1
|
Villageliu DN, Cunningham KC, Smith DR, Knoell DL, Mandolfo M, Wyatt TA, Samuelson DR. Natural killer cell effector function is critical for host defense against alcohol-associated bacterial pneumonia. NPJ Biofilms Microbiomes 2024; 10:79. [PMID: 39227647 PMCID: PMC11372167 DOI: 10.1038/s41522-024-00558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 08/25/2024] [Indexed: 09/05/2024] Open
Abstract
Alcohol use is an independent risk factor for the development of bacterial pneumonia due, in part, to impaired mucus-facilitated clearance, macrophage phagocytosis, and recruitment of neutrophils. Alcohol consumption is also known to reduce peripheral natural killer (NK) cell numbers and compromise NK cell cytolytic activity, especially NK cells with a mature phenotype. However, the role of innate lymphocytes, such as NK cells during host defense against alcohol-associated bacterial pneumonia is essentially unknown. We have previously shown that indole supplementation mitigates increases in pulmonary bacterial burden and improves pulmonary NK cell recruitment in alcohol-fed mice, which were dependent on aryl hydrocarbon receptor (AhR) signaling. Employing a binge-on-chronic alcohol-feeding model we sought to define the role and interaction of indole and NK cells during pulmonary host defense against alcohol-associated pneumonia. We demonstrate that alcohol dysregulates NK cell effector function and pulmonary recruitment via alterations in two key signaling pathways. We found that alcohol increases transforming growth factor beta (TGF-β) signaling while suppressing AhR signaling. We further demonstrated that NK cells isolated from alcohol-fed mice have a reduced ability to kill Klebsiella pneumoniae. NK cell migratory capacity to chemokines was also significantly altered by alcohol, as NK cells isolated from alcohol-fed mice exhibited preferential migration in response to CXCR3 chemokines but exhibited reduced migration in response to CCR2, CXCR4, and CX3CR1 chemokines. Together this data suggests that alcohol disrupts NK cell-specific TGF-β and AhR signaling pathways leading to decreased pulmonary recruitment and cytolytic activity thereby increasing susceptibility to alcohol-associated bacterial pneumonia.
Collapse
Affiliation(s)
- Daniel N Villageliu
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kelly C Cunningham
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Deandra R Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daren L Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mason Mandolfo
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Todd A Wyatt
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Veterans Affairs Nebraska, University of Nebraska Medical Center, Western Iowa Health Care System, Omaha, NE, USA
| | - Derrick R Samuelson
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA.
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
2
|
Saha S, Barik D, Biswas D. AMPs as Host-Directed Immunomodulatory Agents against Skin Infections Caused by Opportunistic Bacterial Pathogens. Antibiotics (Basel) 2024; 13:439. [PMID: 38786167 PMCID: PMC11117387 DOI: 10.3390/antibiotics13050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 05/25/2024] Open
Abstract
Skin is the primary and largest protective organ of the human body. It produces a number of highly evolved arsenal of factors to counter the continuous assault of foreign materials and pathogens from the environment. One such potent factor is the repertoire of Antimicrobial Peptides (AMPs) that not only directly destroys invading pathogens, but also optimally modulate the immune functions of the body to counter the establishment and spread of infections. The canonical direct antimicrobial functions of these AMPs have been in focus for a long time to design principles for enhanced therapeutics, especially against the multi-drug resistant pathogens. However, in recent times the immunomodulatory functions performed by these peptides at sub-microbicidal concentrations have been a point of major focus in the field of host-directed therapeutics. Such strategies have the added benefit of not having the pathogens develop resistance against the immunomodulatory pathways, since the pathogens exploit these signaling pathways to obtain and survive within the host. Thus, this review summarizes the potent immunomodulatory effect of these AMPs on, specifically, the different host immune cells with the view of providing a platform of information that might help in designing studies to exploit and formulate effective host-directed adjunct therapeutic strategies that would synergies with drug regimens to counter the current diversity of drug-resistant skin opportunistic pathogens.
Collapse
Affiliation(s)
| | | | - Debabrata Biswas
- Institute of Life Sciences, NALCO Square, Bhubaneswar 751023, Odisha, India; (S.S.); (D.B.)
| |
Collapse
|
3
|
Vojdani A, Koksoy S, Vojdani E, Engelman M, Benzvi C, Lerner A. Natural Killer Cells and Cytotoxic T Cells: Complementary Partners against Microorganisms and Cancer. Microorganisms 2024; 12:230. [PMID: 38276215 PMCID: PMC10818828 DOI: 10.3390/microorganisms12010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Natural killer (NK) cells and cytotoxic T (CD8+) cells are two of the most important types of immune cells in our body, protecting it from deadly invaders. While the NK cell is part of the innate immune system, the CD8+ cell is one of the major components of adaptive immunity. Still, these two very different types of cells share the most important function of destroying pathogen-infected and tumorous cells by releasing cytotoxic granules that promote proteolytic cleavage of harmful cells, leading to apoptosis. In this review, we look not only at NK and CD8+ T cells but also pay particular attention to their different subpopulations, the immune defenders that include the CD56+CD16dim, CD56dimCD16+, CD57+, and CD57+CD16+ NK cells, the NKT, CD57+CD8+, and KIR+CD8+ T cells, and ILCs. We examine all these cells in relation to their role in the protection of the body against different microorganisms and cancer, with an emphasis on their mechanisms and their clinical importance. Overall, close collaboration between NK cells and CD8+ T cells may play an important role in immune function and disease pathogenesis. The knowledge of how these immune cells interact in defending the body against pathogens and cancers may help us find ways to optimize their defensive and healing capabilities with methods that can be clinically applied.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Laboratory, Inc., Los Angeles, CA 90035, USA
| | - Sadi Koksoy
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | | | - Mark Engelman
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| |
Collapse
|
4
|
Mochan E, Sego TJ. Mathematical Modeling of the Lethal Synergism of Coinfecting Pathogens in Respiratory Viral Infections: A Review. Microorganisms 2023; 11:2974. [PMID: 38138118 PMCID: PMC10745501 DOI: 10.3390/microorganisms11122974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza A virus (IAV) infections represent a substantial global health challenge and are often accompanied by coinfections involving secondary viruses or bacteria, resulting in increased morbidity and mortality. The clinical impact of coinfections remains poorly understood, with conflicting findings regarding fatality. Isolating the impact of each pathogen and mechanisms of pathogen synergy during coinfections is challenging and further complicated by host and pathogen variability and experimental conditions. Factors such as cytokine dysregulation, immune cell function alterations, mucociliary dysfunction, and changes to the respiratory tract epithelium have been identified as contributors to increased lethality. The relative significance of these factors depends on variables such as pathogen types, infection timing, sequence, and inoculum size. Mathematical biological modeling can play a pivotal role in shedding light on the mechanisms of coinfections. Mathematical modeling enables the quantification of aspects of the intra-host immune response that are difficult to assess experimentally. In this narrative review, we highlight important mechanisms of IAV coinfection with bacterial and viral pathogens and survey mathematical models of coinfection and the insights gained from them. We discuss current challenges and limitations facing coinfection modeling, as well as current trends and future directions toward a complete understanding of coinfection using mathematical modeling and computer simulation.
Collapse
Affiliation(s)
- Ericka Mochan
- Department of Computational and Chemical Sciences, Carlow University, Pittsburgh, PA 15213, USA
| | - T. J. Sego
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
5
|
Samuelson D, Villageliu D, Cunningham K, Smith D, Knoell D, Mandolfo M, Wyatt T. Regulation of Natural Killer Cell TGF-β and AhR Signaling Pathways Via the Intestinal Microbiota is Critical for Host Defense Against Alcohol-Associated Bacterial Pneumonia. RESEARCH SQUARE 2023:rs.3.rs-3328953. [PMID: 37886455 PMCID: PMC10602187 DOI: 10.21203/rs.3.rs-3328953/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Alcohol use is an independent risk factor for the development of bacterial pneumonia due, in part, to impaired mucus-facilitated clearance, macrophage phagocytosis, and recruitment of neutrophils. Alcohol consumption is also known to reduce peripheral natural killer (NK) cell numbers and compromises NK cell cytolytic activity, especially NK cells with a mature phenotype. However, the role of innate lymphocytes, such as NK cells during host defense against alcohol-associated bacterial pneumonia is essentially unknown. We have previously shown that indole supplementation mitigates increases in pulmonary bacterial burden and improves pulmonary NK cell recruitment in alcohol-fed mice, which were dependent of aryl hydrocarbon receptor (AhR) signaling. Employing a binge-on-chronic alcohol-feeding model we sought to define the role and interaction of indole and NK cells during pulmonary host defense against alcohol-associated pneumonia. We demonstrate that alcohol dysregulates NK cell effector function and pulmonary recruitment via alterations in two key signaling pathways. We found that alcohol increases transforming growth factor beta (TGF-β) signaling, while suppressing AhR signaling. We further demonstrated that NK cells isolated from alcohol-fed mice have a reduced ability to kill Klebsiella pneumoniae. NK cell migratory capacity to chemokines was also significantly altered by alcohol, as NK cells isolated from alcohol-fed mice exhibited preferential migration in response to CXCR3 chemokines but exhibited reduced migration in response to CCR2, CXCR4, and CX3CR1 chemokines. Together this data suggests that alcohol disrupts NK cell specific TGF-β and AhR signaling pathways leading to decreased pulmonary recruitment and cytolytic activity thereby increasing susceptibility to alcohol-associated bacterial pneumonia.
