like receptor 3 by siRNA. Immunol Lett 2017; 189:55-63. [PMID: 28392198 DOI: 10.1016/j.imlet.2017.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/30/2017] [Indexed: 11/25/2022]
Abstract
Small interfering RNA molecules (siRNA) are short dsRNAs that are used for different therapeutic applications. On the other hand, dsRNAs can bind to and activate cell RNA sensors and consequently trigger inflammatory response. Here we show that siRNA activates primary human endothelial cells and human lymphatic endothelial cells and that this response is inhibited by antibodies against TLR3. In contrast, the activation of human lymphatic endothelial cells by poly(I:C) was inhibited by bafilomycin but not by anti-TLR3 antibodies. Bafilomycin also inhibited poly(I:C) but not siRNA cell stimulation in TLR3-transfected HEK293. The response to siRNA required the expression of UNC93B1, which directs TLR3 to the surface of HEK293 cells. We propose that the engaged signaling pathway of TLR3 depends on the receptor localization and on the length of the dsRNA, where the activation of cell membrane TLR3 by short dsRNA leads to a predominantly proinflammatory response, whereas TLR3 activation in endosomal compartments by long dsRNA is characterized by the production of type I IFN. A molecular model suggests that the siRNA can bind to the binding sites of the TLR3 ectodomain and trigger receptor dimerization. These results contribute to understanding of the mechanism of side effects seen in the therapeutic application of naked, unmodified siRNA as a result of the activation of TLR3 localized at the plasma membrane.
Collapse
Affiliation(s)
- Nina Pirher
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Jelka Pohar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Mateja Manček-Keber
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia; Excellent NMR Future Innovation for Sustainable Technologies Centre of Excellence, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia; Excellent NMR Future Innovation for Sustainable Technologies Centre of Excellence, Ljubljana, Slovenia.
| |
Collapse
|
30
|
Hellmuth I, Freund I, Schlöder J, Seidu-Larry S, Thüring K, Slama K, Langhanki J, Kaloyanova S, Eigenbrod T, Krumb M, Röhm S, Peneva K, Opatz T, Jonuleit H, Dalpke AH, Helm M. Bioconjugation of Small Molecules to RNA Impedes Its Recognition by Toll-Like Receptor 7. Front Immunol 2017; 8:312. [PMID: 28392787 PMCID: PMC5364167 DOI: 10.3389/fimmu.2017.00312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/06/2017] [Indexed: 12/25/2022] Open
Abstract
A fundamental mechanism of the innate immune system is the recognition, via extra- and intracellular pattern-recognition receptors, of pathogen-associated molecular patterns. A prominent example is represented by foreign nucleic acids, triggering the activation of several signaling pathways. Among these, the endosomal toll-like receptor 7 (TLR7) is known to be activated by single-stranded RNA (ssRNA), which can be specifically influenced through elements of sequence structure and posttranscriptional modifications. Furthermore, small molecules TLR7 agonists (smTLRa) are applied as boosting adjuvants in vaccination processes. In this context, covalent conjugations between adjuvant and vaccines have been reported to exhibit synergistic effects. Here, we describe a concept to chemically combine three therapeutic functions in one RNA bioconjugate. This consists in the simultaneous TLR7 stimulation by ssRNA and smTLRa as well as the therapeutic function of the RNA itself, e.g., as a vaccinating or knockdown agent. We have hence synthesized bioconjugates of mRNA and siRNA containing covalently attached smTLRa and tested their function in TLR7 stimulation. Strikingly, the bioconjugates displayed decreased rather than synergistically increased stimulation. The decrease was distinct from the antagonistic action of an siRNA bearing a Gm motive, as observed by direct comparison of the effects in the presence of otherwise stimulatory RNA. In summary, these investigations showed that TRL7 activation can be impeded by bioconjugation of small molecules to RNA.
