1
|
Vladyka O, Zieg J, Pátek O, Bloomfield M, Paračková Z, Šedivá A, Klocperk A. Profound T Lymphocyte and DNA Repair Defect Characterizes Schimke Immuno-Osseous Dysplasia. J Clin Immunol 2024; 44:180. [PMID: 39153074 PMCID: PMC11330395 DOI: 10.1007/s10875-024-01787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Schimke immuno-osseous dysplasia is a rare multisystemic disorder caused by biallelic loss of function of the SMARCAL1 gene that plays a pivotal role in replication fork stabilization and thus DNA repair. Individuals affected from this disease suffer from disproportionate growth failure, steroid resistant nephrotic syndrome leading to renal failure and primary immunodeficiency mediated by T cell lymphopenia. With infectious complications being the leading cause of death in this disease, researching the nature of the immunodeficiency is crucial, particularly as the state is exacerbated by loss of antibodies due to nephrotic syndrome or immunosuppressive treatment. Building on previous findings that identified the loss of IL-7 receptor expression as a possible cause of the immunodeficiency and increased sensitivity to radiation-induced damage, we have employed spectral cytometry and multiplex RNA-sequencing to assess the phenotype and function of T cells ex-vivo and to study changes induced by in-vitro UV irradiation and reaction of cells to the presence of IL-7. Our findings highlight the mature phenotype of T cells with proinflammatory Th1 skew and signs of exhaustion and lack of response to IL-7. UV light irradiation caused a severe increase in the apoptosis of T cells, however the expression of the genes related to immune response and regulation remained surprisingly similar to healthy cells. Due to the disease's rarity, more studies will be necessary for complete understanding of this unique immunodeficiency.
Collapse
Affiliation(s)
- Ondřej Vladyka
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Jakub Zieg
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Ondřej Pátek
- Department of Internal Medicine, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Markéta Bloomfield
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Zuzana Paračková
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Anna Šedivá
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic.
| |
Collapse
|
2
|
Bharadwaj NS, Zumwalde NA, Kapur A, Patankar M, Gumperz JE. Human CD4 + memory phenotype T cells use mitochondrial metabolism to generate sensitive IFN-γ responses. iScience 2024; 27:109775. [PMID: 38726371 PMCID: PMC11079467 DOI: 10.1016/j.isci.2024.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
The transition of naive T lymphocytes into antigenically activated effector cells is associated with a metabolic shift from oxidative phosphorylation to aerobic glycolysis. This shift facilitates production of the key anti-tumor cytokine interferon (IFN)-γ; however, an associated loss of mitochondrial efficiency in effector T cells ultimately limits anti-tumor immunity. Memory phenotype (MP) T cells are a newly recognized subset that arises through homeostatic activation signals following hematopoietic transplantation. We show here that human CD4+ MP cell differentiation is associated with increased glycolytic and oxidative metabolic activity, but MP cells retain less compromised mitochondria compared to effector CD4+ T cells, and their IFN-γ response is less dependent on glucose and more reliant on glutamine. MP cells also produced IFN-γ more efficiently in response to weak T cell receptor (TCR) agonism than effectors and mediated stronger responses to transformed B cells. MP cells may thus be particularly well suited to carry out sustained immunosurveillance against neoplastic cells.
Collapse
Affiliation(s)
- Nikhila S. Bharadwaj
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health; Madison, WI 53706, USA
| | - Nicholas A. Zumwalde
- Department of Genetics, University of Wisconsin School of Medicine and Public Health; Madison, WI 53706, USA
| | - Arvinder Kapur
- QIAGEN Sciences Inc., 19300 Germantown Road, Germantown, MD 20874, USA
| | - Manish Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health; Madison, WI 53706, USA
| | - Jenny E. Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health; Madison, WI 53706, USA
| |
Collapse
|
3
|
Negi S, Rutman AK, Saw CL, Paraskevas S, Tchervenkov J. Pretransplant, Th17 dominant alloreactivity in highly sensitized kidney transplant candidates. FRONTIERS IN TRANSPLANTATION 2024; 3:1336563. [PMID: 38993777 PMCID: PMC11235243 DOI: 10.3389/frtra.2024.1336563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/21/2024] [Indexed: 07/13/2024]
Abstract
Introduction Sensitization to donor human leukocyte antigen (HLA) molecules prior to transplantation is a significant risk factor for delayed access to transplantation and to long-term outcomes. Memory T cells and their cytokines play a pivotal role in shaping immune responses, thereby increasing the risk of allograft rejection among highly sensitized patients. This study aims to elucidate the precise contribution of different CD4+ memory T cell subsets to alloreactivity in highly sensitized (HS) kidney transplant recipients. Methods and results Stimulation of peripheral blood mononuclear cells (PBMC) with various polyclonal stimulating agents to assess non-specific immune responses revealed that HS patients exhibit elevated immune reactivity even before kidney transplantation, compared to non-sensitized (NS) patients. HS patients' PBMC displayed higher frequencies of CD4+ T cells expressing IFNγ, IL4, IL6, IL17A, and TNFα and secreted relatively higher levels of IL17A and IL21 upon stimulation with PMA/ionomycin. Additionally, PBMC from HS patients stimulated with T cell stimulating agent phytohemagglutinin (PHA) exhibited elevated expression levels of IFNγ, IL4 and, IL21. On the other hand, stimulation with a combination of resiquimod (R848) and IL2 for the activation of memory B cells demonstrated higher expression of IL17A, TNFα and IL21, as determined by quantitative real-time PCR. A mixed leukocyte reaction (MLR) assay, employing third-party donor antigen presenting cells (APCs), was implemented to evaluate the direct alloreactive response. HS patients demonstrated notably higher frequencies of CD4+ T cells expressing IL4, IL6 and IL17A. Interestingly, APCs expressing recall HLA antigens triggered a stronger Th17 response compared to APCs lacking recall HLA antigens in sensitized patients. Furthermore, donor APCs induced higher activation of effector memory T cells in HS patients as compared to NS patients. Conclusion These results provide an assessment of pretransplant alloreactive T cell subsets in highly sensitized patients and emphasize the significance of Th17 cells in alloimmune responses. These findings hold promise for the development of treatment strategies tailored to sensitized kidney transplant recipients, with potential clinical implications.
Collapse
Affiliation(s)
- Sarita Negi
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montréal, QC, Canada
| | | | - Chee Loong Saw
- HLA Laboratory, Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Steven Paraskevas
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montréal, QC, Canada
- Department of Surgery, McGill University, Montréal, QC, Canada
- Division of General Surgery and Multi-Organ Transplant Program, Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| | - Jean Tchervenkov
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Surgery, McGill University, Montréal, QC, Canada
- Division of General Surgery and Multi-Organ Transplant Program, Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
4
|
Skariah N, James OJ, Swamy M. Signalling mechanisms driving homeostatic and inflammatory effects of interleukin-15 on tissue lymphocytes. DISCOVERY IMMUNOLOGY 2024; 3:kyae002. [PMID: 38405398 PMCID: PMC10883678 DOI: 10.1093/discim/kyae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
There is an intriguing dichotomy in the function of cytokine interleukin-15-at low levels, it is required for the homeostasis of the immune system, yet when it is upregulated in response to pathogenic infections or in autoimmunity, IL-15 drives inflammation. IL-15 associates with the IL-15Rα within both myeloid and non-haematopoietic cells, where IL-15Rα trans-presents IL-15 in a membrane-bound form to neighboring cells. Alongside homeostatic maintenance of select lymphocyte populations such as NK cells and tissue-resident T cells, when upregulated, IL-15 also promotes inflammatory outcomes by driving effector function and cytotoxicity in NK cells and T cells. As chronic over-expression of IL-15 can lead to autoimmunity, IL-15 expression is tightly regulated. Thus, blocking dysregulated IL-15 and its downstream signalling pathways are avenues for immunotherapy. In this review we discuss the molecular pathways involved in IL-15 signalling and how these pathways contribute to both homeostatic and inflammatory functions in IL-15-dependent mature lymphoid populations, focusing on innate, and innate-like lymphocytes in tissues.
Collapse
Affiliation(s)
- Neema Skariah
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Olivia J James
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mahima Swamy
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
5
|
Lui VG, Hoenig M, Cabrera-Martinez B, Baxter RM, Garcia-Perez JE, Bailey O, Acharya A, Lundquist K, Capera J, Matusewicz P, Hartl FA, D’Abramo M, Alba J, Jacobsen EM, Niewolik D, Lorenz M, Pannicke U, Schulz AS, Debatin KM, Schamel WW, Minguet S, Gumbart JC, Dustin ML, Cambier JC, Schwarz K, Hsieh EW. A partial human LCK defect causes a T cell immunodeficiency with intestinal inflammation. J Exp Med 2024; 221:e20230927. [PMID: 37962568 PMCID: PMC10644909 DOI: 10.1084/jem.20230927] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/09/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Lymphocyte-specific protein tyrosine kinase (LCK) is essential for T cell antigen receptor (TCR)-mediated signal transduction. Here, we report two siblings homozygous for a novel LCK variant (c.1318C>T; P440S) characterized by T cell lymphopenia with skewed memory phenotype, infant-onset recurrent infections, failure to thrive, and protracted diarrhea. The patients' T cells show residual TCR signal transduction and proliferation following anti-CD3/CD28 and phytohemagglutinin (PHA) stimulation. We demonstrate in mouse models that complete (Lck-/-) versus partial (LckP440S/P440S) loss-of-function LCK causes disease with differing phenotypes. While both Lck-/- and LckP440S/P440S mice exhibit arrested thymic T cell development and profound T cell lymphopenia, only LckP440S/P440S mice show residual T cell proliferation, cytokine production, and intestinal inflammation. Furthermore, the intestinal disease in the LckP440S/P440S mice is prevented by CD4+ T cell depletion or regulatory T cell transfer. These findings demonstrate that P440S LCK spares sufficient T cell function to allow the maturation of some conventional T cells but not regulatory T cells-leading to intestinal inflammation.
Collapse
Affiliation(s)
- Victor G. Lui
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Manfred Hoenig
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Berenice Cabrera-Martinez
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ryan M. Baxter
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Josselyn E. Garcia-Perez
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Olivia Bailey
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- BioInspired Syracuse and Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Karl Lundquist
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jesusa Capera
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Paul Matusewicz
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Frederike A. Hartl
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Marco D’Abramo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Josephine Alba
- Department of Biology, Université de Fribourg, Fribourg, Switzerland
| | | | - Doris Niewolik
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Myriam Lorenz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ansgar S. Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | | | - Wolfgang W. Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael L. Dustin
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - John C. Cambier
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Human Immunology and Immunotherapy Initiative, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Ulm, Germany
| | - Elena W.Y. Hsieh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Human Immunology and Immunotherapy Initiative, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Department of Pediatrics, Section of Allergy and Immunology, Children’s Hospital Colorado, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| |
Collapse
|
6
|
Bourne CM, Wallisch P, Dacek MM, Gardner TJ, Pierre S, Vogt K, Corless BC, Bah MA, Romero-Pichardo JE, Charles A, Kurtz KG, Tan DS, Scheinberg DA. Host Interactions with Engineered T-cell Micropharmacies. Cancer Immunol Res 2023; 11:1253-1265. [PMID: 37379366 PMCID: PMC10472090 DOI: 10.1158/2326-6066.cir-22-0879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/08/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Genetically engineered, cytotoxic, adoptively transferred T cells localize to antigen-positive cancer cells inside patients, but tumor heterogeneity and multiple immune escape mechanisms have prevented the eradication of most solid tumor types. More effective, multifunctional engineered T cells are in development to overcome the barriers to the treatment of solid tumors, but the interactions of these highly modified cells with the host are poorly understood. We previously engineered prodrug-activating enzymatic functions into chimeric antigen receptor (CAR) T cells, endowing them with a killing mechanism orthogonal to conventional T-cell cytotoxicity. These drug-delivering cells, termed Synthetic Enzyme-Armed KillER (SEAKER) cells, demonstrated efficacy in mouse lymphoma xenograft models. However, the interactions of an immunocompromised xenograft with such complex engineered T cells are distinct from those in an immunocompetent host, precluding an understanding of how these physiologic processes may affect the therapy. Herein, we expanded the repertoire of SEAKER cells to target solid-tumor melanomas in syngeneic mouse models using specific targeting with T-cell receptor (TCR)-engineered T cells. We demonstrate that SEAKER cells localized specifically to tumors, and activated bioactive prodrugs, despite host immune responses. We additionally show that TCR-engineered SEAKER cells were efficacious in immunocompetent hosts, demonstrating that the SEAKER platform is applicable to many adoptive cell therapies.