Collapse
|
6
|
Lopes N, Maia ML, Pereira CS, Mondragão-Rodrigues I, Martins E, Ribeiro R, Gaspar A, Aguiar P, Garcia P, Cardoso MT, Rodrigues E, Leão-Teles E, Giugliani R, Coutinho MF, Alves S, Macedo MF. Leukocyte Imbalances in Mucopolysaccharidoses Patients. Biomedicines 2023; 11:1699. [PMID: 37371793 DOI: 10.3390/biomedicines11061699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Mucopolysaccharidoses (MPSs) are rare inherited lysosomal storage diseases (LSDs) caused by deficient activity in one of the enzymes responsible for glycosaminoglycans lysosomal degradation. MPS II is caused by pathogenic mutations in the IDS gene, leading to deficient activity of the enzyme iduronate-2-sulfatase, which causes dermatan and heparan sulfate storage in the lysosomes. In MPS VI, there is dermatan sulfate lysosomal accumulation due to pathogenic mutations in the ARSB gene, leading to arylsulfatase B deficiency. Alterations in the immune system of MPS mouse models have already been described, but data concerning MPSs patients is still scarce. Herein, we study different leukocyte populations in MPS II and VI disease patients. MPS VI, but not MPS II patients, have a decrease percentage of natural killer (NK) cells and monocytes when compared with controls. No alterations were identified in the percentage of T, invariant NKT, and B cells in both groups of MPS disease patients. However, we discovered alterations in the naïve versus memory status of both helper and cytotoxic T cells in MPS VI disease patients compared to control group. Indeed, MPS VI disease patients have a higher frequency of naïve T cells and, consequently, lower memory T cell frequency than control subjects. Altogether, these results reveal MPS VI disease-specific alterations in some leukocyte populations, suggesting that the type of substrate accumulated and/or enzyme deficiency in the lysosome may have a particular effect on the normal cellular composition of the immune system.
Collapse
Affiliation(s)
- Nuno Lopes
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria L Maia
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Cátia S Pereira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
- Cell Activation & Gene Expression (CAGE), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Inês Mondragão-Rodrigues
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
- Cell Activation & Gene Expression (CAGE), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| | - Esmeralda Martins
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Centro Hospitalar Universitário de Santo António, 4099-001 Porto, Portugal
| | - Rosa Ribeiro
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Centro Hospitalar Universitário de Santo António, 4099-001 Porto, Portugal
| | - Ana Gaspar
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Centro Hospitalar e Universitário Lisboa Norte (CHULN), 1649-035 Lisbon, Portugal
| | - Patrício Aguiar
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Centro Hospitalar e Universitário Lisboa Norte (CHULN), 1649-035 Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Universidade de Lisboa, 1649-190 Lisbon, Portugal
| | - Paula Garcia
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Centro Hospitalar e Universitário de Coimbra, Centro de Desenvolvimento da Criança, 3000-075 Coimbra, Portugal
| | - Maria Teresa Cardoso
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
| | - Esmeralda Rodrigues
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
| | - Elisa Leão-Teles
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
| | - Roberto Giugliani
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, DASA e Casa dos Raros, Porto Alegre 90610-150, Brazil
| | - Maria F Coutinho
- Research and Development Unit, Department of Genetics, INSA, 4000-055 Porto, Portugal
| | - Sandra Alves
- Research and Development Unit, Department of Genetics, INSA, 4000-055 Porto, Portugal
| | - M Fátima Macedo
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
- Cell Activation & Gene Expression (CAGE), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Nguyen HP, Bui VA, Hoang AXT, Van Nguyen P, Nguyen DT, Mai HT, Le HA, Nguyen TL, Hoang NTM, Nguyen LT, Nguyen XH. The Correlation between Peripheral Blood Index and Immune Cell Expansion in Vietnamese Elderly Lung Cancer Patients. Int J Mol Sci 2023; 24:4284. [PMID: 36901716 PMCID: PMC10001827 DOI: 10.3390/ijms24054284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
(1) Background: The dysfunction and reduced proliferation of peripheral CD8+ T cells and natural killer (NK) cells have been observed in both aging and cancer patients, thereby challenging the adoption of immune cell therapy in these subjects. In this study, we evaluated the growth of these lymphocytes in elderly cancer patients and the correlation of peripheral blood (PB) indices to their expansion. (2) Method: This retrospective study included 15 lung cancer patients who underwent autologous NK cell and CD8+ T cell therapy between January 2016 and December 2019 and 10 healthy individuals. (3) Results: On average, CD8+ T lymphocytes and NK cells were able to be expanded about 500 times from the PB of elderly lung cancer subjects. Particularly, 95% of the expanded NK cells highly expressed the CD56 marker. The expansion of CD8+ T cells was inversely associated with the CD4+:CD8+ ratio and the frequency of PB-CD4+ T cells in PB. Likewise, the expansion of NK cells was inversely correlated with the frequency of PB-lymphocytes and the number of PB-CD8+ T cells. The growth of CD8+ T cells and NK cells was also inversely correlated with the percentage and number of PB-NK cells. (4) Conclusion: PB indices are intrinsically tied to immune cell health and could be leveraged to determine CD8 T and NK cell proliferation capacity for immune therapies in lung cancer patients.
Collapse
Affiliation(s)
- Hoang-Phuong Nguyen
- Vinmec Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Viet Anh Bui
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Ai-Xuan Thi Hoang
- Vinmec Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Phong Van Nguyen
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Dac-Tu Nguyen
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Hien Thi Mai
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Hai-Anh Le
- Vinmec Times City International Hospital, Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Thanh-Luan Nguyen
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Nhung Thi My Hoang
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 100000, Vietnam
| | - Liem Thanh Nguyen
- Vinmec Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
- Vinmec Times City International Hospital, Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
- College of Health Sciences, VinUniversity, Hanoi 100000, Vietnam
| | - Xuan-Hung Nguyen
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
- College of Health Sciences, VinUniversity, Hanoi 100000, Vietnam
| |
Collapse
|
8
|
Wang F, Cui Y, He D, Gong L, Liang H. Natural killer cells in sepsis: Friends or foes? Front Immunol 2023; 14:1101918. [PMID: 36776839 PMCID: PMC9909201 DOI: 10.3389/fimmu.2023.1101918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Sepsis is one of the major causes of death in the hospital worldwide. The pathology of sepsis is tightly associated with dysregulation of innate immune responses. The contribution of macrophages, neutrophils, and dendritic cells to sepsis is well documented, whereas the role of natural killer (NK) cells, which are critical innate lymphoid lineage cells, remains unclear. In some studies, the activation of NK cells has been reported as a risk factor leading to severe organ damage or death. In sharp contrast, some other studies revealed that triggering NK cell activity contributes to alleviating sepsis. In all, although there are several reports on NK cells in sepsis, whether they exert detrimental or protective effects remains unclear. Here, we will review the available experimental and clinical studies about the opposing roles of NK cells in sepsis, and we will discuss the prospects for NK cell-based immunotherapeutic strategies for sepsis.
Collapse
Affiliation(s)
- Fangjie Wang
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yiqin Cui
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dongmei He
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lisha Gong
- School of Laboratory Medicine and Technology, Harbin Medical University, Daqing, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
9
|
Menees KB, Lee JK. New Insights and Implications of Natural Killer Cells in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S83-S92. [PMID: 35570499 PMCID: PMC9535577 DOI: 10.3233/jpd-223212] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by the loss of dopaminergic neurons in the substantia nigra and the abnormal aggregation and accumulation of the alpha-synuclein (α-syn) protein into Lewy bodies. It is established that there is an association between inflammation and PD; however, the time course of the inflammatory process as well as the immune cells involved are still debated. Natural killer (NK) cells are innate lymphocytes with numerous functions including targeting and killing infected or malignant cells, antimicrobial defense, and resolving inflammation. NK cell subsets differ in their effector function capacities which are modulated by activating and inhibitory receptors expressed at the cell surface. Alterations in NK cell numbers and receptor expression have been reported in PD patients. Recently, NK cell numbers and frequency were shown to be altered in the periphery and in the central nervous system in a preclinical mouse model of PD. Moreover, NK cells have recently been shown to internalize and degrade α-syn aggregates and systemic NK cell depletion exacerbated synuclein pathology in a preclinical mouse model of PD, indicating a potential protective role of NK cells. Here, we review the inflammatory process in PD with a particular focus on alterations in NK cell numbers, phenotypes, and functions.