Collapse
Affiliation(s)
- Isabell Hellmuth
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Isabel Freund
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg , Heidelberg , Germany
| | - Janine Schlöder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Salifu Seidu-Larry
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Kathrin Thüring
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Kaouthar Slama
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Jens Langhanki
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | | | - Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg , Heidelberg , Germany
| | - Matthias Krumb
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Sandra Röhm
- Max Planck Institute for Polymer Research (MPG) , Mainz , Germany
| | - Kalina Peneva
- Max Planck Institute for Polymer Research (MPG) , Mainz , Germany
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Helmut Jonuleit
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Alexander H Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg , Heidelberg , Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| |
Collapse
|
31
|
Ho W, Zhang XQ, Xu X. Biomaterials in siRNA Delivery: A Comprehensive Review. Adv Healthc Mater 2016; 5:2715-2731. [PMID: 27700013 DOI: 10.1002/adhm.201600418] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/07/2016] [Indexed: 01/31/2023]
Abstract
With the dearth of effective treatment options for prominent diseases including Ebola and cancer, RNA interference (RNAi), a sequence-specific mechanism for genetic regulation that can silence nearly any gene, holds the promise of unlimited potential in treating illness ever since its discovery in 1999. Given the large size, unstable tertiary structure in physiological conditions and negative charge of small interfering RNAs (siRNAs), the development of safe and effective delivery vehicles is of critical importance in order to drive the widespread use of RNAi therapeutics into clinical settings. Immense amounts of time and billions of dollars have been devoted into the design of novel and diverse delivery strategies, and there are a handful of delivery systems that have been successfully translated into clinic. This review provides an introduction to the in vivo barriers that need to be addressed by siRNA delivery systems. We also discuss the progress up to the most effective and clinically advanced siRNA delivery systems including liposomal, polymeric and siRNA conjugate delivery systems, as well as their design to overcome the challenges.
Collapse
Affiliation(s)
- William Ho
- Department of Chemical, Biological and Pharmaceutical Engineering; Newark School of Engineering; New Jersey Institute of Technology; Newark NJ 07102 USA
| | - Xue-Qing Zhang
- Department of Chemical, Biological and Pharmaceutical Engineering; Newark School of Engineering; New Jersey Institute of Technology; Newark NJ 07102 USA
| | - Xiaoyang Xu
- Department of Chemical, Biological and Pharmaceutical Engineering; Newark School of Engineering; New Jersey Institute of Technology; Newark NJ 07102 USA
| |
Collapse
|
32
|
Chemical and structural modifications of RNAi therapeutics. Adv Drug Deliv Rev 2016; 104:16-28. [PMID: 26549145 DOI: 10.1016/j.addr.2015.10.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 10/14/2015] [Accepted: 10/23/2015] [Indexed: 12/25/2022]
Abstract
Small interfering RNA (siRNA), a 21-23nt double-stranded RNA responsible for post-transcriptional gene silencing, has attracted great interests as promising genomic drugs, due to its strong ability to silence target genes in a sequence-specific manner. Despite high silencing efficiency and on-target specificity, the clinical translation of siRNA has been hindered by its inherent features: poor intracellular delivery, limited blood stability, unpredictable immune responses and unwanted off-targeting effects. To overcome these hindrances, researchers have made various advances to modify siRNA itself and to improve its delivery. In this review paper, first we briefly discuss the innate properties and delivery barriers of siRNA. Then, we describe recent progress in (1) chemically and structurally modified siRNAs to solve their intrinsic problems and (2) siRNA delivery formulations including siRNA conjugates, polymerized siRNA, and nucleic acid-based nanoparticles to improve in vivo delivery.
Collapse
|
33
|
Abstract
Immune sensing of foreign nucleic acids among abundant self nucleic acids is a hallmark of virus detection and antiviral defence. Efficient antiviral defence requires a balanced process of sensing foreign nucleic acids and ignoring self nucleic acids. This balance is accomplished by a multilevel, fail-safe system which combines immune sensing of pathogen-specific nucleic acid structures with specific labelling of self nucleic acids and nuclease-mediated degradation. Cellular localization of nucleic acids, nucleic acid secondary structure, nucleic acid sequence and chemical modification all contribute to selective recognition of foreign nucleic acids. Nucleic acid sensing occurs in immune cells and non-immune cells and results in antiviral responses that include the induction of antiviral effector proteins, the secretion of cytokines alarming neighbouring cells, the secretion of chemokines, which attract immune cells, and the induction of cell death. Vertebrate cells cannot completely avoid the occurrence of endogenous self nucleic acid structures with immunostimulatory properties. Therefore, additional mechanisms involving self-nucleic acid modification and nuclease-mediated degradation are necessary to diminish uncontrolled immune activation. Viruses have established sophisticated mechanisms to exploit and adopt endogenous tolerance mechanisms or to avoid the presentation of characteristic molecular features recognized by nucleic acid sensing receptors.