Collapse
Affiliation(s)
- Christopher M. Bourne
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patrick Wallisch
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Megan M. Dacek
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas J. Gardner
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephanie Pierre
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kristen Vogt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Broderick C. Corless
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mamadou A. Bah
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jesus E. Romero-Pichardo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Angel Charles
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Keifer G. Kurtz
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Derek S. Tan
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Pharmacology Program, Weill Cornell Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
7
|
Shevyrev D, Tereshchenko V, Berezina TN, Rybtsov S. Hematopoietic Stem Cells and the Immune System in Development and Aging. Int J Mol Sci 2023; 24:ijms24065862. [PMID: 36982935 PMCID: PMC10056303 DOI: 10.3390/ijms24065862] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Hematopoietic stem cells (HSCs) support haematopoiesis throughout life and give rise to the whole variety of cells of the immune system. Developing in the early embryo, passing through the precursor stage, and maturing into the first HSCs, they undergo a fairly large number of divisions while maintaining a high regenerative potential due to high repair activity. This potential is greatly reduced in adult HSCs. They go into a state of dormancy and anaerobic metabolism to maintain their stemness throughout life. However, with age, changes occur in the pool of HSCs that negatively affect haematopoiesis and the effectiveness of immunity. Niche aging and accumulation of mutations with age reduces the ability of HSCs to self-renew and changes their differentiation potential. This is accompanied by a decrease in clonal diversity and a disturbance of lymphopoiesis (decrease in the formation of naive T- and B-cells) and the predominance of myeloid haematopoiesis. Aging also affects mature cells, regardless of HSC, therefore, phagocytic activity and the intensity of the oxidative burst decrease, and the efficiency of processing and presentation of antigens by myeloid cells is impaired. Aging cells of innate and adaptive immunity produce factors that form a chronic inflammatory background. All these processes have a serious negative impact on the protective properties of the immune system, increasing inflammation, the risk of developing autoimmune, oncological, and cardiovascular diseases with age. Understanding the mechanisms of reducing the regenerative potential in a comparative analysis of embryonic and aging HSCs, the features of inflammatory aging will allow us to get closer to deciphering the programs for the development, aging, regeneration and rejuvenation of HSCs and the immune system.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
| | - Valeriy Tereshchenko
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
| | - Tatiana N Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, 127051 Moscow, Russia
| | - Stanislav Rybtsov
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, UK
| |
Collapse
|
8
|
Iglesias M, Brennan DC, Larsen CP, Raimondi G. Targeting inflammation and immune activation to improve CTLA4-Ig-based modulation of transplant rejection. Front Immunol 2022; 13:926648. [PMID: 36119093 PMCID: PMC9478663 DOI: 10.3389/fimmu.2022.926648] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
For the last few decades, Calcineurin inhibitors (CNI)-based therapy has been the pillar of immunosuppression for prevention of organ transplant rejection. However, despite exerting effective control of acute rejection in the first year post-transplant, prolonged CNI use is associated with significant side effects and is not well suited for long term allograft survival. The implementation of Costimulation Blockade (CoB) therapies, based on the interruption of T cell costimulatory signals as strategy to control allo-responses, has proven potential for better management of transplant recipients compared to CNI-based therapies. The use of the biologic cytotoxic T-lymphocyte associated protein 4 (CTLA4)-Ig is the most successful approach to date in this arena. Following evaluation of the BENEFIT trials, Belatacept, a high-affinity version of CTLA4-Ig, has been FDA approved for use in kidney transplant recipients. Despite its benefits, the use of CTLA4-Ig as a monotherapy has proved to be insufficient to induce long-term allograft acceptance in several settings. Multiple studies have demonstrated that events that induce an acute inflammatory response with the consequent release of proinflammatory cytokines, and an abundance of allograft-reactive memory cells in the recipient, can prevent the induction of or break established immunomodulation induced with CoB regimens. This review highlights advances in our understanding of the factors and mechanisms that limit CoB regimens efficacy. We also discuss recent successes in experimentally designing complementary therapies that favor CTLA4-Ig effect, affording a better control of transplant rejection and supporting their clinical applicability.
Collapse
Affiliation(s)
- Marcos Iglesias
- Vascularized and Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Giorgio Raimondi, ; Marcos Iglesias,
| | - Daniel C. Brennan
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christian P. Larsen
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Giorgio Raimondi
- Vascularized and Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Giorgio Raimondi, ; Marcos Iglesias,
| |
Collapse
|
9
|
Ganchiku Y, Goto R, Kanazawa R, Ota T, Shibuya K, Fukasaku Y, Kobayashi N, Igarashi R, Kawamura N, Zaitsu M, Watanabe M, Taketomi A. Functional roles of graft-infiltrating lymphocytes during early-phase post-transplantation in mouse cardiac transplantation models. Transpl Int 2021; 34:2547-2561. [PMID: 34687578 DOI: 10.1111/tri.14146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/17/2021] [Accepted: 10/20/2021] [Indexed: 11/28/2022]
Abstract
Immunological behavior of graft-infiltrating lymphocytes (GILs) determines the graft fate (i.e., rejection or acceptance). Nevertheless, the functional alloreactivity and the phenotype of GILs at various times during the early post-transplantation phase have not been fully elucidated. We examined the immunological activities of early-phase GILs using a murine model of cardiac transplantation. GILs from 120-h allografts, but not 72-h allografts, showed robust activation and produced proinflammatory cytokines. In particular, a significant increase in CD69+ T-bet+ Nur77+ T cells was detected in 120-h allografts. Furthermore, isolated GILs were used to reconstitute BALB/c Rag2-/- γc-/- (BRG) mice. BRG mice reconstituted with 120-h GILs displayed donor-specific immune reactivity and rejected donor strain cardiac allografts; conversely, 72-h GILs exhibited weak anti-donor reactivity and did not reject allografts. These findings were confirmed by re-transplantation of cardiac allografts into BRG mice at 72-h post-transplantation. Re-transplanted allografts continued to function for >100 days, despite the presence of CD3+ GILs. In conclusion, the immunological behavior of GILs considerably differs over time during the early post-transplantation phase. A better understanding of the functional role of early-phase GILs may clarify the fate determination process in the graft-site microenvironment.
Collapse
Affiliation(s)
- Yoshikazu Ganchiku
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryoichi Goto
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryo Kanazawa
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takuji Ota
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuaki Shibuya
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasutomo Fukasaku
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Nozomi Kobayashi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Rumi Igarashi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Norio Kawamura
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masaaki Zaitsu
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masaaki Watanabe
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
10
|
Shevyrev D, Tereshchenko V, Kozlov V. Immune Equilibrium Depends on the Interaction Between Recognition and Presentation Landscapes. Front Immunol 2021; 12:706136. [PMID: 34394106 PMCID: PMC8362327 DOI: 10.3389/fimmu.2021.706136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
In this review, we described the structure and organization of antigen-recognizing repertoires of B and T cells from the standpoint of modern immunology. We summarized the latest advances in bioinformatics analysis of sequencing data from T and B cell repertoires and also presented contemporary ideas about the mechanisms of clonal diversity formation at different stages of organism development. At the same time, we focused on the importance of the allelic variants of the HLA genes and spectra of presented antigens for the formation of T-cell receptors (TCR) landscapes. The main idea of this review is that immune equilibrium and proper functioning of immunity are highly dependent on the interaction between the recognition and the presentation landscapes of antigens. Certain changes in these landscapes can occur during life, which can affect the protective function of adaptive immunity. We described some mechanisms associated with these changes, for example, the conversion of effector cells into regulatory cells and vice versa due to the trans-differentiation or bystander effect, changes in the clonal organization of the general TCR repertoire due to homeostatic proliferation or aging, and the background for the altered presentation of some antigens due to SNP mutations of MHC, or the alteration of the presenting antigens due to post-translational modifications. The authors suggest that such alterations can lead to an increase in the risk of the development of oncological and autoimmune diseases and influence the sensitivity of the organism to different infectious agents.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Laboratory of Clinical Immunopathology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Valeriy Tereshchenko
- Laboratory of Molecular Immunology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Vladimir Kozlov
- Laboratory of Clinical Immunopathology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
11
|
Fessler J, Fasching P, Raicht A, Hammerl S, Weber J, Lackner A, Hermann J, Dejaco C, Graninger WB, Schwinger W, Stradner MH. Lymphopenia in primary Sjögren's syndrome is associated with premature aging of naïve CD4+ T cells. Rheumatology (Oxford) 2021; 60:588-597. [PMID: 32227243 DOI: 10.1093/rheumatology/keaa105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/13/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To investigate peripheral lymphopenia, a frequent finding in primary Sjögren's syndrome (pSS) associated with higher disease activity and increased mortality. METHODS Prospective, cross-sectional study of consecutive patients with pSS (n = 66) and healthy controls (n = 181). Lymphocyte subsets were analysed by flow cytometry, naïve (CD45RA+) and memory (CD45RO+) CD4+ T cells were purified by MACS technology. In vitro proliferation and senescence-associated β-galactosidase (SABG) were assessed by flow cytometry. Telomere length and TCR excision circles (TREC) were measured by real-time PCR. Telomerase activity was analysed according to the telomeric repeat amplification protocols (TRAP). RESULTS In pSS, lymphopenia mainly affected naïve CD4+ T cells. We noted a lower frequency of proliferating naïve CD4+ T cells ex vivo and decreased homeostatic proliferation in response to IL-7 stimulation in vitro. Furthermore, naïve CD4+ T cells exhibited signs of immune cell aging including shortened telomeres, a reduction in IL-7R expression and accumulation of SABG. The senescent phenotype could be explained by telomerase insufficiency and drastically reduced levels of T-cell receptor excision circles (TRECs), indicating a history of extensive post-thymic cell division. TRECs correlated with the number of naïve CD4+ T cells linking the extend of earlier proliferation to the inability to sustain normal cell numbers. CONCLUSION In pSS, evidence for increased proliferation of naïve CD4+ T cells earlier in life is associated with a senescent phenotype unable to sustain homeostasis. The lack of naïve CD4+ T cells forms the basis of lymphopenia frequently observed in pSS.