Collapse
Affiliation(s)
- Kelly B Menees
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| |
Collapse
|
10
|
Shimizu S, Ohira M, Tanaka Y, Ide K, Tahara H, Kuroda S, Tanimine N, Doskali M, Hotta R, Yano T, Nakano R, Imaoka Y, Sato K, Imaoka K, Kobayashi T, Ohdan H. Adoptive immunotherapy overcomes genetic susceptibility to bloodstream infections due to fc-gamma receptor polymorphisms after liver transplantation. Am J Transplant 2022; 22:2392-2400. [PMID: 35670552 DOI: 10.1111/ajt.17113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 01/25/2023]
Abstract
Single nucleotide polymorphisms (SNPs) in FCGR3A can predict the susceptibility of liver transplant (LT) recipients to bloodstream infections (BSI) and clinical outcomes following living-donor LT (LDLT). Here, we retrospectively analyzed the relationship of adoptive immunotherapy with activated natural killer (NK) cells from perfusate effluents of liver allografts against BSI following LDLT. Higher BSI incidence and lower survival were observed in LT recipients with FcγRIIIa (158F/F or F/V) (n = 81) who did not receive adoptive immunotherapy (n = 55) than in those who did (n = 26) (BSI frequency, 36.4% vs. 11.5%; p = .033; log-rank p = .047). After matching patient background using propensity score, similar results were obtained (BSI ratio, 41.7% vs. 12.5%; p = .049; log-rank p = .039). The predominant BSI pathogens in patients who did and did not receive adoptive immunotherapy were gram-negative rods (n = 3, 100%) and gram-positive cocci (GPC) (n = 15, 65.2%), respectively. The proportion of NK cells administered to patients with BSI was significantly lower than that administered to patients without BSI (Number: 80.3 (29.9-239.2) × 106 cells vs. 37.1 (35.6-50.4) × 106 ; p = .033, percentage; 14.1 (13.3-17.8)% vs. 34.6 (16.5-47)%, p = .0078). Therefore, adoptive immunotherapy with NK cells was associated with the reduced post-transplant BSI related to GPCs due to FcγRIIIa SNP in LT recipients.
Collapse
Affiliation(s)
- Seiichi Shimizu
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kentaro Ide
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Tahara
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shintaro Kuroda
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoki Tanimine
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Marlen Doskali
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryuichi Hotta
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takuya Yano
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryosuke Nakano
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Imaoka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koki Sato
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kouki Imaoka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
11
|
Català C, Velasco-de Andrés M, Casadó-Llombart S, Leyton-Pereira A, Carrillo-Serradell L, Isamat M, Lozano F. Innate immune response to peritoneal bacterial infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 371:43-61. [PMID: 35965000 DOI: 10.1016/bs.ircmb.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spontaneous and secondary peritoneal infections, mostly of bacterial origin, easily spread to cause severe sepsis. Cellular and humoral elements of the innate immune system are constitutively present in peritoneal cavity and omentum, and play an important role in peritonitis progression and resolution. This review will focus on the description of the anatomic characteristics of the peritoneal cavity and the composition and function of such innate immune elements under both steady-state and bacterial infection conditions. Potential innate immune-based therapeutic interventions in bacterial peritonitis alternative or adjunctive to classical antibiotic therapy will be briefly discussed.
Collapse
Affiliation(s)
- Cristina Català
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Sergi Casadó-Llombart
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Marcos Isamat
- Sepsia Therapeutics S.L. 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francisco Lozano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Servei d'Immunologia, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain; Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
12
|
Franklin M, Connolly E, Hussell T. Recruited and Tissue-Resident Natural Killer Cells in the Lung During Infection and Cancer. Front Immunol 2022; 13:887503. [PMID: 35844626 PMCID: PMC9284027 DOI: 10.3389/fimmu.2022.887503] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are an important component of the innate immune system, and have a key role in host defense against infection and in tumor surveillance. Tumors and viruses employ remarkably similar strategies to avoid recognition and killing by NK cells and so much can be learnt by comparing NK cells in these disparate diseases. The lung is a unique tissue environment and immune cells in this organ, including NK cells, exist in a hypofunctional state to prevent activation against innocuous stimuli. Upon infection, rapid NK cell infiltration into the lung occurs, the amplitude of which is determined by the extent of inflammation and damage. Activated NK cells kill infected cells and produce pro-inflammatory cytokines and chemokines to recruit cells of the adaptive immune system. More recent evidence has shown that NK cells also play an additional role in resolution of inflammation. In lung cancer however, NK cell recruitment is impaired and those that are present have reduced functionality. The majority of lung NK cells are circulatory, however recently a small population of tissue-resident lung NK cells has been described. The specific role of this subset is yet to be determined, but they show similarity to resident memory T cell subsets. Whether resident or recruited, NK cells are important in the control of pulmonary infections, but equally, can drive excessive inflammation if not regulated. In this review we discuss how NK cells are recruited, controlled and retained in the specific environment of the lung in health and disease. Understanding these mechanisms in the context of infection may provide opportunities to promote NK cell recruitment and function in the lung tumor setting.
Collapse
|
13
|
Kinetic Characterization of the Immune Response to Methicillin-Resistant Staphylococcus aureus Subcutaneous Skin Infection. Infect Immun 2022; 90:e0006522. [PMID: 35647662 DOI: 10.1128/iai.00065-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a leading cause of skin and soft tissue infections (SSTIs). Studies examining the immune response to S. aureus have been conducted, yet our understanding of the kinetic response to S. aureus subcutaneous skin infection remains incomplete. In this study, we used C57BL/6J mice and USA300 S. aureus to examine the host-pathogen interface from 8 h postinfection to 15 days postinfection (dpi), with the following outcomes measured: lesion size, bacterial titers, local cytokine and chemokine levels, phenotype of the responding leukocytes, and histopathology and Gram staining of skin tissue. Lesions were largest at 1 dpi, with peak necrotic tissue areas at 3 dpi, and were largely resolved by 15 dpi. During early infection, bacterial titers were high, neutrophils were the most abundant immune cell type, there was a decrease in most leukocyte populations found in uninfected skin, and many different cytokines were produced. Histopathological analysis demonstrated swift and extensive keratinocyte death and robust and persistent neutrophil infiltration. Gram staining revealed subdermal S. aureus colonization and, later, limited migration into upper skin layers. Interleukin-17A/F (IL-17A/F) was detected only starting at 5 dpi and coincided with an immediate decrease in bacterial numbers in the following days. After 9 days, neutrophils were no longer the most abundant immune cell type present as most other leukocyte subsets returned, and surface wounds resolved coincident with declining bacterial titers. Collectively, these data illustrate a dynamic immune response to S. aureus skin infection and suggest a key role for precisely timed IL-17 production for infection clearance and healthy tissue formation.
Collapse
|
14
|
Zheng X, Guo J, Cao C, Qin T, Zhao Y, Song X, Lv M, Hu L, Zhang L, Zhou D, Fang T, Yang W. Time-Course Transcriptome Analysis of Lungs From Mice Infected With Hypervirulent Klebsiella pneumoniae via Aerosolized Intratracheal Inoculation. Front Cell Infect Microbiol 2022; 12:833080. [PMID: 35573776 PMCID: PMC9097095 DOI: 10.3389/fcimb.2022.833080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) can cause life-threatening community-acquired infections among healthy young individuals and is thus of concern for global dissemination. In this study, a mouse model of acute primary hvKp pneumonia was established via aerosolized intratracheal (i.t.) inoculation, laying the foundation for conducting extensive studies related to hvKp. Subsequently, a time-course transcriptional profile was created of the lungs from the mouse model at 0, 12, 24, 48 and 60 hours post-infection (hpi) using RNA Sequencing (RNA-Seq). RNA-Seq data were analyzed with the use of Mfuzz time clustering, weighted gene co-expression network analysis (WGCNA) and Immune Cell Abundance Identifier for mouse (ImmuCellAI-mouse). A gradual change in the transcriptional profile of the lungs was observed that reflected expected disease progression. At 12 hpi, genes related to acute phase inflammatory response increased in expression and lipid metabolism appeared to have a pro-inflammatory effect. At 24 hpi, exacerbation of inflammation was observed and active IFN-γ suggested that signaling promoted activation and recruitment of macrophages occurred. Genes related to maintaining the structural integrity of lung tissues showed a sustained decrease in expression after infection and the decrease was especially marked at 48 hpi. TNF, IL-17, MAPK and NF-kB signaling pathways may play key roles in the immunopathogenesis mechanism at all stages of infection. Natural killer (NK) cells consistently decreased in abundance after infection, which has rarely been reported in hvKp infection and could provide a new target for treatment. Genes Saa1 and Slpi were significantly upregulated during infection. Both Saa1, which is associated with lipopolysaccharide (LPS) that elicits host inflammatory response, and Slpi, which encodes an antimicrobial protein, have not previously been reported in hvKp infections and could be important targets for subsequent studies. To t our knowledge, this paper represents the first study to investigate the pulmonary transcriptional response to hvKp infection. The results provide new insights into the molecular mechanisms underlying the pathogenesis of hvKp pulmonary infection that can contribute to the development of therapies to reduce hvKp pneumonia.
Collapse
Affiliation(s)
- Xinying Zheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianshu Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chaoyue Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tongtong Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Laboratory Animal Center, Academy of Military Medical Sciences, Beijing, China
| | - Yue Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolin Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Meng Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lili Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tongyu Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Tongyu Fang, ; Wenhui Yang,
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Tongyu Fang, ; Wenhui Yang,
| |
Collapse
|
15
|
Pasman R, Krom BP, Zaat SAJ, Brul S. The Role of the Oral Immune System in Oropharyngeal Candidiasis-Facilitated Invasion and Dissemination of Staphylococcus aureus. FRONTIERS IN ORAL HEALTH 2022; 3:851786. [PMID: 35464779 PMCID: PMC9021398 DOI: 10.3389/froh.2022.851786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans and Staphylococcus aureus account for most invasive fungal and bacterial bloodstream infections (BSIs), respectively. However, the initial point of invasion responsible for S. aureus BSIs is often unclear. Recently, C. albicans has been proposed to mediate S. aureus invasion of immunocompromised hosts during co-colonization of oral mucosal surfaces. The status of the oral immune system crucially contributes to this process in two distinct ways: firstly, by allowing invasive C. albicans growth during dysfunction of extra-epithelial immunity, and secondly following invasion by some remaining function of intra-epithelial immunity. Immunocompromised individuals at risk of developing invasive oral C. albicans infections could, therefore, also be at risk of contracting concordant S. aureus BSIs. Considering the crucial contribution of both oral immune function and dysfunction, the aim of this review is to provide an overview of relevant aspects of intra and extra-epithelial oral immunity and discuss predominant immune deficiencies expected to facilitate C. albicans induced S. aureus BSIs.