The detection of viruses by the immune system is mediated predominantly by the sensing of nucleic acids. Here, the authors review our current understanding of how this complex immune sensory system discriminates self from non-self nucleic acids to reliably detect pathogenic viruses, and discuss the future perspectives and implications for human disease. Innate immunity against pathogens relies on an array of immune receptors to detect molecular patterns that are characteristic of the pathogens, including receptors that are specialized in the detection of foreign nucleic acids. In vertebrates, nucleic acid sensing is the dominant antiviral defence pathway. Stimulation of nucleic acid receptors results in antiviral immune responses with the production of type I interferon (IFN), as well as the expression of IFN-stimulated genes, which encode molecules such as cell-autonomous antiviral effector proteins. This Review summarizes the tremendous progress that has been made in understanding how this sophisticated immune sensory system discriminates self from non-self nucleic acids in order to reliably detect pathogenic viruses.
Collapse
Affiliation(s)
- Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| |
Collapse
|
34
|
Smith N, Vidalain PO, Nisole S, Herbeuval JP. An efficient method for gene silencing in human primary plasmacytoid dendritic cells: silencing of the TLR7/IRF-7 pathway as a proof of concept. Sci Rep 2016; 6:29891. [PMID: 27412723 PMCID: PMC4944138 DOI: 10.1038/srep29891] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/20/2016] [Indexed: 02/07/2023] Open
Abstract
Plasmacytoid dendritic cells (pDC) are specialized immune cells that produce massive levels of type I interferon in response to pathogens. Unfortunately, pDC are fragile and extremely rare, rendering their functional study a tough challenge. However, because of their central role in numerous pathologies, there is a considerable need for an efficient and reproducible protocol for gene silencing in these cells. In this report, we tested six different methods for siRNA delivery into primary human pDC including viral-based, lipid-based, electroporation, and poly-ethylenimine (PEI) technologies. We show that lipid-based reagent DOTAP was extremely efficient for siRNA delivery into pDC, and did not induce cell death or pDC activation. We successfully silenced Toll-Like Receptor 7 (TLR7), CXCR4 and IFN regulatory factor 7 (IRF-7) gene expression in pDC as assessed by RT-qPCR or cytometry. Finally, we showed that TLR7 or IRF-7 silencing in pDC specifically suppressed IFN-α production upon stimulation, providing a functional validation of our transfection protocol.
Collapse
Affiliation(s)
- Nikaïa Smith
- Equipe Chimie et Biologie, Modélisation &Immunologie pour la Thérapie (CBMIT), CNRS UMR8601, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CICB-Paris (FR 3567), Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pierre-Olivier Vidalain
- Equipe Chimie et Biologie, Modélisation &Immunologie pour la Thérapie (CBMIT), CNRS UMR8601, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CICB-Paris (FR 3567), Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sébastien Nisole
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM UMR-S 1124, 45 rue des Saints-Pères, 75006 Paris, France
| | - Jean-Philippe Herbeuval
- Equipe Chimie et Biologie, Modélisation &Immunologie pour la Thérapie (CBMIT), CNRS UMR8601, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CICB-Paris (FR 3567), Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
35
|
Alagia A, Eritja R. siRNA and RNAi optimization. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:316-29. [PMID: 26840434 DOI: 10.1002/wrna.1337] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/12/2022]
Abstract
The discovery and examination of the posttranscriptional gene regulatory mechanism known as RNA interference (RNAi) contributed to the identification of small interfering RNA (siRNA) and the comprehension of its enormous potential for clinical purposes. Theoretically, the ability of specific target gene downregulation makes the RNAi pathway an appealing solution for several diseases. Despite numerous hurdles resulting from the inherent properties of siRNA molecule and proper delivery to the target tissue, more than 50 RNA-based drugs are currently under clinical testing. In this work, we analyze the recent literature in the optimization of siRNA molecules. In detail, we focused on describing the most recent advances of siRNA field aimed at optimize siRNA pharmacokinetic properties. Special attention has been given in describing the impact of RNA modifications in the potential off-target effects (OTEs) such as saturation of the RNAi machinery, passenger strand-mediated silencing, immunostimulation, and miRNA-like OTEs as well as to recent developments on the delivery issue. The novel delivery systems and modified siRNA provide significant steps toward the development of reliable siRNA molecules for therapeutic use. WIREs RNA 2016, 7:316-329. doi: 10.1002/wrna.1337 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Adele Alagia