Collapse
Affiliation(s)
- Johannes Fessler
- Department of Rheumatology and Immunology, Medical University of Graz, Graz, Austria.,Department of Neurology, Harvard Medical School, Brigham and Women's Hospital, Harvard, MA, USA
| | - Patrizia Fasching
- Department of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Andrea Raicht
- Department of Pediatric Hemato-Oncology, Medical University of Graz, Graz, Austria
| | - Sabrina Hammerl
- Department of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Jennifer Weber
- Department of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Angelika Lackner
- Department of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Josef Hermann
- Department of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Christian Dejaco
- Department of Rheumatology and Immunology, Medical University of Graz, Graz, Austria.,Servizio di Reumatologia, Azienda Sanitaria dell'Alto Adige, Ospedale di Brunico, Brunico, Italy
| | - Winfried B Graninger
- Department of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Wolfgang Schwinger
- Department of Pediatric Hemato-Oncology, Medical University of Graz, Graz, Austria
| | - Martin H Stradner
- Department of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| |
Collapse
|
12
|
Artinger K, Kirsch AH, Mooslechner AA, Cooper DJ, Aringer I, Schuller M, Schabhüttl C, Klötzer KA, Schweighofer K, Eller P, Yagita H, Illert AL, Rosenkranz AR, Lane PJ, Eller K. Blockade of tumor necrosis factor superfamily members CD30 and OX40 abrogates disease activity in murine immune-mediated glomerulonephritis. Kidney Int 2021; 100:336-348. [PMID: 33785369 DOI: 10.1016/j.kint.2021.02.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 01/02/2023]
Abstract
Co-stimulation is a prerequisite for pathogenic activity in T cell-mediated diseases and has been demonstrated to achieve tolerance in organ-specific autoimmunity as a therapeutic target. Here, we evaluated the involvement of the tumor necrosis factor family members CD30 and OX40 in immune-complex mediated kidney disease. In vitro stimulation and proliferation studies were performed with CD4+ cells from wild type and CD30/OX40 double knock-out (CD30OX40-/-) mice. In vivo studies were performed by induction of nephrotoxic serum nephritis in wild type, CD30OX40- /- , CD30-/-, OX40-/-, reconstituted Rag1-/- and C57Bl/6J mice treated with αCD30L αOX40L antibodies. CD30, OX40 and their ligands were upregulated on various leukocytes in nephrotoxic serum nephritis. CD30OX40-/- mice, but not CD30-/- or OX40-/- mice were protected from nephrotoxic serum nephritis. Similar protection was found in Rag1-/- mice injected with CD4+ T cells from CD30OX40-/- mice compared to Rag1-/- mice injected with CD4+ T cells from wild type mice. Furthermore, CD4+ T cells deficient in CD30OX40-/- displayed decreased expression of CCR6 in vivo. CD30OX40-/- cells were fully capable of differentiating into disease mediating T helper cell subsets, but showed significantly decreased levels of proliferation in vivo and in vitro compared to wild type cells. Blocking antibodies against CD30L and OX40L ameliorated nephrotoxic serum nephritis without affecting pan-effector or memory T cell populations. Thus, our results indicate disease promotion via CD30 and OX40 signaling due to facilitation of exaggerated T cell proliferation and migration of T helper 17 cells in nephrotoxic serum nephritis. Hence, co-stimulation blockade targeting the CD30 and OX40 signaling pathways may provide a novel therapeutic strategy in autoimmune kidney disease.
Collapse
Affiliation(s)
- Katharina Artinger
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander H Kirsch
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Agnes A Mooslechner
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Daniel J Cooper
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham, UK; Division of Global and Tropical Health, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Ida Aringer
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Max Schuller
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Corinna Schabhüttl
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Konstantin A Klötzer
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Kerstin Schweighofer
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp Eller
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Hideo Yagita
- Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Anna L Illert
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander R Rosenkranz
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Peter J Lane
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham, UK
| | - Kathrin Eller
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| |
Collapse
|
13
|
Regulatory T Cells Fail to Suppress Fast Homeostatic Proliferation In Vitro. Life (Basel) 2021; 11:life11030245. [PMID: 33809452 PMCID: PMC8002103 DOI: 10.3390/life11030245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Homeostatic proliferation (HP) is a physiological process that reconstitutes the T cell pool after lymphopenia involving Interleukin-7 and 15 (IL-7 and IL-15), which are the key cytokines regulating the process. However, there is no evidence that these cytokines influence the function of regulatory T cells (Tregs). Since lymphopenia often accompanies autoimmune diseases, we decided to study the functional activity of Tregs stimulated by HP cytokines from patients with rheumatoid arthritis as compared with that of those from healthy donors. Since T cell receptor (TCR) signal strength determines the intensity of HP, we imitated slow HP using IL-7 or IL-15 and fast HP using a combination of IL-7 or IL-15 with anti-CD3 antibodies, cultivating Treg cells with peripheral blood mononuclear cells (PBMCs) at a 1:1 ratio. We used peripheral blood from 14 patients with rheumatoid arthritis and 18 healthy volunteers. We also used anti-CD3 and anti-CD3 + IL-2 stimulation as controls. The suppressive activity of Treg cells was evaluated in each case by the inhibition of the proliferation of CD4+ and CD8+ cells. The phenotype and proliferation of purified CD3+CD4+CD25+CD127lo cells were assessed by flow cytometry. The suppressive activity of the total pool of Tregs did not differ between the rheumatoid arthritis and healthy donors; however, it significantly decreased in conditions close to fast HP when the influence of HP cytokines was accompanied by anti-CD3 stimulation. The Treg proliferation caused by HP cytokines was lower in the rheumatoid arthritis (RA) patients than in the healthy individuals. The revealed decrease in Treg suppressive activity could impact the TCR landscape during lymphopenia and lead to the proliferation of potentially self-reactive T cell clones that are able to receive relatively strong TCR signals. This may be another explanation as to why lymphopenia is associated with the development of autoimmune diseases. The revealed decrease in Treg proliferation under IL-7 and IL-15 exposure can lead to a delay in Treg pool reconstitution in patients with rheumatoid arthritis in the case of lymphopenia.
Collapse
|
14
|
Silaeva YY, Kalinina AA, Khromykh LM, Deykin AV, Kazansky DB. Formation of a Unique Population of CD8+ T Lymphocytes after Adoptive Transfer of Syngeneic Splenocytes to Mice with Lymphopenia. DOKL BIOCHEM BIOPHYS 2021; 497:71-74. [PMID: 33666806 PMCID: PMC8068684 DOI: 10.1134/s1607672921020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 11/23/2022]
Abstract
Under conditions of lymphopenia, T lymphocytes proliferate and acquire a surface activation phenotype, which in many respects is similar to the phenotype of true memory T cells. We investigated the phenotypic features of the CD8+ T-cell population formed from donor lymphocytes after adoptive transfer of syngeneic splenocytes to sublethally irradiated mice. This population expresses markers CD44, CD122, CD5, CD49d and the chemokine receptor CXCR3. Thus, for the first time, the phenomenon of the formation of a population of T cells with signs of suppressive CD8+ T lymphocytes and true memory cells was demonstrated.
Collapse
Affiliation(s)
- Yu Yu Silaeva
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - A A Kalinina
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L M Khromykh
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Deykin
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - D B Kazansky
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
15
|
Delgobo M, Heinrichs M, Hapke N, Ashour D, Appel M, Srivastava M, Heckel T, Spyridopoulos I, Hofmann U, Frantz S, Ramos GC. Terminally Differentiated CD4 + T Cells Promote Myocardial Inflammaging. Front Immunol 2021; 12:584538. [PMID: 33679735 PMCID: PMC7935504 DOI: 10.3389/fimmu.2021.584538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022] Open
Abstract
The cardiovascular and immune systems undergo profound and intertwined alterations with aging. Recent studies have reported that an accumulation of memory and terminally differentiated T cells in elderly subjects can fuel myocardial aging and boost the progression of heart diseases. Nevertheless, it remains unclear whether the immunological senescence profile is sufficient to cause age-related cardiac deterioration or merely acts as an amplifier of previous tissue-intrinsic damage. Herein, we sought to decompose the causality in this cardio-immune crosstalk by studying young mice harboring a senescent-like expanded CD4+ T cell compartment. Thus, immunodeficient NSG-DR1 mice expressing HLA-DRB1*01:01 were transplanted with human CD4+ T cells purified from matching donors that rapidly engrafted and expanded in the recipients without causing xenograft reactions. In the donor subjects, the CD4+ T cell compartment was primarily composed of naïve cells defined as CCR7+CD45RO-. However, when transplanted into young lymphocyte-deficient mice, CD4+ T cells underwent homeostatic expansion, upregulated expression of PD-1 receptor and strongly shifted towards effector/memory (CCR7- CD45RO+) and terminally-differentiated phenotypes (CCR7-CD45RO-), as typically seen in elderly. Differentiated CD4+ T cells also infiltrated the myocardium of recipient mice at comparable levels to what is observed during physiological aging. In addition, young mice harboring an expanded CD4+ T cell compartment showed increased numbers of infiltrating monocytes, macrophages and dendritic cells in the heart. Bulk mRNA sequencing analyses further confirmed that expanding T-cells promote myocardial inflammaging, marked by a distinct age-related transcriptomic signature. Altogether, these data indicate that exaggerated CD4+ T-cell expansion and differentiation, a hallmark of the aging immune system, is sufficient to promote myocardial alterations compatible with inflammaging in juvenile healthy mice.
Collapse
Affiliation(s)
- Murilo Delgobo
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Margarete Heinrichs
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Nils Hapke
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - DiyaaElDin Ashour
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Marc Appel
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Mugdha Srivastava
- Core Unit Systems Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Tobias Heckel
- Core Unit Systems Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Ioakim Spyridopoulos
- Freeman Hospital, Department of Cardiology, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Cardiovascular Biology and Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ulrich Hofmann
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Frantz
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Gustavo Campos Ramos
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
A Clinical Trial With Adoptive Transfer of Ex Vivo-induced, Donor-specific Immune-regulatory Cells in Kidney Transplantation-A Second Report. Transplantation 2021; 104:2415-2423. [PMID: 33125206 DOI: 10.1097/tp.0000000000003149] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although the outcome of kidney transplantation (KTx) has improved, various adverse effects of immunosuppressants and chronic rejection aggravate the long-term prognosis of patients. Therefore, the induction of immune tolerance may be an effective therapeutic strategy. METHODS A clinical trial aiming at immune tolerance induction was conducted in kidney transplant recipients from HLA mismatched living donors by infusing autologous donor-specific regulatory T cells (Treg). To obtain Treg, recipient's peripheral blood mononuclear cells were cocultured with irradiated donor cells in the presence of anti-CD80/CD86 monoclonal antibody for 2 weeks. For preconditioning, splenectomy + cyclophosphamide (CP) was employed in the first series (group A; n = 9). In group B, splenectomy was substituted by preadministration of rituximab (group B; n = 3). In the latest cases, rituximab + rabbit antithymocyte globulin was administered instead of cyclophosphamide (group C; n = 4). Twelve days after KTx, the cultured cells were intravenously infused, and immunosuppressants were gradually tapered thereafter. RESULTS Although mixed lymphocyte reaction was remarkably suppressed in a donor-specific fashion, 6 out of 9 patients from group A, 1 out of 3 from group B, and 1 out of 4 from group C developed acute rejection within 1 year after KTx. Complete cessation of immunosuppression was not achieved, and a small dose of immunosuppressants was continued. CONCLUSIONS The adoptive transfer of autologous ex vivo-expanded Treg is 1 of the options to possibly induce alloimmune hyporesponsiveness. However, in the present study, further regimen optimization is still required and should be the focus of future investigations.
Collapse
|
17
|
Kalinina AA, Khromykh LM, Kazansky DB, Deykin AV, Silaeva YY. Suppression of the Immune Response by Syngeneic Splenocytes Adoptively Transferred to Sublethally Irradiated Mice. Acta Naturae 2021; 13:116-126. [PMID: 33959391 PMCID: PMC8084293 DOI: 10.32607/actanaturae.11252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The peripheral T-cell pool consists of several, functionally distinct
populations of CD8+ T cells. CD44 and CD62L are among the major
surface markers that allow us to define T-cell populations. The expression of
these molecules depends on the functional status of a T lymphocyte. Under
lymphopenic conditions, peripheral T cells undergo homeostatic proliferation
and acquire the memory-like surface phenotype CD44hiCD62Lhi. However, the data
on the functional activity of these cells remains controversial. In this paper,
we analyzed the effects of the adoptive transfer of syngeneic splenocytes on
the recovery of CD8+ T cells in sublethally irradiated mice. Our
data demonstrate that under lymphopenia, donor lymphocytes form a population of
memory-like CD8+ T cells with the phenotype CD122+CD5+CD49dhiCXCR3+
that shares the phenotypic characteristics of true memory cells and suppressive
CD8+ T cells. Ex vivo experiments showed that after
adoptive transfer in irradiated mice, T cells lacked the functions of true
effector or memory cells; the allogeneic immune response and immune response to
pathogens were greatly suppressed in these mice.