Collapse
Affiliation(s)
- Raymond Pasman
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Stanley Brul
| |
Collapse
|
16
|
Boulouis C, Leeansyah E, Mairpady Shambat S, Norrby-Teglund A, Sandberg JK. Mucosa-Associated Invariant T Cell Hypersensitivity to Staphylococcus aureus Leukocidin ED and Its Modulation by Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1170-1179. [PMID: 35140134 PMCID: PMC9012079 DOI: 10.4049/jimmunol.2100912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Mucosa-associated invariant T (MAIT) cells recognize bacterial riboflavin metabolite Ags presented by MHC class Ib-related protein (MR1) and play important roles in immune control of microbes that synthesize riboflavin. This includes the pathobiont Staphylococcus aureus, which can also express a range of virulence factors, including the secreted toxin leukocidin ED (LukED). In this study, we found that human MAIT cells are hypersensitive to LukED-mediated lysis and lost on exposure to the toxin, leaving a T cell population devoid of MAIT cells. The cytolytic effect of LukED on MAIT cells was rapid and occurred at toxin concentrations lower than those required for toxicity against conventional T cells. Furthermore, this coincided with high MAIT cell expression of CCR5, and loss of these cells was efficiently inhibited by the CCR5 inhibitor maraviroc. Interestingly, exposure and preactivation of MAIT cells with IL-12 and IL-18, or activation via TCR triggering, partially protected from LukED toxicity. Furthermore, analysis of NK cells indicated that LukED targeted the mature cytotoxic CD57+ NK cell subset in a CCR5-independent manner. Overall, these results indicate that LukED efficiently eliminates immune cells that can respond rapidly to S. aureus in an innate fashion without the need for clonal expansion, and that MAIT cells are exceptionally vulnerable to this toxin. Thus, the findings support a model where LukED secretion may allow S. aureus to avoid recognition by the rapid cell-mediated responses mediated by MAIT cells and NK cells.
Collapse
Affiliation(s)
- Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China; and
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, People's Republic of China
| | | | - Anna Norrby-Teglund
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden;
| |
Collapse
|
17
|
Feehan DD, Jamil K, Polyak MJ, Ogbomo H, Hasell M, LI SS, Xiang RF, Parkins M, Trapani JA, Harrison JJ, Mody CH. Natural killer cells kill extracellular Pseudomonas aeruginosa using contact-dependent release of granzymes B and H. PLoS Pathog 2022; 18:e1010325. [PMID: 35202434 PMCID: PMC8903247 DOI: 10.1371/journal.ppat.1010325] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/08/2022] [Accepted: 01/31/2022] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that often infects individuals with the genetic disease cystic fibrosis, and contributes to airway blockage and loss of lung function. Natural killer (NK) cells are cytotoxic, granular lymphocytes that are part of the innate immune system. NK cell secretory granules contain the cytolytic proteins granulysin, perforin and granzymes. In addition to their cytotoxic effects on cancer and virally infected cells, NK cells have been shown to play a role in an innate defense against microbes, including bacteria. However, it is not known if NK cells kill extracellular P. aeruginosa or how bacterial killing might occur at the molecular level. Here we show that NK cells directly kill extracellular P. aeruginosa using NK effector molecules. Live cell imaging of a co-culture of YT cells, a human NK cell line, and GFP-expressing P. aeruginosa in the presence of the viability dye propidium iodide demonstrated that YT cell killing of P. aeruginosa is contact-dependent. CRISPR knockout of granulysin or perforin in YT cells had no significant effect on YT cell killing of P. aeruginosa. Pre-treatment of YT and NK cells with the serine protease inhibitor 3,4-dichloroisocoumarin (DCI) to inhibit all granzymes, resulted in an inhibition of killing. Although singular CRISPR knockout of granzyme B or H had no effect, knockout of both in YT cells completely abrogated killing of P. aeruginosa in comparison to wild type YT cell controls. Nitrocefin assays suggest that the bacterial membrane is damaged. Inhibition of killing by antioxidants suggest that ROS are required for the bactericidal mode-of-action. Taken together, these results identify that NK cells kill P. aeruginosa through a membrane damaging, contact-dependent process that requires granzyme induced ROS production, and moreover, that granzyme B and H are redundant in this killing process. Natural Killer (NK) cells comprise at least 10% of the resident lymphocytes in the lung and are increasingly recognized as an important part of the immune response to bacterial pathogens. Despite invivo studies demonstrating the importance of NK cells in the host response to the respiratory pathogen Pseudomonas aeruginosa, the mechanism of antimicrobial activity has yet to be found. Using human NK cell lines and NK cells isolated from human peripheral blood, we show that NK cells exhibit direct, contact-dependent cytotoxicity against P. aeruginosa, leading to bacterial cell death. NK cells use granzyme B and H to damage bacterial membranes and permeabilize the cells. We provide evidence that this leads to increased reactive oxygen species (ROS) in the bacteria that kills them. Furthermore, granzyme function appears to be redundant because loss of function by one granzyme is rescued by the activity of the other. These findings identify a role for granzymes in the antibacterial functions of NK cells, providing new insight into the host response to P. aeruginosa infections.
Collapse
Affiliation(s)
- David D. Feehan
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Khusraw Jamil
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Maria J. Polyak
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Henry Ogbomo
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Family Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mark Hasell
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Shu Shun LI
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Richard F. Xiang
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Michael Parkins
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joseph A. Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Joe J. Harrison
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Christopher H. Mody
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
18
|
Elemam NM, Ramakrishnan RK, Hundt JE, Halwani R, Maghazachi AA, Hamid Q. Innate Lymphoid Cells and Natural Killer Cells in Bacterial Infections: Function, Dysregulation, and Therapeutic Targets. Front Cell Infect Microbiol 2021; 11:733564. [PMID: 34804991 PMCID: PMC8602108 DOI: 10.3389/fcimb.2021.733564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Infectious diseases represent one of the largest medical challenges worldwide. Bacterial infections, in particular, remain a pertinent health challenge and burden. Moreover, such infections increase over time due to the continuous use of various antibiotics without medical need, thus leading to several side effects and bacterial resistance. Our innate immune system represents our first line of defense against any foreign pathogens. This system comprises the innate lymphoid cells (ILCs), including natural killer (NK) cells that are critical players in establishing homeostasis and immunity against infections. ILCs are a group of functionally heterogenous but potent innate immune effector cells that constitute tissue-resident sentinels against intracellular and extracellular bacterial infections. Being a nascent subset of innate lymphocytes, their role in bacterial infections is not clearly understood. Furthermore, these pathogens have developed methods to evade the host immune system, and hence permit infection spread and tissue damage. In this review, we highlight the role of the different ILC populations in various bacterial infections and the possible ways of immune evasion. Additionally, potential immunotherapies to manipulate ILC responses will be briefly discussed.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jennifer E Hundt
- Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Prince Abdullah Ben Khaled Celiac Disease Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Azzam A Maghazachi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Awad M, Yosri M, Abdel-Aziz MM, Younis AM, Sidkey NM. Assessment of the Antibacterial Potential of Biosynthesized Silver Nanoparticles Combined with Vancomycin Against Methicillin-Resistant Staphylococcus aureus-Induced Infection in Rats. Biol Trace Elem Res 2021; 199:4225-4236. [PMID: 33389618 DOI: 10.1007/s12011-020-02561-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is considered one of the most serious multidrug-resistant bacteria worldwide. MRSA resistance to methicillin antibiotics made vancomycin, the acceptable treatment option. Silver nanoparticles (Ag-NPs) are among the well-known antibacterial substances showing multimode antibacterial action. Therefore, Ag-NPs are appropriate applicants for use in combination with vancomycin in order to augment its antibacterial action. This study aimed to biosynthesize silver nanoparticles and to evaluate its antibacterial activity against MRSA alone and when combined with vancomycin both in vitro and in vivo. Agaricus bisporus is used to reduce the silver nitrate salts in solution to yield silver nanoparticles which was characterized by UV-visible spectrophotometric analysis that shows maximum absorption at 420 nm as a preliminary confirmation for nanoparticles synthesis, Energy-Dispersive Analysis of X-ray (EDX) which confirms the crystalline nature of silver nanoparticles and transmission electron microscopy (TEM) image shows the particles in spherical form with mean size 27.45 nm. The synthesized silver nanoparticles were tested for antibacterial activity against MRSA, and the synergetic effects of the combination of silver nanoparticles and vancomycin were evaluated. The results showed a strong synergistic antibacterial effect between Ag-NPs and vancomycin in vitro with fractional inhibitory concentration 0.37 and in vivo against MRSA strain. The result revealed that mycosynthesized silver nanoparticles (NPs) enhance the in vitro and in vivo antibacterial activity of vancomycin against MRSA. These results suggested that sliver nanoparticles have an effective antibacterial activity against MRSA count, histopathology, and liver enzymes as well as protective immune response specially when combined with vancomycin in the lungs of infected rats with MRSA.