- Chemical and Biomolecular Nanotechnology, CIBER-BBN, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Ramon Eritja
- Chemical and Biomolecular Nanotechnology, CIBER-BBN, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| |
Collapse
|
36
|
Kokil GR, Veedu RN, Ramm GA, Prins JB, Parekh HS. Type 2 diabetes mellitus: limitations of conventional therapies and intervention with nucleic acid-based therapeutics. Chem Rev 2015; 115:4719-43. [PMID: 25918949 DOI: 10.1021/cr5002832] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ganesh R Kokil
- †School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Rakesh N Veedu
- §Center for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia.,∥Western Australian Neuroscience Research Institute, Perth, WA 6150, Australia.,‡School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072 Australia
| | - Grant A Ramm
- ⊥The Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.,#Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Johannes B Prins
- ∇Mater Research Institute, The University of Queensland, Brisbane, QLD 4101, Australia
| | - Harendra S Parekh
- †School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
37
|
Rimbach K, Kaiser S, Helm M, Dalpke AH, Eigenbrod T. 2'-O-Methylation within Bacterial RNA Acts as Suppressor of TLR7/TLR8 Activation in Human Innate Immune Cells. J Innate Immun 2015; 7:482-93. [PMID: 25823462 DOI: 10.1159/000375460] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/23/2015] [Indexed: 12/25/2022] Open
Abstract
Microbial RNA is an important stimulator of innate immune responses. Differences in posttranscriptional RNA modification profiles enable the immune system to discriminate between self and non-self nucleic acids. This principle may be exploited by certain bacteria to circumvent immune cell activation. In this regard, 2'-O-methylation of Escherichia coli tRNATyr at position 18 (Gm18) has recently been described to inhibit TLR7-mediated IFN-α production in human plasmacytoid dendritic cells (pDCs). Extending these findings, we now demonstrate that Gm18 also potently inhibits TLR7-independent human monocyte activation by RNA derived from a variety of bacterial strains. The half minimal inhibitory concentration values were similar to those found for IFN-α inhibition in pDCs. Mechanistically, 2'-O-methylated RNA impaired upstream signalling events, including MAP kinase and NFx03BA;B activation. Our results suggest that antagonizing effects of Gm18-modified RNA are due to competition with stimulatory RNA for receptor binding. The antagonistic effect was specific for RNA because the small molecule TLR7/8 agonist R848 was not inhibited. Despite the striking phenotype in human cells, 2'-O-methylated RNA did not interfere with TLR13 activation by bacterial 23S rRNA in murine DC and BMDM. Thus, we identify here Gm18 in E. coli tRNA(Tyr) as a universal suppressor of innate immune activation in the human but not the murine system.
Collapse
Affiliation(s)
- Katharina Rimbach
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
38
|
Jung S, von Thülen T, Laukemper V, Pigisch S, Hangel D, Wagner H, Kaufmann A, Bauer S. A single naturally occurring 2'-O-methylation converts a TLR7- and TLR8-activating RNA into a TLR8-specific ligand. PLoS One 2015; 10:e0120498. [PMID: 25785446 PMCID: PMC4364935 DOI: 10.1371/journal.pone.0120498] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/23/2015] [Indexed: 12/20/2022] Open
Abstract
TLR7 and TLR8 recognize RNA from pathogens and lead to subsequent immune stimulation. Here we demonstrate that a single naturally occurring 2’-O-methylation within a synthetic 18s rRNA derived RNA sequence prevents IFN-α production, however secretion of proinflammatory cytokines such as IL-6 is not impaired. By analysing TLR-deficient plasmacytoid dendritic cells and performing HEK293 genetic complementation assays we could demonstrate that the single 2’-O-methylation containing RNA still activated TLR8 but not TLR7. Therefore this specific 2’-O-ribose methylation in rRNA converts a TLR7 / TLR8 ligand to an exclusively TLR8-specific ligand. Interestingly, other modifications at this position such as 2’-O-deoxy or 2’-fluoro had no strong modulating effect on TLR7 or TLR8 activation suggesting an important role of 2’-O-methylation for shaping differential TLR7 or TLR8 activation.