Collapse
Affiliation(s)
- A. A. Kalinina
- Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, 115478 Russia
| | - L. M. Khromykh
- Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, 115478 Russia
| | - D. B. Kazansky
- Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, 115478 Russia
| | - A. V. Deykin
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - Yu. Yu. Silaeva
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
18
|
Tuncel J, Holmberg J, Haag S, Hopkins MH, Wester-Rosenlöf L, Carlsen S, Olofsson P, Holmdahl R. Self-reactive T cells induce and perpetuate chronic relapsing arthritis. Arthritis Res Ther 2020; 22:95. [PMID: 32345366 PMCID: PMC7187533 DOI: 10.1186/s13075-020-2104-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/13/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND CD4+ T cells play a central role during the early stages of rheumatoid arthritis (RA), but to which extent they are required for the perpetuation of the disease is still not fully understood. The aim of the current study was to obtain conclusive evidence that T cells drive chronic relapsing arthritis. METHODS We used the rat pristane-induced arthritis model, which accurately portrays the chronic relapsing-remitting disease course of RA, to examine the contribution of T cells to chronic arthritis. RESULTS Rats subjected to whole-body irradiation and injected with CD4+ T cells from lymph nodes of pristane-injected donors developed chronic arthritis that lasted for more than 4 months, whereas T cells from the spleen only induced acute disease. Thymectomy in combination with irradiation enhanced the severity of arthritis, suggesting that sustained lymphopenia promotes T cell-driven chronic inflammation in this model. The ability of T cells to induce chronic arthritis correlated with their expression of Th17-associated transcripts, and while depletion of T cells in rats with chronic PIA led to transient, albeit significant, reduction in disease, neutralization of IL-17 resulted in almost complete and sustained remission. CONCLUSION These findings show that, once activated, self-reactive T cells can sustain inflammatory responses for extended periods of time and suggest that such responses are promoted in the presence of IL-17.
Collapse
Affiliation(s)
- Jonatan Tuncel
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jens Holmberg
- Section for Medical Inflammation Research, BMCI11, Lund University, Lund, Sweden
| | - Sabrina Haag
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Lena Wester-Rosenlöf
- Section for Medical Inflammation Research, BMCI11, Lund University, Lund, Sweden
| | - Stefan Carlsen
- Section for Medical Inflammation Research, BMCI11, Lund University, Lund, Sweden
| | - Peter Olofsson
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. .,Section for Medical Inflammation Research, BMCI11, Lund University, Lund, Sweden.
| |
Collapse
|
19
|
Fukasaku Y, Goto R, Ganchiku Y, Emoto S, Zaitsu M, Watanabe M, Kawamura N, Fukai M, Shimamura T, Taketomi A. Novel immunological approach to asses donor reactivity of transplant recipients using a humanized mouse model. Hum Immunol 2020; 81:342-353. [PMID: 32345498 DOI: 10.1016/j.humimm.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
In organ transplantation, a reproducible and robust immune-monitoring assay has not been established to determine individually tailored immunosuppressants (IS). We applied humanized mice reconstituted with human (hu-) peripheral blood mononuclear cells (PBMCs) obtained from living donor liver transplant recipients to evaluate their immune status. Engraftment of 2.5 × 106 hu-PBMCs from healthy volunteers and recipients in the NSG mice was achieved successfully. The reconstituted lymphocytes consisted mainly of hu-CD3+ lymphocytes with predominant CD45RA-CD62Llo TEM and CCR6-CXCR3+CD4+ Th1 cells in hu-PBMC-NSG mice. Interestingly, T cell allo-reactivity of hu-PBMC-NSG mice was amplified significantly compared with that of freshly isolated PBMCs (p < 0.05). Furthermore, magnified hu-T cell responses to donor antigens (Ag) were observed in 2/10 immunosuppressed recipients with multiple acute rejection (AR) experiences, suggesting that the immunological assay in hu-PBMC-NSG mice revealed hidden risks of allograft rejection by IS. Furthermore, donor Ag-specific hyporesponsiveness was maintained in recipients who had been completely weaned off IS (n = 4), despite homeostatic proliferation of hu-T cells in the hu-PBMC-NSG mice. The immunological assay in humanized mice provides a new tool to assess recipient immunity in the absence of IS and explore the underlying mechanisms to maintaining operational tolerance.
Collapse
Affiliation(s)
- Yasutomo Fukasaku
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Ryoichi Goto
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan.
| | - Yoshikazu Ganchiku
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Shin Emoto
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Masaaki Zaitsu
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Masaaki Watanabe
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan; Department of Transplant Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Norio Kawamura
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan; Department of Transplant Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan.
| |
Collapse
|
20
|
B Cells Inhibit CD4 + T Cell-Mediated Immunity to Brucella Infection in a Major Histocompatibility Complex Class II-Dependent Manner. Infect Immun 2020; 88:IAI.00075-20. [PMID: 32071068 DOI: 10.1128/iai.00075-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 01/18/2023] Open
Abstract
Brucella spp. are facultative intracellular bacteria notorious for their ability to induce a chronic, and often lifelong, infection known as brucellosis. To date, no licensed vaccine exists for prevention of human disease, and mechanisms underlying chronic illness and immune evasion remain elusive. We and others have observed that B cell-deficient mice challenged with Brucella display reduced bacterial burden following infection, but the underlying mechanism has not been clearly defined. Here, we show that at 1 month postinfection, B cell deficiency alone enhanced resistance to splenic infection ∼100-fold; however, combined B and T cell deficiency did not impact bacterial burden, indicating that B cells only enhance susceptibility to infection when T cells are present. Therefore, we investigated whether B cells inhibit T cell-mediated protection against Brucella Using B and T cell-deficient Rag1-/- animals as recipients, we demonstrate that adoptive transfer of CD4+ T cells alone confers marked protection against Brucella melitensis that is abrogated by cotransfer of B cells. Interestingly, depletion of CD4+ T cells from B cell-deficient, but not wild-type, mice enhanced susceptibility to infection, further confirming that CD4+ T cell-mediated immunity against Brucella is inhibited by B cells. In addition, we found that the ability of B cells to suppress CD4+ T cell-mediated immunity and modulate CD4+ T cell effector responses during infection was major histocompatibility complex class II (MHCII)-dependent. Collectively, these findings indicate that B cells modulate CD4+ T cell function through an MHCII-dependent mechanism which enhances susceptibility to Brucella infection.
Collapse
|
21
|
Yeung MY, Grimmig T, Sayegh MH. Costimulation Blockade in Transplantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:267-312. [PMID: 31758538 DOI: 10.1007/978-981-32-9717-3_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
T cells play a pivotal role in orchestrating immune responses directed against a foreign (allogeneic) graft. For T cells to become fully activated, the T-cell receptor (TCR) must interact with the major histocompatibility complex (MHC) plus peptide complex on antigen-presenting cells (APCs), followed by a second "positive" costimulatory signal. In the absence of this second signal, T cells become anergic or undergo deletion. By blocking positive costimulatory signaling, T-cell allo-responses can be aborted, thus preventing graft rejection and promoting long-term allograft survival and possibly tolerance (Alegre ML, Najafian N, Curr Mol Med 6:843-857, 2006; Li XC, Rothstein DM, Sayegh MH, Immunol Rev 229:271-293, 2009). In addition, costimulatory molecules can provide negative "coinhibitory" signals that inhibit T-cell activation and terminate immune responses; strategies to promote these pathways can also lead to graft tolerance (Boenisch O, Sayegh MH, Najafian N, Curr Opin Organ Transplant 13:373-378, 2008). However, T-cell costimulation involves an incredibly complex array of interactions that may act simultaneously or at different times in the immune response and whose relative importance varies depending on the different T-cell subsets and activation status. In transplantation, the presence of foreign alloantigen incites not only destructive T effector cells but also protective regulatory T cells, the balance of which ultimately determines the fate of the allograft (Lechler RI, Garden OA, Turka LA, Nat Rev Immunol 3:147-158, 2003). Since the processes of alloantigen-specific rejection and regulation both require activation of T cells, costimulatory interactions may have opposing or synergistic roles depending on the cell being targeted. Such complexities present both challenges and opportunities in targeting T-cell costimulatory pathways for therapeutic purposes. In this chapter, we summarize our current knowledge of the various costimulatory pathways in transplantation and review the current state and challenges of harnessing these pathways to promote graft tolerance (summarized in Table 10.1).
Collapse
Affiliation(s)
- Melissa Y Yeung
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| | - Tanja Grimmig
- Department of Surgery, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Mohamed H Sayegh
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Medicine and Immunology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
22
|
Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal Stromal Cells for Transplant Tolerance. Front Immunol 2019; 10:1287. [PMID: 31231393 PMCID: PMC6559333 DOI: 10.3389/fimmu.2019.01287] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
In solid organ transplantation lifelong immunosuppression exposes transplant recipients to life-threatening complications, such as infections and malignancies, and to severe side effects. Cellular therapy with mesenchymal stromal cells (MSC) has recently emerged as a promising strategy to regulate anti-donor immune responses, allowing immunosuppressive drug minimization and tolerance induction. In this review we summarize preclinical data on MSC in solid organ transplant models, focusing on potential mechanisms of action of MSC, including down-regulation of effector T-cell response and activation of regulatory pathways. We will also provide an overview of available data on safety and feasibility of MSC therapy in solid organ transplant patients, highlighting the issues that still need to be addressed before establishing MSC as a safe and effective tolerogenic cell therapy in transplantation.
Collapse
Affiliation(s)
- Manuel Alfredo Podestà
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Remuzzi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Federica Casiraghi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
23
|
Liu Z, Liao F, Scozzi D, Furuya Y, Pugh KN, Hachem R, Chen DL, Cano M, Green JM, Krupnick AS, Kreisel D, Perl AKT, Huang HJ, Brody SL, Gelman AE. An obligatory role for club cells in preventing obliterative bronchiolitis in lung transplants. JCI Insight 2019; 5:124732. [PMID: 30990794 DOI: 10.1172/jci.insight.124732] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Obliterative bronchiolitis (OB) is a poorly understood airway disease characterized by the generation of fibrotic bronchiolar occlusions. In the lung transplant setting, OB is a pathological manifestation of bronchiolitis obliterans syndrome (BOS), which is a major impediment to long-term recipient survival. Club cells play a key role in bronchiolar epithelial repair, but whether they promote lung transplant tolerance through preventing OB remains unclear. We determined if OB occurs in mouse orthotopic lung transplants following conditional transgene-targeted club cell depletion. In syngeneic lung transplants club cell depletion leads to transient epithelial injury followed by rapid club cell-mediated repair. In contrast, allogeneic lung transplants develop severe OB lesions and poorly regenerate club cells despite immunosuppression treatment. Lung allograft club cell ablation also triggers the recognition of alloantigens, and pulmonary restricted self-antigens reported associated with BOS development. However, CD8+ T cell depletion restores club cell reparative responses and prevents OB. In addition, ex-vivo analysis reveals a specific role for alloantigen-primed effector CD8+ T cells in preventing club cell proliferation and maintenance. Taken together, we demonstrate a vital role for club cells in maintaining lung transplant tolerance and propose a new model to identify the underlying mechanisms of OB.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fuyi Liao
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Davide Scozzi
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Kaitlyn N Pugh
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | - Jonathan M Green
- Department of Medicine.,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexander S Krupnick
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anne Karina T Perl
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Howard J Huang
- Houston Methodist J.C. Walter Jr. Transplant Center, Houston, Texas, USA
| | | | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Toniutto P, Bitetto D, Fornasiere E, Fumolo E. Challenges and future developments in liver transplantation. MINERVA GASTROENTERO 2018; 65:136-152. [PMID: 30303340 DOI: 10.23736/s1121-421x.18.02529-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver transplantation (LT) has become the treatment of choice for a wide range of liver diseases in both adult and pediatric patients. Until recently, the largest proportion of LT in adults, were performed in patients with hepatitis C (HCV) related cirrhosis. The recent availability of safe and effective direct antiviral agents to cure HCV infection in almost all patients whatever the HCV genotype and severity of liver disease, will reduce the need for LT in this category of recipients. Thus, it is presumed that in the next 1 to 2 decades HCV related liver disease will diminish substantially, whereas non-alcoholic steato-hepatitis (NASH) will correspondingly escalate as an indication for LT. The greatest challenges facing LT remain the limited supply of donor organs, and the need for chronic immunosuppression, which represent the true obstacles to the greater application and durable success of the LT procedure. This review aimed to highlight, in different sections, the main open issues and future developments in LT. These will be focused to explore current and future strategies to maximize the use of limited organs, to offer an update on potential new approaches to immunosuppression and to imagine new indications for LT when the number of patients awaiting transplants for HCV related liver disease is reduced.