Collapse
Affiliation(s)
- Mohammed Awad
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11841, Egypt
| | - Mohamed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Nasr City, Cairo, 11787, Egypt.
| | - Marwa M Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Nasr City, Cairo, 11787, Egypt
| | - Ahmed M Younis
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11841, Egypt
| | - Nagwa M Sidkey
- Botany and Microbiology Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
20
|
Raineri EJM, Altulea D, van Dijl JM. Staphylococcal trafficking and infection - from 'nose to gut' and back. FEMS Microbiol Rev 2021; 46:6321165. [PMID: 34259843 PMCID: PMC8767451 DOI: 10.1093/femsre/fuab041] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is an opportunistic human pathogen, which is a leading cause of infections worldwide. The challenge in treating S. aureus infection is linked to the development of multidrug-resistant strains and the mechanisms employed by this pathogen to evade the human immune defenses. In addition, S. aureus can hide asymptomatically in particular ‘protective’ niches of the human body for prolonged periods of time. In the present review, we highlight recently gained insights in the role of the human gut as an endogenous S. aureus reservoir next to the nasopharynx and oral cavity. In addition, we address the contribution of these ecological niches to staphylococcal transmission, including the roles of particular triggers as modulators of the bacterial dissemination. In this context, we present recent advances concerning the interactions between S. aureus and immune cells to understand their possible roles as vehicles of dissemination from the gut to other body sites. Lastly, we discuss the factors that contribute to the switch from colonization to infection. Altogether, we conclude that an important key to uncovering the pathogenesis of S. aureus infection lies hidden in the endogenous staphylococcal reservoirs, the trafficking of this bacterium through the human body and the subsequent immune responses.
Collapse
Affiliation(s)
- Elisa J M Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dania Altulea
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Rao Y, Le Y, Xiong J, Pei Y, Sun Y. NK Cells in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Front Immunol 2021; 12:666045. [PMID: 34017339 PMCID: PMC8130558 DOI: 10.3389/fimmu.2021.666045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/07/2021] [Indexed: 01/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic airway disease with varied frequencies of acute exacerbations, which are the main cause of morbidity and mortality of the disease. It is, therefore, urgent to develop novel therapies for COPD and its exacerbations, which rely heavily on understanding of the pathogenesis and investigation for potential targets. Current evidence indicates that natural killer (NK) cells play important roles in the pathological processes of COPD. Although novel data are revealing the significance of NK cells in maintaining immune system homeostasis and their involvement in pathogenesis of COPD, the specific mechanisms are largely unknown. Specific and in-depth studies elucidating the underlying mechanisms are therefore needed. In this review, we provided a brief overview of the biology of NK cells, from its development to receptors and functions, and outlined their subsets in peripheral blood and lungs. Then we reviewed published findings highlighting the important roles played by NK cells in COPD and its exacerbations, with a view of providing the current state of knowledge in this area to facilitate related in-depth research.
Collapse
Affiliation(s)
- Yafei Rao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yanqing Le
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Xiong
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yuqiang Pei
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
22
|
Bacteria and Host Interplay in Staphylococcus aureus Septic Arthritis and Sepsis. Pathogens 2021; 10:pathogens10020158. [PMID: 33546401 PMCID: PMC7913561 DOI: 10.3390/pathogens10020158] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus (S. aureus) infections are a major healthcare challenge and new treatment alternatives are needed. S. aureus septic arthritis, a debilitating joint disease, causes permanent joint dysfunction in almost 50% of the patients. S. aureus bacteremia is associated with higher mortalities than bacteremia caused by most other microbes and can develop to severe sepsis and death. The key to new therapies is understanding the interplay between bacterial virulence factors and host immune response, which decides the disease outcome. S. aureus produces numerous virulence factors that facilitate bacterial dissemination, invasion into joint cavity, and cause septic arthritis. Monocytes, activated by several components of S. aureus such as lipoproteins, are responsible for bone destructions. In S. aureus sepsis, cytokine storm induced by S. aureus components leads to the hyperinflammatory status, DIC, multiple organ failure, and later death. The immune suppressive therapies at the very early time point might be protective. However, the timing of treatment is crucial, as late treatment may aggravate the immune paralysis and lead to uncontrolled infection and death.
Collapse
|
23
|
Menees KB, Earls RH, Chung J, Jernigan J, Filipov NM, Carpenter JM, Lee JK. Sex- and age-dependent alterations of splenic immune cell profile and NK cell phenotypes and function in C57BL/6J mice. IMMUNITY & AGEING 2021; 18:3. [PMID: 33419446 PMCID: PMC7791703 DOI: 10.1186/s12979-021-00214-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023]
Abstract
Background Physiological homeostasis decline, immunosenescence, and increased risk for multiple diseases, including neurodegeneration, are all hallmarks of ageing. Importantly, it is known that the ageing process is sex-biased. For example, there are sex differences in predisposition for multiple age-related diseases, including neurodegenerative and autoimmune diseases. However, sex differences in age-associated immune phenotypes are not clearly understood. Results Here, we examined the effects of age on immune cell phenotypes in both sexes of C57BL/6J mice with a particular focus on NK cells. We found female-specific spleen weight increases with age and concordant reduction in the number of splenocytes per gram of spleen weight compared to young females. To evaluate sex- and age-associated changes in splenic immune cell composition, we performed flow cytometry analysis. In male mice, we observed an age-associated reduction in the frequencies of monocytes and NK cells; female mice displayed a reduction in B cells, NK cells, and CD8 + T cells and increased frequency of monocytes and neutrophils with age. We then performed a whole blood stimulation assay and multiplex analyses of plasma cytokines and observed age- and sex-specific differences in immune cell reactivity and basal circulating cytokine concentrations. As we have previously illustrated a potential role of NK cells in Parkinson’s disease, an age-related neurodegenerative disease, we further analyzed age-associated changes in NK cell phenotypes and function. There were distinct differences between the sexes in age-associated changes in the expression of NK cell receptors, IFN-γ production, and impairment of α-synuclein endocytosis. Conclusions This study demonstrates sex- and age-specific alterations in splenic lymphocyte composition, circulating cytokine/chemokine profiles, and NK cell phenotype and effector functions. Our data provide evidence that age-related physiological perturbations differ between the sexes which may help elucidate sex differences in age-related diseases, including neurodegenerative diseases, particularly Parkinson’s disease, where immune dysfunction is implicated in their etiology.
Collapse
Affiliation(s)
- Kelly B Menees
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Rachael H Earls
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Jaegwon Chung
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Janna Jernigan
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Jessica M Carpenter
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA.
| |
Collapse
|
24
|
Clark SE, Schmidt RL, Aguilera ER, Lenz LL. IL-10-producing NK cells exacerbate sublethal Streptococcus pneumoniae infection in the lung. Transl Res 2020; 226:70-82. [PMID: 32634590 PMCID: PMC7572800 DOI: 10.1016/j.trsl.2020.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
Lung inflammation is tightly controlled to balance microbial clearance with the tissue damage that accompanies this response. Bacterial pathogens including Streptococcus pneumoniae (S. pneumoniae) modulate immune regulation by promoting secretion of the anti-inflammatory cytokine IL-10. The important cellular sources of IL-10 that impact protection against different bacterial infections are not well characterized. We find that S. pneumoniaeactivates IL-10 secretion from natural killer (NK) cells in the lung, which restrict host protection in a mouse model of sublethal infection. Direct transfer of wild-type NK cells into the lungs of IL-10-deficient mice drives bacterial expansion, identifying NK cells as a critical source of IL-10 promoting S. pneumoniae infection. The S. pneumoniae virulence protein Spr1875 was found to elicit NK cell IL-10 production in purified cells and in the lungs of live animals. These findings reveal therapeutic targets to combat bacterial-driven immune regulation in the lung.
Collapse
Affiliation(s)
- Sarah E Clark
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.
| | - Rebecca L Schmidt
- Department of Biomedical Sciences, National Jewish Health, Denver, Colorado; Department of Biology and Chemistry, Upper Iowa University, Fayette, Iowa
| | - Elizabeth R Aguilera
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Laurel L Lenz
- Department of Biomedical Sciences, National Jewish Health, Denver, Colorado; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
25
|
Jia R, Cui K, Li Z, Gao Y, Zhang B, Wang Z, Cui J. NK cell-derived exosomes improved lung injury in mouse model of Pseudomonas aeruginosa lung infection. J Physiol Sci 2020; 70:50. [PMID: 33096976 PMCID: PMC10717361 DOI: 10.1186/s12576-020-00776-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa (PA) is one of the most common bacteria that causes lung infection in hospital. The aim of our study is to explore the role and action mechanism of NK cells in lung PA infection. METHODS In this present study, 2.5 × 108 CFU/mouse PA was injected into murine trachea to make lung PA infection mouse model. Anti-asialo GM1 was used to inhibit NK cell. The percentage of NK cells was ensured by flow cytometry, and the M1- and M2-polarized macrophages were determined by flow cytometry, qRT-PCR, and ELISA assay. Besides, H&E staining was performed to ensure the pathological changes in lung tissues. Transmission electron microscopy and western blot were carried out to identify the exosome. RESULTS Here, in the mouse model of PA lung infection, NK cell depletion caused M2 polarization of lung macrophage, and exacerbated PA-induced lung injury. Next, our data shown that M2 macrophage polarization was enhanced when the generation of NK cell-derived exosome was blocked in the co-culture system of NK cells and macrophages. Subsequently, we demonstrated that NK cells promoted M1 macrophage polarization both in PA-infected macrophage and the mouse model of PA lung infection, and attenuated lung injury through exosome. CONCLUSION Overall, our data proved that NK cell may improve PA-induced lung injury through promoting M1 lung macrophage polarization by secreting exosome. Our results provide a new idea for the treatment of PA lung infection.