Collapse
Affiliation(s)
- Stephanie Jung
- Institut für Immunologie, Philipps-Universität Marburg, BMFZ, Marburg, Germany
| | - Tina von Thülen
- Institut für Immunologie, Philipps-Universität Marburg, BMFZ, Marburg, Germany
| | - Viktoria Laukemper
- Institut für Immunologie, Philipps-Universität Marburg, BMFZ, Marburg, Germany
| | - Stephanie Pigisch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, München, Germany
| | - Doris Hangel
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, München, Germany
| | - Hermann Wagner
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, München, Germany
| | - Andreas Kaufmann
- Institut für Immunologie, Philipps-Universität Marburg, BMFZ, Marburg, Germany
| | - Stefan Bauer
- Institut für Immunologie, Philipps-Universität Marburg, BMFZ, Marburg, Germany
- * E-mail:
| |
Collapse
|
39
|
Godinho BM, Malhotra M, O’Driscoll CM, Cryan JF. Delivering a disease-modifying treatment for Huntington's disease. Drug Discov Today 2015; 20:50-64. [DOI: 10.1016/j.drudis.2014.09.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/28/2014] [Accepted: 09/16/2014] [Indexed: 11/16/2022]
|
40
|
Gerlach C, Claasen B, Richert C. High-fidelity recognition of RNA: solution structure of a DNA:RNA hybrid duplex with a molecular cap. Chembiochem 2014; 15:2584-9. [PMID: 25318665 DOI: 10.1002/cbic.201402409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Indexed: 11/08/2022]
Abstract
Binding RNA targets, such as microRNAs, with high fidelity is challenging, particularly when the nucleobases to be bound are located at the terminus of the duplex between probe and target. Recently, a peptidyl chain terminating in a quinolone, called ogOA, was shown to act as a cap that enhances affinity and fidelity for RNAs, stabilizing duplexes with Watson-Crick pairing at their termini. Here we report the three-dimensional structure of an intramolecular complex between a DNA strand featuring the ogOA cap and an RNA segment, solved by NMR and restrained torsion angle molecular dynamics. The quinolone stacks on the terminal base pair of the hybrid duplex, positioned by the peptidyl chain, whose prolinol residue induces a sharp bend between the 5' terminus of the DNA chain and the glycine linked to the oxolinic acid residue. The structure explains why canonical base pairing is favored over hard-to-suppress mismatched base combinations, such as T:G and A:A, and helps to design improved high-fidelity probes for RNA.
Collapse
Affiliation(s)
- Claudia Gerlach
- Institut für Organische Chemie, Universität Stuttgart, 70569 Stuttgart (Germany)
| | | | | |
Collapse
|
41
|
Zewge D, Gosselin F, Kenski DM, Li J, Jadhav V, Yuan Y, Nerurkar SS, Tellers DM, Flanagan WM, Davies IW. High-throughput chemical modification of oligonucleotides for systematic structure-activity relationship evaluation. Bioconjug Chem 2014; 25:2222-32. [PMID: 25398098 DOI: 10.1021/bc500453q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chemical modification of siRNA is achieved in a high-throughput manner (96-well plate format) by copper catalyzed azide-alkyne cycloadditions. This transformation can be performed in one synthetic operation at up to four positions with complete specificity, good yield, and acceptable purity. As demonstrated here, this approach extends the current synthetic options for oligonucleotide modifications and simultaneously facilitates the systematic, rapid biological evaluation of modified siRNA.
Collapse
Affiliation(s)
- Daniel Zewge
- Department of Process Chemistry, Merck Research Laboratories , Rahway, New Jersey 07065, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gu S, Zhang Y, Jin L, Huang Y, Zhang F, Bassik MC, Kampmann M, Kay MA. Weak base pairing in both seed and 3' regions reduces RNAi off-targets and enhances si/shRNA designs. Nucleic Acids Res 2014; 42:12169-76. [PMID: 25270879 PMCID: PMC4231738 DOI: 10.1093/nar/gku854] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The use of RNA interference is becoming routine in scientific discovery and treatment of human disease. However, its applications are hampered by unwanted effects, particularly off-targeting through miRNA-like pathways. Recent studies suggest that the efficacy of such off-targeting might be dependent on binding stability. Here, by testing shRNAs and siRNAs of various GC content in different guide strand segments with reporter assays, we establish that weak base pairing in both seed and 3' regions is required to achieve minimal off-targeting while maintaining the intended on-target activity. The reduced off-targeting was confirmed by RNA-Seq analyses from mouse liver RNAs expressing various anti-HCV shRNAs. Finally, our protocol was validated on a large scale by analyzing results of a genome-wide shRNA screen. Compared with previously established work, the new algorithm was more effective in reducing off-targeting without jeopardizing on-target potency. These studies provide new rules that should significantly improve on siRNA/shRNA design.