Collapse
Affiliation(s)
- Pierluigi Toniutto
- Unit of Hepatology and Liver Transplantation, Department of Medical Area (DAME), University of Udine, Udine, Italy -
| | - Davide Bitetto
- Unit of Hepatology and Liver Transplantation, Department of Medical Area (DAME), University of Udine, Udine, Italy
| | - Ezio Fornasiere
- Unit of Hepatology and Liver Transplantation, Department of Medical Area (DAME), University of Udine, Udine, Italy
| | - Elisa Fumolo
- Unit of Hepatology and Liver Transplantation, Department of Medical Area (DAME), University of Udine, Udine, Italy
| |
Collapse
|
25
|
Katsavos S, Coles A. Alemtuzumab as Treatment for Multiple Sclerosis. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a032029. [PMID: 29500306 DOI: 10.1101/cshperspect.a032029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alemtuzumab, the first monoclonal antibody to be used as a therapy and the first to be humanized, was introduced into the treatment of multiple sclerosis in 1991 after its successful use in hematology, oncology, and transplantation medicine. One phase 2 and two phase 3 trials of this lymphocyte-depleting agent have established alemtuzumab's superior efficacy to interferon β-1a over the short term (2-3 years) with greater relapse rate reduction, reduced accumulation of disability, and more frequent sustained improvement in disability. Longer-term extension studies show durable effects on slowing cerebral atrophy over 6 years and maintained low relapse rates over 10 years, despite roughly half of patients not needing further dosing. Homeostatic proliferation of residual T cells after alemtuzumab-induced lymphopenia is probably responsible for its most common side effects: secondary autoimmunity 1 or 2 years after the last infusion of alemtuzumab affecting the thyroid gland (30% of patients), platelets (1%), or renal glomeruli (0.1%). With the prerequisite of patient and physician adherence to a prolonged safety-monitoring protocol, alemtuzumab offers durable high efficacy from infrequent dosing.
Collapse
Affiliation(s)
- Serafeim Katsavos
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Alasdair Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
26
|
Inman CF, Eldershaw SA, Croudace JE, Davies NJ, Sharma-Oates A, Rai T, Pearce H, Sirovica M, Chan YLT, Verma K, Zuo J, Nagra S, Kinsella F, Nunnick J, Amel-Kashipaz R, Craddock C, Malladi R, Moss P. Unique features and clinical importance of acute alloreactive immune responses. JCI Insight 2018; 3:97219. [PMID: 29769441 PMCID: PMC6012511 DOI: 10.1172/jci.insight.97219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/19/2018] [Indexed: 01/22/2023] Open
Abstract
Allogeneic stem cell transplantation (allo-SCT) can cure some patients with hematopoietic malignancy, but this relies on the development of a donor T cell alloreactive immune response. T cell activity in the first 2 weeks after allo-SCT is crucial in determining outcome, despite the clinical effects of the early alloreactive immune response often not appearing until later. However, the effect of the allogeneic environment on T cells is difficult to study at this time point due to the effects of profound lymphopenia. We approached this problem by comparing T cells at week 2 after allograft to T cells from autograft patients. Allograft T cells were present in small numbers but displayed intense proliferation with spontaneous cytokine production. Oligoclonal expansions at week 2 came to represent a substantial fraction of the established T cell pool and were recruited into tissues affected by graft-versus-host disease. Transcriptional analysis uncovered a range of potential targets for immune manipulation, including OX40L, TWEAK, and CD70. These findings reveal that recognition of alloantigen drives naive T cells toward a unique phenotype. Moreover, they demonstrate that early clonal T cell responses are recruited to sites of subsequent tissue damage and provide a range of targets for potential therapeutic immunomodulation. Alloreactive response T cells at 2 weeks after allo-SCT displayed intense proliferation with spontaneous cytokine production, and were recruited into tissues affected by GvHD.
Collapse
Affiliation(s)
- Charlotte F Inman
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Suzy A Eldershaw
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Joanne E Croudace
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Nathaniel J Davies
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Archana Sharma-Oates
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tanuja Rai
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Mirjana Sirovica
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Y L Tracey Chan
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Kriti Verma
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Sandeep Nagra
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Francesca Kinsella
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Jane Nunnick
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Rasoul Amel-Kashipaz
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Charles Craddock
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Ram Malladi
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and.,Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and.,Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
27
|
Carty F, Corbett JM, Cunha JPMCM, Reading JL, Tree TIM, Ting AE, Stubblefield SR, English K. Multipotent Adult Progenitor Cells Suppress T Cell Activation in In Vivo Models of Homeostatic Proliferation in a Prostaglandin E2-Dependent Manner. Front Immunol 2018; 9:645. [PMID: 29740426 PMCID: PMC5925221 DOI: 10.3389/fimmu.2018.00645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/14/2018] [Indexed: 12/14/2022] Open
Abstract
Lymphodepletion strategies are used in the setting of transplantation (including bone marrow, hematopoietic cell, and solid organ) to create space or to prevent allograft rejection and graft versus host disease. Following lymphodepletion, there is an excess of IL-7 available, and T cells that escape depletion respond to this cytokine undergoing accelerated proliferation. Moreover, this environment promotes the skew of T cells to a Th1 pro-inflammatory phenotype. Existing immunosuppressive regimens fail to control this homeostatic proliferative (HP) response, and thus the development of strategies to successfully control HP while sparing T cell reconstitution (providing a functioning immune system) represents a significant unmet need in patients requiring lymphodepletion. Multipotent adult progenitor cells (MAPC®) have the capacity to control T cell proliferation and Th1 cytokine production. Herein, this study shows that MAPC cells suppressed anti-thymocyte globulin-induced cytokine production but spared T cell reconstitution in a pre-clinical model of lymphodepletion. Importantly, MAPC cells administered intraperitoneally were efficacious in suppressing interferon-γ production and in promoting the expansion of regulatory T cells in the lymph nodes. MAPC cells administered intraperitoneally accumulated in the omentum but were not present in the spleen suggesting a role for soluble factors. MAPC cells suppressed lymphopenia-induced cytokine production in a prostaglandin E2-dependent manner. This study suggests that MAPC cell therapy may be useful as a novel strategy to target lymphopenia-induced pathogenic T cell responses in lymphodepleted patients.
Collapse
Affiliation(s)
- Fiona Carty
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, Ireland
| | - Jennifer M Corbett
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, Ireland
| | | | - James L Reading
- Department of Immunobiology, King's College London, London, United Kingdom
| | - Timothy I M Tree
- Department of Immunobiology, King's College London, London, United Kingdom
| | | | | | - Karen English
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
28
|
Casiraghi F, Perico N, Remuzzi G. Mesenchymal stromal cells for tolerance induction in organ transplantation. Hum Immunol 2017; 79:304-313. [PMID: 29288697 DOI: 10.1016/j.humimm.2017.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
Abstract
The primary challenge in organ transplantation continues to be the need to suppress the host immune system long-term to ensure prolonged allograft survival. Long-term non-specific immunosuppression can, however, result in life-threatening complications. Thus, efforts have been pursued to explore novel strategies that would allow minimization of maintenance immunosuppression, eventually leading to transplant tolerance. In this scenario, bone marrow-derived mesenchymal stromal cells (MSC), given their unique immunomodulatory properties to skew the balance between regulatory and memory T cells, have emerged as potential candidates for cell-based therapy to promote immune tolerance. Here, we review our initial clinical experience with bone marrow-derived MSC in living-donor kidney transplant recipients and provide an overview of the available results of other clinical programs with MSC in kidney and liver transplantation, highlighting hurdles and success of this innovative cell-based therapy.
Collapse
Affiliation(s)
| | - Norberto Perico
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy; Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale (ASST), Papa Giovanni XXIII, Bergamo, Italy; L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
29
|
Gut dysbiosis breaks immunological tolerance toward the central nervous system during young adulthood. Proc Natl Acad Sci U S A 2017; 114:E9318-E9327. [PMID: 29078267 DOI: 10.1073/pnas.1615715114] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease targeting the central nervous system (CNS) mainly in young adults, and a breakage of immune tolerance to CNS self-antigens has been suggested to initiate CNS autoimmunity. Age and microbial infection are well-known factors involved in the development of autoimmune diseases, including MS. Recent studies have suggested that alterations in the gut microbiota, referred to as dysbiosis, are associated with MS. However, it is still largely unknown how gut dysbiosis affects the onset and progression of CNS autoimmunity. In this study, we investigated the effects of age and gut dysbiosis on the development of CNS autoimmunity in humanized transgenic mice expressing the MS-associated MHC class II (MHC-II) gene, HLA-DR2a, and T-cell receptor (TCR) genes specific for MBP87-99/DR2a that were derived from an MS patient. We show here that the induction of gut dysbiosis triggers the development of spontaneous experimental autoimmune encephalomyelitis (EAE) during adolescence and early young adulthood, while an increase in immunological tolerance with aging suppresses disease onset after late young adulthood in mice. Furthermore, gut dysbiosis induces the expression of complement C3 and production of the anaphylatoxin C3a, and down-regulates the expression of the Foxp3 gene and anergy-related E3 ubiquitin ligase genes. Consequently, gut dysbiosis was able to trigger the development of encephalitogenic T cells and promote the induction of EAE during the age window of young adulthood.
Collapse
|
30
|
Crepeau RL, Ford ML. Challenges and opportunities in targeting the CD28/CTLA-4 pathway in transplantation and autoimmunity. Expert Opin Biol Ther 2017; 17:1001-1012. [PMID: 28525959 DOI: 10.1080/14712598.2017.1333595] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION T cell activation is a complex process that requires multiple cell signaling pathways, including a primary recognition signal and additional costimulatory signals. One of the best-characterized costimulatory pathways includes the Ig superfamily members CD28 and CTLA-4 and their ligands CD80 and CD86. Areas covered: This review discusses past, current and future biological therapies that have been utilized to block the CD28/CTLA-4 cosignaling pathway in the settings of autoimmunity and transplantation, as well the challenges facing successful implementation of these therapies. Expert opinion: The development of CD28 blockers Abatacept and Belatacept provided a more targeted therapy approach for transplant rejection and autoimmune disease relative to calcineurin inhibitors and anti-proliferatives, but overall efficacy may be limited due to their collateral effect of simultaneously blocking CTLA-4 coinhibitory signals. As such, current investigations into the potential of selective CD28 blockade to block the costimulatory potential of CD28 while exploiting the coinhibitory effects of CTLA-4 are promising. However, as selective CD28 blockade inhibits the activity of both effector and regulatory T cells, an important goal for the future is the design of therapies that will maximize the attenuation of effector responses while preserving the suppressive function of T regulatory cells.