Collapse
Affiliation(s)
- Ruiqi Jia
- Respiratory Intensive Care Unit, The First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Xinxiang, 453003, China
| | - Kuili Cui
- Tuberculosis Medicine, The First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Xinxiang, 453003, China
| | - Zhenkui Li
- Tuberculosis Medicine, The First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Xinxiang, 453003, China
| | - Yuan Gao
- Tuberculosis Medicine, The First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Xinxiang, 453003, China
| | - Bianfang Zhang
- Tuberculosis Medicine, The First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Xinxiang, 453003, China
| | - Zhixia Wang
- Respiratory Medicine, The First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Xinxiang, 453003, China
| | - Junwei Cui
- Tuberculosis Medicine, The First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Xinxiang, 453003, China.
| |
Collapse
|
26
|
Huang J, Zhang T, Zou X, Wu S, Zhu J. Panton-valentine leucocidin carrying Staphylococcus aureus causing necrotizing pneumonia inactivates the JAK/STAT signaling pathway and increases the expression of inflammatory cytokines. INFECTION GENETICS AND EVOLUTION 2020; 86:104582. [PMID: 33017689 DOI: 10.1016/j.meegid.2020.104582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/13/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022]
Abstract
PURPOSE Methicillin-resistant Staphylococcus aureus (MRSA) carrying Panton-Valentine leukocidin, a pore-forming toxin, is a common cause of necrotizing pneumonia. However, the early pulmonary inflammatory response following PVL(+) MRSA infection is unknown. The purpose of this study was to use a murine model to determine the effect of PVL(+) MRSA on lung tissues and the expression of cytokines and JAK and STAT mRNA and protein. METHODS Mice were randomly divided into 3 groups and intra-nasally treated with PBS (control group), recombinant PVL (rPVL group), and PVL(+) MRSA (PVL group). At 24 and 48 h after inoculation, bronchoalveolar lavage fluid (BALF) was tested for cytokine levels, and lung tissues were tested for JAK and STAT mRNA and protein expression, and examined after hematoxylin and eosin staining. RESULTS Mice infected with the PVL(+) strain became ill, characterized by impaired mobility, hunched posture, ruffled fur, and labored breathing. Lung tissue exhibited tissue necrosis and hemorrhage. BALF levels of IL-8, TNF-α, IFN-γ, IL-12, sICAM-1, and sVCAM-1 were increased in the rPVL or PVL groups, while levels of IL-10 and IL-4 levels were similar among the groups. JAK1 and STAT1 mRNA expression and protein levels were increased in lung tissue from mice infected with PVL(+) MRSA and rPVL. CONCLUSIONS PVL is a significant S. aureus virulence factor, and upregulates the expression of proinflammatory cytokines but does not affect the expression of anti-inflammatory cytokines. The effect of PVL may be due to JAK/STAT pathway activation. Blockade of the JAK/STAT pathway may decrease the severity of PVL(+) MRSA pneumonia.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, China.
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, China
| | - Xiaoling Zou
- Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, China
| | - Shaozhu Wu
- Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, China
| | - Jiaxin Zhu
- Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Theresine M, Patil ND, Zimmer J. Airway Natural Killer Cells and Bacteria in Health and Disease. Front Immunol 2020; 11:585048. [PMID: 33101315 PMCID: PMC7546320 DOI: 10.3389/fimmu.2020.585048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells at the interface between innate and adaptive immunity and mostly studied for their important roles in viral infections and malignant tumors. They can kill diseased cells and produce cytokines and chemokines, thereby shaping the adaptive immune response. Nowadays, NK cells are considered as a strong weapon for cancer immunotherapy and can for example be transduced to express tumor-specific chimeric antigen receptors or harnessed with therapeutic antibodies such as the so-called NK engagers. Whereas a large body of literature exists about the antiviral and antitumoral properties of NK cells, their potential role in bacterial infections is not that well delineated. Furthermore, NK cells are much more heterogeneous than previously thought and have tissue-characteristic features and phenotypes. This review gives an overview of airway NK cells and their position within the immunological army dressed against bacterial infections in the upper and predominantly the lower respiratory tracts. Whereas it appears that in several infections, NK cells play a non-redundant and protective role, they can likewise act as rather detrimental. The use of mouse models and the difficulty of access to human airway tissues for ethical reasons might partly explain the divergent results. However, new methods are appearing that are likely to reduce the heterogeneity between studies and to give a more coherent picture in this field.
Collapse
Affiliation(s)
- Maud Theresine
- CG I Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Neha D Patil
- CG I Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Jacques Zimmer
- CG I Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
28
|
The role of natural killer cells in Parkinson's disease. Exp Mol Med 2020; 52:1517-1525. [PMID: 32973221 PMCID: PMC8080760 DOI: 10.1038/s12276-020-00505-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Numerous lines of evidence indicate an association between sustained inflammation and Parkinson's disease, but whether increased inflammation is a cause or consequence of Parkinson's disease remains highly contested. Extensive efforts have been made to characterize microglial function in Parkinson's disease, but the role of peripheral immune cells is less understood. Natural killer cells are innate effector lymphocytes that primarily target and kill malignant cells. Recent scientific discoveries have unveiled numerous novel functions of natural killer cells, such as resolving inflammation, forming immunological memory, and modulating antigen-presenting cell function. Furthermore, natural killer cells are capable of homing to the central nervous system in neurological disorders that exhibit exacerbated inflammation and inhibit hyperactivated microglia. Recently, a study demonstrated that natural killer cells scavenge alpha-synuclein aggregates, the primary component of Lewy bodies, and systemic depletion of natural killer cells results in exacerbated neuropathology in a mouse model of alpha-synucleinopathy, making them a highly relevant cell type in Parkinson's disease. However, the exact role of natural killer cells in Parkinson's disease remains elusive. In this review, we introduce the systemic inflammatory process seen in Parkinson's disease, with a particular focus on the direct and indirect modulatory capacity of natural killer cells in the context of Parkinson's disease.
Collapse
|
29
|
Li SS, Saleh M, Xiang RF, Ogbomo H, Stack D, Huston SH, Mody CH. Natural killer cells kill Burkholderia cepacia complex via a contact-dependent and cytolytic mechanism. Int Immunol 2020; 31:385-396. [PMID: 31051036 DOI: 10.1093/intimm/dxz016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 04/19/2019] [Indexed: 12/15/2022] Open
Abstract
Burkholderia cepacia complex (Bcc), which includes B. cenocepacia and B. multivorans, pose a life-threatening risk to patients with cystic fibrosis. Eradication of Bcc is difficult due to the high level of intrinsic resistance to antibiotics, and failure of many innate immune cells to control the infection. Because of the pathogenesis of Bcc infections, we wondered if a novel mechanism of microbial host defense involving direct antibacterial activity by natural killer (NK) cells might play a role in the control of Bcc. We demonstrate that NK cells bound Burkholderia, resulting in Src family kinase activation as measured by protein tyrosine phosphorylation, granule release of effector proteins such as perforin and contact-dependent killing of the bacteria. These studies provide a means by which NK cells could play a role in host defense against Bcc infection.
Collapse
Affiliation(s)
- Shu Shun Li
- Department of Microbiology, Immunology and Infectious Diseases, Alberta, Canada.,The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Alberta, Canada
| | - Marwah Saleh
- Department of Microbiology, Immunology and Infectious Diseases, Alberta, Canada
| | - Richard F Xiang
- Department of Microbiology, Immunology and Infectious Diseases, Alberta, Canada.,The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Alberta, Canada
| | - Henry Ogbomo
- Department of Microbiology, Immunology and Infectious Diseases, Alberta, Canada.,The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Alberta, Canada
| | - Danuta Stack
- Department of Microbiology, Immunology and Infectious Diseases, Alberta, Canada.,The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Alberta, Canada
| | - Shaunna H Huston
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Alberta, Canada
| | - Christopher H Mody
- Department of Microbiology, Immunology and Infectious Diseases, Alberta, Canada.,The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Alberta, Canada.,Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
NK cells clear α-synuclein and the depletion of NK cells exacerbates synuclein pathology in a mouse model of α-synucleinopathy. Proc Natl Acad Sci U S A 2020; 117:1762-1771. [PMID: 31900358 DOI: 10.1073/pnas.1909110117] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The pathological hallmark of synucleinopathies, including Lewy body dementia and Parkinson's disease (PD), is the presence of Lewy bodies, which are primarily composed of intracellular inclusions of misfolded α-synuclein (α-syn) among other proteins. α-Syn is found in extracellular biological fluids in PD patients and has been implicated in modulating immune responses in the central nervous system (CNS) and the periphery. Natural killer (NK) cells are innate effector lymphocytes that are present in the CNS in homeostatic and pathological conditions. NK cell numbers are increased in the blood of PD patients and their activity is associated with disease severity; however, the role of NK cells in the context of α-synucleinopathies has never been explored. Here, we show that human NK cells can efficiently internalize and degrade α-syn aggregates via the endosomal/lysosomal pathway. We demonstrate that α-syn aggregates attenuate NK cell cytotoxicity in a dose-dependent manner and decrease the release of the proinflammatory cytokine, IFN-γ. To address the role of NK cells in PD pathogenesis, NK cell function was investigated in a preformed fibril α-syn-induced mouse PD model. Our studies demonstrate that in vivo depletion of NK cells in a preclinical mouse PD model resulted in exacerbated motor deficits and increased phosphorylated α-syn deposits. Collectively, our data provide a role of NK cells in modulating synuclein pathology and motor symptoms in a preclinical mouse model of PD, which could be developed into a therapeutic for PD and other synucleinopathies.