Collapse
Affiliation(s)
- Shuo Gu
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Yue Zhang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lan Jin
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Yong Huang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Feijie Zhang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Martin Kampmann
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
43
|
Kaiser S, Rimbach K, Eigenbrod T, Dalpke AH, Helm M. A modified dinucleotide motif specifies tRNA recognition by TLR7. RNA (NEW YORK, N.Y.) 2014; 20:1351-5. [PMID: 25051971 PMCID: PMC4138318 DOI: 10.1261/rna.044024.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
RNA can function as a pathogen-associated molecular pattern (PAMP) whose recognition by the innate immune system alerts the body to an impending microbial infection. The recognition of tRNA as either self or nonself RNA by TLR7 depends on its modification patterns. In particular, it is known that the presence of a ribose methylated guanosine at position 18, which is overrepresented in self-RNA, antagonizes an immune response. Here, we report that recognition extends to the next downstream nucleotide and the effectively recognized molecular detail is actually a methylated dinucleotide. The most efficient nucleobases combination of this motif includes two purines, while pyrimidines diminish the effect of ribose methylation. The constraints of this motif stay intact when transposed to other parts of the tRNA. The results argue against a fixed orientation of the tRNA during interaction with TLR7 and, rather, suggest a processive type of inspection.
Collapse
Affiliation(s)
- Steffen Kaiser
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Katharina Rimbach
- Department of Infectious Diseases-Medical Microbiology and Hygiene, Ruprecht-Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Tatjana Eigenbrod
- Department of Infectious Diseases-Medical Microbiology and Hygiene, Ruprecht-Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Alexander H Dalpke
- Department of Infectious Diseases-Medical Microbiology and Hygiene, Ruprecht-Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| |
Collapse
|
44
|
Colombo S, Zeng X, Ragelle H, Foged C. Complexity in the therapeutic delivery of RNAi medicines: an analytical challenge. Expert Opin Drug Deliv 2014; 11:1481-95. [DOI: 10.1517/17425247.2014.927439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Ziegler S, Eberle ME, Wölfle SJ, Heeg K, Bekeredjian-Ding I. Bifunctional oligodeoxynucleotide/antagomiR constructs: evaluation of a new tool for microRNA silencing. Nucleic Acid Ther 2013; 23:427-34. [PMID: 24236889 DOI: 10.1089/nat.2013.0447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
MicroRNAs (miRNAs) are fine-tuners in cellular processes, including those of the immune response. To study their functions and effects in immune cells, it is necessary to achieve specific silencing of individual miRNAs. To date, introduction of antisense microRNAs (antagomiRs) into primary cells is based on electroporation, lipofection, and viral vectors. However, these techniques often compromise viability, proliferative capacity, and differentiation. Furthermore, efficiency varies depending on the cell type and some are not suitable for in vivo approaches. To overcome these limitations we exploited the property of phosphorothioate (PTO)-modified DNA oligodeoxynucleotides (ODN) to enter cells with high efficacy: we developed and evaluated ODN/antagomiR constructs that consist of a PTO-ODN carrier covalently linked to a fully methylated antagomiR RNA sequence. Using these constructs, we achieved transfection efficiency of approximately 99% in leukocytes-in particular, in B lymphocytes that are hard to transfect with other methods. Our data demonstrate that miRNA silencing by the antagomiR portion of the constructs was specific and efficient, which could be further confirmed by an increase in target protein under silencing conditions. The constructs were successfully tested in human B cells, plasmacytoid dendritic cells, monocytes, and monocyte-derived dendritic cells, thus demonstrating their versatility. Moreover, introduction of stimulatory CpG sequences into the ODN portion conveys immune stimulatory quality when intended. Thus, bifunctional ODN/antagomiR constructs represent a highly efficient, versatile, and easy-to-handle tool to manipulate cellular miRNA expression levels and to allow the subsequent investigation of specific miRNA functions.