Collapse
Affiliation(s)
- Rebecca L Crepeau
- a Emory Transplant Center and Department of Surgery , Emory University , Atlanta , GA , USA
| | - Mandy L Ford
- a Emory Transplant Center and Department of Surgery , Emory University , Atlanta , GA , USA
| |
Collapse
|
31
|
Toniutto P, Zanetto A, Ferrarese A, Burra P. Current challenges and future directions for liver transplantation. Liver Int 2017; 37:317-327. [PMID: 27634369 DOI: 10.1111/liv.13255] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022]
Abstract
Liver transplantation is an effective and widely used therapy for several patients with acute and chronic liver diseases. The discrepancy between the number of patients on the waiting list and available donors remains the key issue and is responsible for the high rate of waiting list mortality. The recent news is that the majority of patients with hepatitis C virus related liver disease will be cured by new antivirals therefore we should expect soon a reduction in the need of liver transplantation for these recipients. This review aims to highlight, in two different sections, the main open issues of liver transplantation concerning the current and future strategies to the best use of limited number of organs. The first section cover the strategies to increase the donor pool, discussing the use of older donors, split grafts, living donation and donation after cardiac death and mechanical perfusion systems to improve the preservation of organs before liver transplantation. Challenges in immunosuppressive therapy and operational tolerance induction will be evaluated as potential tools to increase the survival in liver transplant recipients and to reducing the need of re-transplantation. The second section is devoted to the evaluation of possible new indications to liver transplantation, where the availability of organs by implementing the strategies mentioned in the first section and the reduction in the number of waiting transplants for HCV disease is realized. Among these new potential indications for transplantation, the expansion of the Milan criteria for hepatocellular cancer is certainly the most open to question.
Collapse
Affiliation(s)
- Pierluigi Toniutto
- Department of Clinical Sciences Experimental and Clinical, Medical Liver Transplant Section, University of Udine, Udine, Italy
| | - Alberto Zanetto
- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padova, Italy
| | - Alberto Ferrarese
- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padova, Italy
| | - Patrizia Burra
- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padova, Italy
| |
Collapse
|
32
|
Benichou G, Gonzalez B, Marino J, Ayasoufi K, Valujskikh A. Role of Memory T Cells in Allograft Rejection and Tolerance. Front Immunol 2017; 8:170. [PMID: 28293238 PMCID: PMC5328996 DOI: 10.3389/fimmu.2017.00170] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/02/2017] [Indexed: 12/30/2022] Open
Abstract
Memory T cells are characterized by their low activation threshold, robust effector functions, and resistance to conventional immunosuppression and costimulation blockade. Unlike their naïve counterparts, memory T cells reside in and recirculate through peripheral non-lymphoid tissues. Alloreactive memory T cells are subdivided into different categories based on their origins, phenotypes, and functions. Recipients whose immune systems have been directly exposed to allogeneic major histocompatibility complex (MHC) molecules display high affinity alloreactive memory T cells. In the absence of any prior exposure to allogeneic MHC molecules, endogenous alloreactive memory T cells are regularly generated through microbial infections (heterologous immunity). Regardless of their origin, alloreactive memory T cells represent an essential element of the allograft rejection process and a major barrier to tolerance induction in clinical transplantation. This article describes the different subsets of alloreactive memory T cells involved in transplant rejection and examine their generation, functional properties, and mechanisms of action. In addition, we discuss strategies developed to target deleterious allospecific memory T cells in experimental animal models and clinical settings.
Collapse
Affiliation(s)
- Gilles Benichou
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruno Gonzalez
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jose Marino
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Katayoun Ayasoufi
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Valujskikh
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
33
|
Guo H, Lu L, Wang R, Perez-Gutierrez A, Abdulkerim H, Zahorchak A, Sumpter T, Reimann KA, Thomson A, Ezzelarab M. Impact of Human Mutant TGFβ1/Fc Protein on Memory and Regulatory T Cell Homeostasis Following Lymphodepletion in Nonhuman Primates. Am J Transplant 2016; 16:2994-3006. [PMID: 27217298 PMCID: PMC5121100 DOI: 10.1111/ajt.13883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/29/2016] [Accepted: 05/07/2016] [Indexed: 01/25/2023]
Abstract
Transforming growth factor β1 (TGFβ1) plays a key role in T cell homeostasis and peripheral tolerance. We evaluated the influence of a novel human mutant TGFβ1/Fc (human IgG4 Fc) fusion protein on memory CD4+ and CD8+ T cell (Tmem) responses in vitro and their recovery following antithymocyte globulin (ATG)-mediated lymphodepletion in monkeys. TGFβ1/Fc induced Smad2/3 protein phosphorylation in rhesus and human peripheral blood mononuclear cells and augmented the suppressive effect of rapamycin on rhesus Tmem proliferation after either alloactivation or anti-CD3/CD28 stimulation. In combination with IL-2, the incidence of CD4+ CD25hi Foxp3hi regulatory T cells (Treg) and Treg:Th17 ratios were increased. In lymphodepleted monkeys, whole blood trough levels of infused TGFβ1/Fc were maintained between 2 and 7 μg/mL for 35 days. Following ATG administration, total T cell numbers were reduced markedly. In those given TGFβ1/Fc infusion, CD8+ T cell recovery to predepletion levels was delayed compared to controls. Additionally, numbers of CD4+ CD25hi CD127lo Treg increased at 4-6 weeks after depletion but subsequently declined to predepletion levels by 12 weeks. In all monkeys, CD4+ CD25hi Foxp3hi Treg/CD4+ IL-17+ cell ratios were reduced, particularly after stopping TGFβ1/Fc infusion. Thus, human TGFβ1/Fc infusion may delay Tmem recovery following lymphodepletion in nonhuman primates. Combined (low-dose) IL-2 infusion may be required to improve the Treg:Th17 ratio following lymphodepletion.
Collapse
Affiliation(s)
- H. Guo
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - L. Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - R. Wang
- MassBiologics, University of Massachusetts Medical School, Boston, MA
| | - A. Perez-Gutierrez
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - H.S. Abdulkerim
- MassBiologics, University of Massachusetts Medical School, Boston, MA
| | - A.F. Zahorchak
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - T.L. Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine
| | - K. A. Reimann
- MassBiologics, University of Massachusetts Medical School, Boston, MA
| | - A.W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - M.B. Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Corresponding author: Mohamed B. Ezzelarab, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, E1558 BST, Pittsburgh, PA 15261,
| |
Collapse
|
34
|
Xu A, Bhanumathy KK, Wu J, Ye Z, Freywald A, Leary SC, Li R, Xiang J. IL-15 signaling promotes adoptive effector T-cell survival and memory formation in irradiation-induced lymphopenia. Cell Biosci 2016; 6:30. [PMID: 27158441 PMCID: PMC4858849 DOI: 10.1186/s13578-016-0098-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/25/2016] [Indexed: 11/28/2022] Open
Abstract
Background Lymphopenia promotes naïve T-cell homeostatic proliferation and adoptive effector T-cell survival and memory formation. IL-7 plays a critical role in homeostatic proliferation, survival and memory formation of naïve T-cells in lymphopenia, and its underlying molecular mechanism has also been well studied. However, the mechanism for adoptively transferred effector T-cell survival and memory formation is not fully understood. Here, we transferred in vitro-activated transgenic OT-I CD8+ effector T-cells into irradiation (600 rads)-induced lymphopenic C57BL/6, IL-7 knockout (KO) and IL-15 KO mice, and investigated the survival and memory formation of transferred T-cells in lymphopenia. Results We demonstrate that transferred T-cells prolong their survival and enhance their memory in lymphopenic mice, in a manner that depends on IL-15 signaling, but not IL-7. We determine that in vitro stimulation of naïve or effector T-cells with IL-7 and IL-15 reduces IL-7Rα, and increases and/or maintains IL-15Rβ expression, respectively. Consistent with these findings, the expression of IL-7Rα and IL-15Rβ is down- and up-regulated, respectively, in vivo on transferred T-cells in an early phase post T-cell transfer in lymphopenia. We further show that in vitro IL-15 restimulation-induced memory T-cells (compared to IL-2 restimulation-induced effector T-cells) and in vivo transferred T-cells in irradiated IL-15-sufficient C57BL/6 mice (compared to IL-15-deficient IL-15 KO mice) have increased mitochondrial content, but less NADH and lower mitochondrial potential (ΔΨm), and demonstrate greater phosphorylation of signal transducers and activators of transcription-5 (STAT5) and Unc-51-like kinase-1 (ULK1), and higher expression of B-cell leukemia/lymphoma-2 (Bcl2) and memory-, autophagy- and mitochondrial biogenesis-related molecules. Conclusion Irradiation-induced lymphopenia promotes effector T-cell survival via IL-15 signaling the STAT5/Bcl2 pathway, enhances T-cell memory formation via IL-15 activation of the forkhead-box family of transcription factor (FOXO)/eomesodermin (Eomes) memory and ULK1/autophagy-related gene-7 (ATG7) autophagy pathways, and via IL-15 activation of the mitochondrial remodeling. Our data thus identify some important targets to consider when designing potent adoptive T-cell immunotherapies of cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13578-016-0098-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aizhang Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China ; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kalpana Kalyanasundaram Bhanumathy
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK Canada ; Departments of Oncology, University of Saskatchewan, HSB Room 4D30.1, 107 Wiggins Road, Saskatoon, SK S7N 5E5 Canada
| | - Jie Wu
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK Canada
| | - Zhenmin Ye
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK Canada
| | - Andrew Freywald
- Department of Pathology, University of Saskatchewan, Saskatoon, SK Canada
| | - Scot C Leary
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK Canada
| | - Rongxiu Li
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China ; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China ; Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jim Xiang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK Canada ; Departments of Oncology, University of Saskatchewan, HSB Room 4D30.1, 107 Wiggins Road, Saskatoon, SK S7N 5E5 Canada
| |
Collapse
|
35
|
Klinger M, Banasik M. Immunological characteristics of the elderly allograft recipient. Transplant Rev (Orlando) 2015; 29:219-23. [DOI: 10.1016/j.trre.2015.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/28/2015] [Accepted: 07/28/2015] [Indexed: 01/24/2023]
|
36
|
Lin K, Chen S, Chen G. Role of Memory T Cells and Perspectives for Intervention in Organ Transplantation. Front Immunol 2015; 6:473. [PMID: 26441978 PMCID: PMC4568416 DOI: 10.3389/fimmu.2015.00473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/31/2015] [Indexed: 12/12/2022] Open
Abstract
Memory T cells are necessary for protective immunity against invading pathogens, especially under conditions of immunosuppression. However, their presence also threatens transplant survival, making transplantation a great challenge. Significant progress has been achieved in recent years in advancing our understanding of the role that memory T cells play in transplantation. This review focuses on the latest advances in our understanding of the involvement of memory T cells in graft rejection and transplant tolerance and discusses potential strategies for targeting memory T cells in order to minimize allograft rejection and optimize clinical outcomes.