Collapse
|
31
|
Morris FC, Dexter C, Kostoulias X, Uddin MI, Peleg AY. The Mechanisms of Disease Caused by Acinetobacter baumannii. Front Microbiol 2019; 10:1601. [PMID: 31379771 PMCID: PMC6650576 DOI: 10.3389/fmicb.2019.01601] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/26/2019] [Indexed: 01/29/2023] Open
Abstract
Acinetobacter baumannii is a Gram negative opportunistic pathogen that has demonstrated a significant insurgence in the prevalence of infections over recent decades. With only a limited number of “traditional” virulence factors, the mechanisms underlying the success of this pathogen remain of great interest. Major advances have been made in the tools, reagents, and models to study A. baumannii pathogenesis, and this has resulted in a substantial increase in knowledge. This article provides a comprehensive review of the bacterial virulence factors, the host immune responses, and animal models applicable for the study of this important human pathogen. Collating the most recent evidence characterizing bacterial virulence factors, their cellular targets and genetic regulation, we have encompassed numerous aspects important to the success of this pathogen, including membrane proteins and cell surface adaptations promoting immune evasion, mechanisms for nutrient acquisition and community interactions. The role of innate and adaptive immune responses is reviewed and areas of paucity in our understanding are highlighted. Finally, with the vast expansion of available animal models over recent years, we have evaluated those suitable for use in the study of Acinetobacter disease, discussing their advantages and limitations.
Collapse
Affiliation(s)
- Faye C Morris
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Carina Dexter
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Xenia Kostoulias
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Muhammad Ikhtear Uddin
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anton Y Peleg
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Abstract
The lungs, a special site that is frequently challenged by tumors, pathogens and other environmental insults, are populated by large numbers of innate immune cells. Among these, natural killer (NK) cells are gaining increasing attention. Recent studies have revealed that NK cells are heterogeneous populations consisting of distinct subpopulations with diverse characteristics, some of which are determined by their local tissue microenvironment. Most current information about NK cells comes from studies of NK cells from the peripheral blood of humans and NK cells from the spleen and bone marrow of mice. However, the functions and phenotypes of lung NK cells differ from those of NK cells in other tissues. Here, we provide an overview of human and mouse lung NK cells in the context of homeostasis, pathogenic infections, asthma, chronic obstructive pulmonary disease (COPD) and lung cancer, mainly focusing on their phenotype, function, frequency, and their potential role in pathogenesis or immune defense. A comprehensive understanding of the biology of NK cells in the lungs will aid the development of NK cell-based immunotherapies for the treatment of lung diseases.
Collapse
Affiliation(s)
- Jingjing Cong
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Institue of Immunology, University of Science and Technology of China, Hefei, China
- Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Institue of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
33
|
Antibody Treatment against Angiopoietin-Like 4 Reduces Pulmonary Edema and Injury in Secondary Pneumococcal Pneumonia. mBio 2019; 10:mBio.02469-18. [PMID: 31164474 PMCID: PMC6550533 DOI: 10.1128/mbio.02469-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Secondary bacterial lung infection by Streptococcus pneumoniae (S. pneumoniae) poses a serious health concern, especially in developing countries. We posit that the emergence of multiantibiotic-resistant strains will jeopardize current treatments in these regions. Deaths arising from secondary infections are more often associated with acute lung injury, a common consequence of hypercytokinemia, than with the infection per se Given that secondary bacterial pneumonia often has a poor prognosis, newer approaches to improve treatment outcomes are urgently needed to reduce the high levels of morbidity and mortality. Using a sequential dual-infection mouse model of secondary bacterial lung infection, we show that host-directed therapy via immunoneutralization of the angiopoietin-like 4 c-isoform (cANGPTL4) reduced pulmonary edema and damage in infected mice. RNA sequencing analysis revealed that anti-cANGPTL4 treatment improved immune and coagulation functions and reduced internal bleeding and edema. Importantly, anti-cANGPTL4 antibody, when used concurrently with either conventional antibiotics or antipneumolysin antibody, prolonged the median survival of mice compared to monotherapy. Anti-cANGPTL4 treatment enhanced immune cell phagocytosis of bacteria while restricting excessive inflammation. This modification of immune responses improved the disease outcomes of secondary pneumococcal pneumonia. Taken together, our study emphasizes that host-directed therapeutic strategies are viable adjuncts to standard antimicrobial treatments.IMPORTANCE Despite extensive global efforts, secondary bacterial pneumonia still represents a major cause of death in developing countries and is an important cause of long-term functional disability arising from lung tissue damage. Newer approaches to improving treatment outcomes are needed to reduce the significant morbidity and mortality caused by infectious diseases. Our study, using an experimental mouse model of secondary S. pneumoniae infection, shows that a multimodal treatment that concurrently targets host and pathogen factors improved lung tissue integrity and extended the median survival time of infected mice. The immunoneutralization of host protein cANGPTL4 reduced the severity of pulmonary edema and damage. We show that host-directed therapeutic strategies as well as neutralizing antibodies against pathogen virulence factors are viable adjuncts to standard antimicrobial treatments such as antibiotics. In view of their different modes of action compared to antibiotics, concurrent immunotherapies using antibodies are potentially efficacious against secondary pneumococcal pneumonia caused by antibiotic-resistant pathogens.
Collapse
|
34
|
CCR2 mediates increased susceptibility to post-H1N1 bacterial pneumonia by limiting dendritic cell induction of IL-17. Mucosal Immunol 2019; 12:518-530. [PMID: 30498200 PMCID: PMC6375750 DOI: 10.1038/s41385-018-0106-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 10/06/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023]
Abstract
Post influenza bacterial pneumonia is associated with significant mortality and morbidity. Dendritic cells (DCs) play a crucial role in host defense against bacterial pneumonia, but their contribution to post influenza-susceptibility to secondary bacterial pneumonia is incompletely understood. WT and CCR2-/- mice were infected with 100 plaque forming units (pfu) H1N1 intranasally alone or were challenged on day 5 with 7 × 107 colony forming units (cfu) methicillin-resistant Staphylococcus aureus intratracheally. WT mice express abundant CCL2 mRNA and protein post-H1N1 alone or dual infection. CCR2-/- mice had significantly higher survival as compared to WT mice, associated with significantly improved bacterial clearance at 24 and 48 h (10-fold and 14-fold, respectively) post bacterial challenge. There was robust upregulation of IL-23 and IL-17 as well as downregulation of IL-27 expression in CCR2-/- mice following sequential infection as compared to WT mice, which was also associated with significantly greater accumulation of CD103+ DC. Finally, WT mice treated with a CCR2 inhibitor showed improved bacterial clearance in association with similar cytokine profiles as CCR2-/- mice. Thus, CCR2 significantly contributes to increased susceptibility to bacterial infection after influenza pneumonia likely via altered dendritic cell responses and thus, CCR2 antagonism represents a potential therapeutic strategy.
Collapse
|
35
|
Liu C, Yang L, Han Y, Ouyang W, Yin W, Xu F. Mast cells participate in regulation of lung-gut axis during Staphylococcus aureus pneumonia. Cell Prolif 2019; 52:e12565. [PMID: 30729611 PMCID: PMC6496676 DOI: 10.1111/cpr.12565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022] Open
Abstract
Objectives The lung‐gut axis is known to be involved in the pathogenesis of Staphylococcus aureus pneumonia. However, the underlying mechanisms remain unclear. We examined the role of pulmonary mast cells (MCs) in the regulation of the lung‐gut axis during S. aureus pneumonia. Materials and Methods We created a mouse model of S. aureus pneumonia using MC‐deficient mice (KitW‐sh/W‐sh) and examined the level of inflammation, bacterial burden, expression of cathelicidin‐related antimicrobial peptide (CRAMP) and composition of the gut microbiota. We further evaluated anti‐bacterial immunity by administering bone marrow MCs (BMMCs) or CRAMP into the lungs of KitW‐sh/W‐sh mice. Results After S. aureus challenge, the MC‐deficient mice, compared with wild‐type (WT) mice, displayed attenuated lung inflammation, decreased expression of CRAMP, higher bacterial lung load and disturbance of the intestinal microbiota. Adoptive transfer of BMMCs into the lung effectively reconstituted the host defence against S. aureus in KitW‐sh/W‐sh mice, thus resulting in recovery of S. aureus pneumonia‐induced intestinal dysfunction. Similarly, exogenous administration of CRAMP significantly enhanced anti‐bacterial immunity in the lungs of MC‐deficient mice. Conclusions This study provides evidence for the involvement of MCs in the regulation of the lung‐gut axis during S. aureus pneumonia.