Collapse
Affiliation(s)
- Saskia Ziegler
- 1 Deptartment of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg , Heidelberg, Germany
| | | | | | | | | |
Collapse
|
46
|
Inosine-mediated modulation of RNA sensing by Toll-like receptor 7 (TLR7) and TLR8. J Virol 2013; 88:799-810. [PMID: 24227841 DOI: 10.1128/jvi.01571-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA-specific adenosine deaminase (ADAR)-mediated adenosine-to-inosine (A-to-I) editing is a critical arm of the antiviral response. However, mechanistic insights into how A-to-I RNA editing affects viral infection are lacking. We posited that inosine incorporation into RNA facilitates sensing of nonself RNA by innate immune sensors and accordingly investigated the impact of inosine-modified RNA on Toll-like receptor 7 and 8 (TLR7/8) sensing. Inosine incorporation into synthetic single-stranded RNA (ssRNA) potentiated tumor necrosis factor alpha (TNF-α) or alpha interferon (IFN-α) production in human peripheral blood mononuclear cells (PBMCs) in a sequence-dependent manner, indicative of TLR7/8 recruitment. The effect of inosine incorporation on TLR7/8 sensing was restricted to immunostimulatory ssRNAs and was not seen with inosine-containing short double-stranded RNAs or with a deoxy-inosine-modified ssRNA. Inosine-mediated increase of self-secondary structure of an ssRNA resulted in potentiated IFN-α production in human PBMCs through TLR7 recruitment, as established through the use of a TLR7 antagonist and Tlr7-deficient cells. There was a correlation between hyperediting of influenza A viral ssRNA and its ability to stimulate TNF-α, independent of 5'-triphosphate residues, and involving Adar-1. Furthermore, A-to-I editing of viral ssRNA directly enhanced mouse Tlr7 sensing, when present in proportions reproducing biologically relevant levels of RNA editing. Thus, we demonstrate for the first time that inosine incorporation into immunostimulatory ssRNA can potentiate TLR7/8 activation. Our results suggest a novel function of A-to-I RNA editing, which is to facilitate TLR7/8 sensing of phagocytosed viral RNA.
Collapse
|
47
|
Hutson TH, Foster E, Moon LDF, Yáñez-Muñoz RJ. Lentiviral vector-mediated RNA silencing in the central nervous system. Hum Gene Ther Methods 2013; 25:14-32. [PMID: 24090197 DOI: 10.1089/hgtb.2013.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
RNA silencing is an established method for investigating gene function and has attracted particular interest because of the potential for generating RNA-based therapeutics. Using lentiviral vectors as an efficient delivery system that offers stable, long-term expression in postmitotic cells further enhances the applicability of an RNA-based gene therapy for the CNS. In this review we provide an overview of both lentiviral vectors and RNA silencing along with design considerations for generating lentiviral vectors capable of RNA silencing. We go on to describe the current preclinical data regarding lentiviral vector-mediated RNA silencing for CNS disorders and discuss the concerns of side effects associated with lentiviral vectors and small interfering RNAs and how these might be mitigated.
Collapse
Affiliation(s)
- Thomas H Hutson
- 1 Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London , Guy's Campus, London SE1 1UL, United Kingdom
| | | | | | | |
Collapse
|
48
|
|
49
|
siRNA Genome Screening Approaches to Therapeutic Drug Repositioning. Pharmaceuticals (Basel) 2013; 6:124-60. [PMID: 24275945 PMCID: PMC3816683 DOI: 10.3390/ph6020124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/10/2013] [Accepted: 01/22/2013] [Indexed: 01/21/2023] Open
Abstract
Bridging high-throughput screening (HTS) with RNA interference (RNAi) has allowed for rapid discovery of the molecular basis of many diseases, and identification of potential pathways for developing safe and effective treatments. These features have identified new host gene targets for existing drugs paving the pathway for therapeutic drug repositioning. Using RNAi to discover and help validate new drug targets has also provided a means to filter and prioritize promising therapeutics. This review summarizes these approaches across a spectrum of methods and targets in the host response to pathogens. Particular attention is given to the utility of drug repurposing utilizing the promiscuous nature of some drugs that affect multiple molecules or pathways, and how these biological pathways can be targeted to regulate disease outcome.
Collapse
|
50
|
Goldberg M. Lipidoids: A Combinatorial Approach to siRNA Delivery. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2013. [DOI: 10.1007/978-1-4614-4744-3_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|