Collapse
Affiliation(s)
- Kailin Lin
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology , Wuhan , China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology , Wuhan , China ; Key Laboratory of Organ Transplantation, Ministry of Education , Wuhan , China ; Key Laboratory of Organ Transplantation, Ministry of Public Health , Wuhan , China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology , Wuhan , China ; Key Laboratory of Organ Transplantation, Ministry of Education , Wuhan , China ; Key Laboratory of Organ Transplantation, Ministry of Public Health , Wuhan , China
| |
Collapse
|
37
|
Reading JL, Vaes B, Hull C, Sabbah S, Hayday T, Wang NS, DiPiero A, Lehman NA, Taggart JM, Carty F, English K, Pinxteren J, Deans R, Ting AE, Tree TIM. Suppression of IL-7-dependent Effector T-cell Expansion by Multipotent Adult Progenitor Cells and PGE2. Mol Ther 2015. [PMID: 26216515 DOI: 10.1038/mt.2015.131] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T-cell depletion therapy is used to prevent acute allograft rejection, treat autoimmunity and create space for bone marrow or hematopoietic cell transplantation. The evolved response to T-cell loss is a transient increase in IL-7 that drives compensatory homeostatic proliferation (HP) of mature T cells. Paradoxically, the exaggerated form of this process that occurs following lymphodepletion expands effector T-cells, often causing loss of immunological tolerance that results in rapid graft rejection, autoimmunity, and exacerbated graft-versus-host disease (GVHD). While standard immune suppression is unable to treat these pathologies, growing evidence suggests that manipulating the incipient process of HP increases allograft survival, prevents autoimmunity, and markedly reduces GVHD. Multipotent adult progenitor cells (MAPC) are a clinical grade immunomodulatory cell therapy known to alter γ-chain cytokine responses in T-cells. Herein, we demonstrate that MAPC regulate HP of human T-cells, prevent the expansion of Th1, Th17, and Th22 effectors, and block the development of pathogenic allograft responses. This occurs via IL-1β-primed secretion of PGE2 and activates T-cell intrinsic regulatory mechanisms (SOCS2, GADD45A). These data provide proof-of-principle that HP of human T-cells can be targeted by cellular and molecular therapies and lays a basis for the development of novel strategies to prevent immunopathology in lymphodepleted patients.
Collapse
Affiliation(s)
- James L Reading
- Department of Immunobiology, King's College London, London, UK.
| | | | - Caroline Hull
- Department of Immunobiology, King's College London, London, UK
| | - Shereen Sabbah
- Department of Immunobiology, King's College London, London, UK
| | - Thomas Hayday
- Department of Immunobiology, King's College London, London, UK
| | | | | | | | | | - Fiona Carty
- Department of Biology, Institute of Immunology, National University of Ireland, Maynooth, Ireland
| | - Karen English
- Department of Biology, Institute of Immunology, National University of Ireland, Maynooth, Ireland
| | | | | | | | - Timothy I M Tree
- Department of Immunobiology, King's College London, London, UK; NIHR Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
38
|
Shah PD, Zhong Q, Lendermon EA, Pipeling MR, McDyer JF. Hyperexpansion of Functional Viral-Specific CD8+ T Cells in Lymphopenia-Associated MCMV Pneumonitis. Viral Immunol 2015; 28:255-64. [PMID: 26046830 DOI: 10.1089/vim.2015.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cytomegalovirus (CMV) is a significant cause of morbidity and mortality in immunocompromised hosts, many of whom undergo significant periods of lymphopenia. However, the impact of lymphopenia and subsequent immune reconstitution on T cell responses and pulmonary pathology are poorly understood. Using a model of primary murine CMV infection in mice treated with cyclophosphamide (CY), the relationship of CD8+ T cell reconstitution to pneumonitis pathology was studied. Female BALB/c mice were infected with murine CMV (MCMV) with/without CY on day 1 post-infection. Lung pathology and viral specific T cell responses were assessed on days 7-28. T cell lymphocyte subsets, effector responses, and MCMV specificity were assessed at baseline and after in vitro stimulation of cells with immediate-early peptide pp89. CY treatment of MCMV-infected mice resulted in interstitial pneumonitis not seen with MCMV alone. Compared to MCMV alone, on day 14, MCMV/CY mice had greater number of CD8+ T cells, a fourfold increase in absolute number of pp89 tetramer-specific CD8+ cells, and an eightfold increase in MCMV specific T cell effector responses (IFN-γ; p<0.001). This expansion was preceded by transient lymphopenia, increased viral titers, and, most strikingly, a 10-fold increased proliferative capacity in MCMV/CY mice. In the setting of CY-associated lymphopenia, concurrent MCMV infection alters immune reconstitution toward a hyperexpanded MCMV-specific CD8+ effector T cell pool that correlates with significant lung immunopathology.
Collapse
Affiliation(s)
- Pali D Shah
- 1Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qiong Zhong
- 1Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth A Lendermon
- 2Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew R Pipeling
- 2Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John F McDyer
- 2Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Following lymphodepletion, lymphocytes repopulate the immune space both through enhanced thymopoiesis and proliferation of residual nondepleted peripheral lymphocytes. The term homeostatic proliferation (alternatively homeostatic expansion or lymphopenia-induced proliferation) refers to the latter process. Homeostatic proliferation is especially relevant to reconstitution of the lymphocyte compartment following immunodepletion therapy in transplantation. Repopulating lymphocytes can skew toward an effector memory type capable of inducing graft rejection, autoimmunity, or, in the case of allogeneic bone marrow transplantation, graft versus host disease. Here we review recent studies exploring the biologic mechanisms underlying homeostatic proliferation and explore implications for therapy in transplantation. RECENT FINDINGS Two immune-depleting agents, alemtuzumab and rabbit antithymocyte globulin, have been well characterized in their abilities to induce an effector-memory phenotype in repopulating lymphocytes. Additionally, we have gained new understandings of the mechanisms by which the cytokines interleukin-7 and interleukin-15 regulate this process. Recent studies have also explored the functions of noncytokine and signaling molecules in lymphopenia-induced proliferation. Finally, we have seen the promise and limitations of several therapeutic approaches, including recombinant interleukin-7 therapy, CD8-targeted antibodies, and peri-transplant cyclophosphamide, to treat posttransplant lymphopenia and reduce the risks of immune dysregulation following homeostatic proliferation. SUMMARY Immune dysfunction following homeostatic proliferation is a special challenge in transplantation. A deeper understanding of the underlying biology has led to a number of promising new therapies to overcome this problem.
Collapse
|
40
|
Valdez-Ortiz R, Bestard O, Llaudó I, Franquesa M, Cerezo G, Torras J, Herrero-Fresneda I, Correa-Rotter R, Grinyó JM. Induction of suppressive allogeneic regulatory T cells via rabbit antithymocyte polyclonal globulin during homeostatic proliferation in rat kidney transplantation. Transpl Int 2014; 28:108-19. [PMID: 25208307 DOI: 10.1111/tri.12448] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/19/2014] [Accepted: 09/04/2014] [Indexed: 11/27/2022]
Abstract
Experimental studies have shown that rabbit antithymocyte polyclonal globulin (ATG) can expand human CD4+CD25++Foxp3+ cells (Tregs). We investigated the major biological effects of a self-manufactured rabbit polyclonal anti-rat thymoglobulin (rATG) in vitro, as well as its effects on different peripheral T-cell subsets. Moreover, we evaluated the allogeneic suppressive capacity of rATG-induced Tregs in an experimental rat renal transplant model. Our results show that rATG has the capacity to induce apoptosis in T lymphocyte lymphocytes as a primary mechanism of T-cell depletion. Our in vivo studies demonstrated a rapid but transient cellular depletion of the main T cell subsets, directly proportional to the rATG dose used, but not of the effector memory T cells, which required significantly higher rATG doses. After rATG administration, we observed a significant proliferation of Tregs in the peripheral blood of transplanted rats, leading to an increase in the Treg/T effector ratio. Importantly, rATG-induced Tregs displayed a strong donor-specific suppressive capacity when assessed in an antigen-specific allogeneic co-culture. All of these results were associated with better renal graft function in rats that received rATG. Our study shows that rATG has the biological capacity immunomodulatory to promote a regulatory alloimmune milieu during post-transplant homeostatic proliferation.
Collapse
Affiliation(s)
- Rafael Valdez-Ortiz
- Laboratory of Experimental Nephrology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Nephrology Department, Hospital General de México, Mexico City, México; Renal Transplant Unit, Department of Nephrology, Hospital Universitari de Bellvitge, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Piotti G, Ma J, Adams E, Cobbold S, Waldmann H. Guiding postablative lymphocyte reconstitution as a route toward transplantation tolerance. Am J Transplant 2014; 14:1678-89. [PMID: 24840180 DOI: 10.1111/ajt.12756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 02/28/2014] [Accepted: 03/22/2014] [Indexed: 01/25/2023]
Abstract
Anti-lymphocyte-depleting antibodies have increasingly been utilized in the clinic as induction therapy aiming to improve transplantation outcomes by reducing the need for long-term immunosuppression. However, maintenance immunosuppression is still required as lymphocyte reconstitution through homeostatic proliferation, partially driven by IL-7, continues to replenish tolerance-refractory immune cells capable of rejection. In murine models of MHC mismatched skin grafting, we investigated whether it is feasible to control the lymphocyte reconstitution process to delay rejection and favor tolerance processes. We found that a short course of anti-IL-7 receptor blocking antibody following T cell depletion, combined with the mammalian target of rapamycin inhibitor Rapamycin, could significantly delay graft rejection in one mouse strain, and achieve transplantation tolerance in another. The combination treatment was found to delay T cell reconstitution and, in the short term, enriched for Foxp3+ regulatory T cells (Tregs), at the expense of effector cells. Extended graft survival and tolerance were dependent on TGF-ß, indicating a role for induced Tregs. These findings point to the feasibility of building on lympholytic induction by guiding early lymphocyte reconstitution to favor endogenous regulatory mechanisms.
Collapse
Affiliation(s)
- G Piotti
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
42
|
Abstract
Following infections and environmental exposures, memory T cells are generated that provide long-term protective immunity. Compared to their naïve T cell counterparts, memory T cells possess unique characteristics that endow them with the ability to quickly and robustly respond to foreign antigens. While such memory T cells are beneficial in protecting their hosts from recurrent infection, memory cells reactive to donor antigens pose a major barrier to successful transplantation and tolerance induction. Significant progress has been made over the past several decades contributing to our understanding of memory T cell generation, their distinct biology, and their detrimental impact in clinical and animal models of transplantation. This review focuses on the unique features which make memory T cells relevant to the transplant community and discusses potential therapies targeting memory T cells which may ameliorate allograft rejection.
Collapse
Affiliation(s)
- Charles A Su
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 ; Glickman Urological and Kidney Institute and Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Robert L Fairchild
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 ; Glickman Urological and Kidney Institute and Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
43
|
Jones JL, Coles AJ. Mode of action and clinical studies with alemtuzumab. Exp Neurol 2014; 262 Pt A:37-43. [PMID: 24792641 DOI: 10.1016/j.expneurol.2014.04.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 11/20/2022]
Abstract
The lymphocyte depleting anti-CD52 monoclonal antibody alemtuzumab has been used in Cambridge, UK, as an experimental treatment of multiple sclerosis since 1991. One phase-2 trial (CAMMS-223) and two phase-3 studies (CARE-MS1 and CARE-MS2) have confirmed its efficacy in treatment-naive patients, and have established superiority over interferon beta-1a in patients who continue to relapse in spite of first-line therapy (Cohen et al., 2012; Coles et al., 2008; Coles et al., 2012a; Coles et al., 2012b). Despite causing a prolonged T cell lymphopenia, significant infections have not been an issue following treatment; rather alemtuzumab's primary safety concern is secondary autoimmunity, occurring up to five years after treatment and maximally at two years: 30% of patients develops thyroid autoimmunity, and 1% develops idiopathic thrombocytopenic purpura (ITP). In addition, 4 out of 1486 patients (<0.3%) treated on the commercially sponsored studies developed glomerulonephritis. Two of these patients developed anti-glomerular basement membrane disease, a condition which may result in renal failure unless treated aggressively. In September 2013, the European Medicine Agency (EMA) ruled that the benefit-to-risk balance for alemtuzumab was favourable, approving it as a first-line therapy for adults with active relapsing remitting multiple sclerosis (under the trade name Lemtrada). Lemtrada is now also approved as a treatment of multiple sclerosis in Canada, Australia, Switzerland, Israel, Mexico and Brazil. However, in December 2013, Lemtrada failed to gain approval from the U.S. Food and Drug Administration (FDA), with concerns over trial design and safety stated as the main reasons. In this review we describe our local experience and explain the rationale behind its initial use as a treatment of multiple sclerosis and behind the design of the commercially sponsored trials, summarising their key findings. We also sum up our understanding of its mechanism of action.
Collapse
Affiliation(s)
- Joanne L Jones
- Dept. of Clinical Neurosciences, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Alasdair J Coles
- Dept. of Clinical Neurosciences, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
44
|
Human autoimmunity after lymphocyte depletion is caused by homeostatic T-cell proliferation. Proc Natl Acad Sci U S A 2013; 110:20200-5. [PMID: 24282306 DOI: 10.1073/pnas.1313654110] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The association between lymphopenia and autoimmunity is recognized, but the underlying mechanisms are poorly understood and have not been studied systematically in humans. People with multiple sclerosis treated with the lymphocyte-depleting monoclonal antibody alemtuzumab offer a unique opportunity to study this phenomenon; one in three people develops clinical autoimmunity, and one in three people develops asymptomatic autoantibodies after treatment. Here, we show that T-cell recovery after alemtuzumab is driven by homeostatic proliferation, leading to the generation of chronically activated (CD28(-)CD57(+)), highly proliferative (Ki67(+)), oligoclonal, memory-like CD4 and CD8 T cells (CCR7(-)CD45RA(-) or CCR7(-)CD45RA(+)) capable of producing proinflammatory cytokines. Individuals who develop autoimmunity after treatment are no more lymphopenic than their nonautoimmune counterparts, but they show reduced thymopoiesis and generate a more restricted T-cell repertoire. Taken together, these findings demonstrate that homeostatic proliferation drives lymphopenia-associated autoimmunity in humans.
Collapse
|
45
|
Abstract
Organ transplantation appears today to be the best alternative to replace the loss of vital organs induced by various diseases. Transplants can, however, also be rejected by the recipient. In this review, we provide an overview of the mechanisms and the cells/molecules involved in acute and chronic rejections. T cells and B cells mainly control the antigen-specific rejection and act either as effector, regulatory, or memory cells. On the other hand, nonspecific cells such as endothelial cells, NK cells, macrophages, or polymorphonuclear cells are also crucial actors of transplant rejection. Last, beyond cells, the high contribution of antibodies, chemokines, and complement molecules in graft rejection is discussed in this article. The understanding of the different components involved in graft rejection is essential as some of them are used in the clinic as biomarkers to detect and quantify the level of rejection.
Collapse
Affiliation(s)
- Aurélie Moreau
- INSERM UMR 1064, Center for Research in Transplantation and Immunology-ITUN, CHU de Nantes 44093, France
| | | | | | | |
Collapse
|
46
|
Silaeva YY, Kalinina AA, Vagida MS, Khromykh LM, Deikin AV, Ermolkevich TG, Sadchikova ER, Goldman IL, Kazansky DB. Decrease in pool of T lymphocytes with surface phenotypes of effector and central memory cells under influence of TCR transgenic β-chain expression. BIOCHEMISTRY (MOSCOW) 2013; 78:549-59. [PMID: 23848158 DOI: 10.1134/s0006297913050143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral T lymphocytes can be subdivided into naïve and antigen-experienced T cells. The latter, in turn, are represented by effector and central memory cells that are identified by different profiles of activation markers expression, such as CD44 and CD62L in mice. These markers determine different traffic of T lymphocytes in the organism, but hardly reproduce real antigenic experience of a T lymphocyte. Mechanisms of homeostasis maintenance of T lymphocytes with different activation phenotypes remain largely unknown. To investigate impact of T cell receptor (TCR) transgenic chains on formation of T lymphocytes, their peripheral survival and activation surface phenotypes, we have generated the transgenic mouse strain expressing transgenic β-chain of TCR 1D1 (belonging to the Vβ6 family) on the genetic background B10.D2(R101). Intrathymic development of T cells in these transgenic mice is not impaired. The repertoire of peripheral T lymphocytes in these mice contains 70-80% of T cells expressing transgenic β-chain and 20-30% of T cells expressing endogenous β-chains. The ratio of peripheral CD4⁺CD8⁻ and CD4⁻CD8⁺ T lymphocytes remained unchanged in the transgenic animals, but the percent of T lymphocytes with the "naïve" phenotype CD44⁻CD62L⁺ was significantly increased, whereas the levels of effector memory CD44⁺CD62L⁻ and central memory CD44⁺CD62L⁺ T lymphocytes were markedly decreased in both subpopulations. On the contrary, T lymphocytes expressing endogenous β-chains had surface phenotype of activated T cells CD44⁺. Thus, for the first time we have shown that the pool of T lymphocytes with different activation phenotypes depends on the structure of T cell receptors.
Collapse
Affiliation(s)
- Yu Yu Silaeva
- Blokhin Cancer Research Center, Russian Academy of Medical Sciences, Kashirskoe Shosse 24, 115478 Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Iida S, Suzuki T, Tanabe K, Valujskikh A, Fairchild RL, Abe R. Transient lymphopenia breaks costimulatory blockade-based peripheral tolerance and initiates cardiac allograft rejection. Am J Transplant 2013; 13:2268-79. [PMID: 23834725 PMCID: PMC4216721 DOI: 10.1111/ajt.12342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 01/25/2023]
Abstract
Lymphopenia is induced by lymphoablative therapies and chronic viral infections. We assessed the impact of lymphopenia on cardiac allograft survival in recipients conditioned with peritransplant costimulatory blockade (CB) to promote long-term graft acceptance. After vascularized MHC-mismatched heterotopic heart grafts were stably accepted through CB, lymphopenia was induced on day 60 posttransplant by 6.5 Gy irradiation or by administration of anti-CD4 plus anti-CD8 mAb. Long-term surviving allografts were gradually rejected after lymphodepletion (MST = 74 ± 5 days postirradiation). Histological analyses indicated signs of severe rejection in allografts following lymphodepletion, including mononuclear cell infiltration and obliterative vasculopathy. Lymphodepletion of CB conditioned recipients induced increases in CD44(high) effector/memory T cells in lymphatic organs and strong recovery of donor-reactive T cell responses, indicating lymphopenia-induced proliferation (LIP) and donor alloimmune responses occurring in the host. T regulatory (CD4(+) Foxp(3+)) cell and B cell numbers as well as donor-specific antibody titers also increased during allograft rejection in CB conditioned recipients given lymphodepletion. These observations suggest that allograft rejection following partial lymphocyte depletion is mediated by LIP of donor-reactive memory T cells. As lymphopenia may cause unexpected rejection of stable allografts, adequate strategies must be developed to control T cell proliferation and differentiation during lymphopenia.
Collapse
Affiliation(s)
- Shoichi Iida
- Department of Urology, Tokyo Women’s Medical University, Address: Kawada-Chyo 8-1, Shinzyuku-Ku, Tokyo, 16-8666, Japan Phone: +81-3-3353-8111, Fax: +81-3-5269-7401
| | - Toshihiro Suzuki
- Division of Immunobiology, Research Institute for Biological Science, Science University of Tokyo, Address: Yamazaki 2669, Noda City, Chiba, 278-0022, Japan Phone: +81-4-7121-4052, Fax: +81-4-7121-4059
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women’s Medical University, Address: Kawada-Chyo 8-1, Shinzyuku-Ku, Tokyo, 16-8666, Japan Phone: +81-3-3353-8111, Fax: +81-3-5269-7401
| | - Anna Valujskikh
- Department of Immunology, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195
| | - Robert L. Fairchild
- Department of Immunology, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biological Science, Science University of Tokyo, Address: Yamazaki 2669, Noda City, Chiba, 278-0022, Japan Phone: +81-4-7121-4052, Fax: +81-4-7121-4059
| |
Collapse
|
48
|
miRNA signature of mouse helper T cell hyper-proliferation. PLoS One 2013; 8:e66709. [PMID: 23825558 PMCID: PMC3692518 DOI: 10.1371/journal.pone.0066709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 05/09/2013] [Indexed: 11/29/2022] Open
Abstract
Helper T cells from a mutant mouse model, LAT Y136F, hyper-proliferate and cause a severe lymphoproliferative disease that kills the mice by six months of age. LAT Y136F mice carry a tyrosine to phenylalanine mutation in the Linker for Activation of T cells (LAT) gene. This mutation leads to a number of changes in T cells that result in altered cytokine production including increased IL-4 production, increased proliferation, and decreased apoptosis. Hyper-proliferation of the mutant T cells contributes to lymphadenopathy, splenomegaly, and multi-organ T cell infiltration. miRNAs are short non-coding RNAs that regulate expression of cohorts of genes. This study investigates which miRNAs are expressed in LAT Y136F T cells and compares these to miRNAs expressed in wild type T cells that are undergoing proliferation in two other settings. The first setting is homeostatic proliferation, which was modeled by adoptive transfer of wild type T cells into T cell-deficient mice. The second setting is proliferation in response to infection, which was modeled by infection of wild type mice with the nematode H. polygyrus. By comparing miRNA expression in these three proliferative states (LAT Y136F hyper-proliferation, homeostatic proliferation and proliferation in response to H. polygyrus infection) to expression in wild type naïve CD4+ T cells, we found miRNAs that were highly regulated in all three proliferative states (miR-21 and miR-146a) and some that were more specific to individual settings of proliferation such as those more specific for LAT Y136F lymphoproliferative disease (miR-669f, miR-155 and miR-466a/b). Future experiments that modulate levels of the miRNAs identified in this study may reveal the roles of these miRNAs in T cell proliferation and/or lymphoproliferative disease.
Collapse
|
49
|
Reading JL, Yang JHM, Sabbah S, Skowera A, Knight RR, Pinxteren J, Vaes B, Allsopp T, Ting AE, Busch S, Raber A, Deans R, Tree TIM. Clinical-Grade Multipotent Adult Progenitor Cells Durably Control Pathogenic T Cell Responses in Human Models of Transplantation and Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2013; 190:4542-52. [DOI: 10.4049/jimmunol.1202710] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Kaiser AD, Gadiot J, Guislain A, Blank CU. Mimicking homeostatic proliferation in vitro generates T cells with high anti-tumor function in non-lymphopenic hosts. Cancer Immunol Immunother 2013; 62:503-15. [PMID: 23001162 PMCID: PMC11029096 DOI: 10.1007/s00262-012-1350-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/02/2012] [Indexed: 10/27/2022]
Abstract
CD8(+) T cells undergoing homeostatic proliferation (HP) in a lymphopenic environment acquire a central memory-like phenotype (CD44(+) CD62L(+) Ly6c(+)). Such cells are readily functional in vitro, with a strong capacity to secrete IFNγ and IL-2 and to lyse target cells upon antigen recognition. In vivo, these memory-like T cells display potent anti-tumor reactivity. When addressing whether these remarkable properties were "acquired" or dependent on sustained HP, we observed, for the first time, that memory-like T cells retained full anti-tumor functions even when removed from their lymphopenic environment and retransferred into non-lymphopenic P14/Rag2(-/-) recipients (where HP is prevented). Moreover, memory-like T cells were superior to in vitro expanded effector T cells. We next sought to determine the conditions required to reproduce such a potent phenotype in vitro, in order to obtain optimal cells for adoptive cell transfer therapy. Assessing ex vivo lymph node cultures, dendritic cells, fibroblastic reticular cells, and HP-associated cytokines, we found that stimulation of naïve T cells with anti-CD3/CD28 beads and IL-15 (IL-7 was dispensable) led to the generation of memory-like T cell with a similar phenotype. Both in vitro and in vivo memory-like T cells retained the capacity to efficiently control tumor growth in non-lymphopenic hosts upon adoptive cell transfer. A similar phenotype could be imparted to human peripheral blood leukocytes with comparable culture conditions. Our data reinforce the idea that in vitro-generated memory-like T cells could benefit adoptive cell transfer therapies.
Collapse
Affiliation(s)
- Andrew D. Kaiser
- Division of Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL), Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jules Gadiot
- Division of Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL), Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Aurelie Guislain
- Division of Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL), Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Christian U. Blank
- Division of Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL), Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL), Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|