Collapse
Affiliation(s)
- Chao Liu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Yang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Han
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Ouyang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Yin
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Host Defenses to Extracellular Bacteria. Clin Immunol 2019. [DOI: 10.1016/b978-0-7020-6896-6.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
Abstract
Pneumonia is a type of acute lower respiratory infection that is common and severe. The outcome of lower respiratory infection is determined by the degrees to which immunity is protective and inflammation is damaging. Intercellular and interorgan signaling networks coordinate these actions to fight infection and protect the tissue. Cells residing in the lung initiate and steer these responses, with additional immunity effectors recruited from the bloodstream. Responses of extrapulmonary tissues, including the liver, bone marrow, and others, are essential to resistance and resilience. Responses in the lung and extrapulmonary organs can also be counterproductive and drive acute and chronic comorbidities after respiratory infection. This review discusses cell-specific and organ-specific roles in the integrated physiological response to acute lung infection, and the mechanisms by which intercellular and interorgan signaling contribute to host defense and healthy respiratory physiology or to acute lung injury, chronic pulmonary disease, and adverse extrapulmonary sequelae. Pneumonia should no longer be perceived as simply an acute infection of the lung. Pneumonia susceptibility reflects ongoing and poorly understood chronic conditions, and pneumonia results in diverse and often persistent deleterious consequences for multiple physiological systems.
Collapse
Affiliation(s)
- Lee J Quinton
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Allan J Walkey
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
38
|
Yamamoto Y, Miyazato K, Takahashi K, Yoshimura N, Tahara H, Hayakawa Y. Lung-resident natural killer cells control pulmonary tumor growth in mice. Cancer Sci 2018; 109:2670-2676. [PMID: 29927042 PMCID: PMC6125475 DOI: 10.1111/cas.13703] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence indicates the importance of natural killer (NK) cells in controlling tumor growth and metastasis. NK cell subsets display diversities in their function and tissue distribution and Mac-1hi CD27lo NK cells are the predominant population of lung-resident NK cells. Although the lung is a major organ where primary tumor develops and cancer cells metastasize, there is no clear evidence whether circulating NK cells and/or tissue-resident NK cells control tumor growth in the lung. In the present study, we examined an antitumor function of lung-resident NK cells to control pulmonary tumor growth. In an orthotopic lung tumor model, NK cells controlled pulmonary tumor growth, and mature circulating NK cell subsets were increased in tumor-bearing lungs through a C-X-C motif chemokine receptor 3 (CXCR3)-dependent mechanism. Although such increase in migratory NK cell subsets can be blocked by anti-CXCR3 treatment, there was no difference in pulmonary tumor growth in anti-CXCR3-treated mice compared with control mice. In addition to pulmonary tumor growth, lung-resident NK cells, but not migratory NK cells, play a dominant role in controlling metastatic growth of cancer cells in lung. These results strongly indicate an importance of lung-resident NK cells for controlling pulmonary tumor growth.
Collapse
Affiliation(s)
- Yutaka Yamamoto
- Division of Pathogenic BiochemistryDepartment of BioscienceInstitute of Natural MedicineUniversity of ToyamaToyamaJapan
- Department of Thoracic and Cardiovascular SurgeryDepartment of MedicineUniversity of ToyamaToyamaJapan
| | - Kiho Miyazato
- Division of Pathogenic BiochemistryDepartment of BioscienceInstitute of Natural MedicineUniversity of ToyamaToyamaJapan
| | - Kei Takahashi
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Naoki Yoshimura
- Department of Thoracic and Cardiovascular SurgeryDepartment of MedicineUniversity of ToyamaToyamaJapan
| | - Hideaki Tahara
- Department of Surgery and BioengineeringInstitute of Medical Sciencethe University of TokyoTokyoJapan
| | - Yoshihiro Hayakawa
- Division of Pathogenic BiochemistryDepartment of BioscienceInstitute of Natural MedicineUniversity of ToyamaToyamaJapan
| |
Collapse
|
39
|
Effect of Aging on NK Cell Population and Their Proliferation at Ex Vivo Culture Condition. Anal Cell Pathol (Amst) 2018; 2018:7871814. [PMID: 30175033 PMCID: PMC6098903 DOI: 10.1155/2018/7871814] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/26/2018] [Accepted: 05/25/2018] [Indexed: 01/02/2023] Open
Abstract
Age-associated changes in natural killer (NK) cell population, phenotype, and functions are directly attributed to the risk of several diseases and infections. It is predicted to be the major cause of the increase in mortality. Based on the surface density of CD56, NK cells are subdivided into two types, such as CD56bright and CD56dim cells, which represent cytokine production and cytotoxicity. In our study, we have examined the age-associated changes in the NK cell population and their subsets at different age groups of males and females (at a range from 41 to 80 years). We found that the total lymphocyte count significantly dropped upon aging in both genders. Although, the level of total immune cells also dropped on aging, and surprisingly the total NK cell population was remarkably increased with the majority of NK cells being CD56dim. Subsequently, we evaluated the proliferation potential of NK cells and our results showed that the NK cell proliferation ability declines with age. Overall, our findings prove that there is an increase in the circulating NK cell population upon aging. However, the proliferation rate upon aging declines when compared to the young age group (<41 yrs).
Collapse
|
40
|
Oth T, Habets THPM, Germeraad WTV, Zonneveld MI, Bos GMJ, Vanderlocht J. Pathogen recognition by NK cells amplifies the pro-inflammatory cytokine production of monocyte-derived DC via IFN-γ. BMC Immunol 2018; 19:8. [PMID: 29433450 PMCID: PMC5810032 DOI: 10.1186/s12865-018-0247-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/26/2018] [Indexed: 01/07/2023] Open
Abstract
Background Besides their prominent role in the elimination of infected or malignantly transformed cells, natural killer (NK) cells serve as modulators of adaptive immune responses. Enhancing bidirectional crosstalk between NK cells and dendritic cells (DC) is considered a promising tool to potentiate cancer vaccines. We investigated to what extent direct sensing of viral and bacterial motifs by NK cells contributes to the response of inflammatory DC against the same pathogenic stimulus. Results We demonstrated that sensing of bacterial and viral PAMPs by NK cells contributes to DC cytokine production via NK cell-derived soluble factors. This enhancement of DC cytokine production was dependent on the pattern recognition receptor (PRR) agonist but also on the cytokine environment in which NK cells recognized the pathogen, indicating the importance of accessory cell activation for this mechanism. We showed in blocking experiments that NK cell-mediated amplification of DC cytokine secretion is dependent on NK cell-derived IFN-γ irrespective of the PRR that is sensed by the NK cell. Conclusions These findings illustrate the importance of bidirectional interaction between different PRR-expressing immune cells, which can have implications on the selection of adjuvants for vaccination strategies. Electronic supplementary material The online version of this article (10.1186/s12865-018-0247-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tammy Oth
- Division of Hematology, Department of Internal Medicine, School of Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Thomas H P M Habets
- Division of Hematology, Department of Internal Medicine, School of Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands.,Central Diagnostic Laboratory, Division of Immunology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Wilfred T V Germeraad
- Division of Hematology, Department of Internal Medicine, School of Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Marijke I Zonneveld
- MAASTRO Laboratory, Department of Radiation Oncology, School of Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Gerard M J Bos
- Division of Hematology, Department of Internal Medicine, School of Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Joris Vanderlocht
- Division of Hematology, Department of Internal Medicine, School of Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands. .,Central Diagnostic Laboratory, Division of Immunology, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
41
|
Messlinger H, Sebald H, Heger L, Dudziak D, Bogdan C, Schleicher U. Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites. Front Immunol 2018; 9:24. [PMID: 29472914 PMCID: PMC5810259 DOI: 10.3389/fimmu.2018.00024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022] Open
Abstract
Activated natural killer (NK) cells release interferon (IFN)-γ, which is crucial for the control of intracellular pathogens such as Leishmania. In contrast to experimental murine leishmaniasis, the human NK cell response to Leishmania is still poorly characterized. Here, we investigated the interaction of human blood NK cells with promastigotes of different Leishmania species (Leishmania major, Leishmania mexicana, Leishmania infantum, and Leishmania donovani). When peripheral blood mononuclear cells or purified NK cells and monocytes (all derived from healthy blood donors from Germany without a history of leishmaniasis) were exposed to promastigotes, NK cells showed increased surface expression of the activation marker CD69. The extent of this effect varied depending on the Leishmania species; differences between dermotropic and viscerotropic L. infantum strains were not observed. Upregulation of CD69 required direct contact between monocytes and Leishmania and was partly inhibitable by anti-interleukin (IL)-18. Unexpectedly, IL-18 was undetectable in most of the supernatants (SNs) of monocyte/parasite cocultures. Confocal fluorescence microscopy of non-permeabilized cells revealed that Leishmania-infected monocytes trans-presented IL-18 to NK cells. Native, but not heat-treated SNs of monocyte/Leishmania cocultures also induced CD69 on NK cells, indicating the involvement of a soluble heat-labile factor other than IL-18. A role for the NK cell-activating cytokines IL-1β, IL-2, IL-12, IL-15, IL-21, and IFN-α/β was excluded. The increase of CD69 was not paralleled by NK cell IFN-γ production or enhanced cytotoxicity. However, prior exposure of NK cells to Leishmania parasites synergistically increased their IFN-γ release in response to IL-12, which was dependent on endogenous IL-18. CD1c+ dendritic cells were identified as possible source of Leishmania-induced IL-12. Finally, we observed that direct contact between Leishmania and NK cells reduced the expression of CD56 mRNA and protein on NK cells. We conclude that Leishmania activate NK cells via trans-presentation of IL-18 by monocytes and by a monocyte-derived soluble factor. IL-12 is needed to elicit the IFN-γ-response of NK cells, which is likely to be an important component of the innate control of the parasite.
Collapse
Affiliation(s)
- Helena Messlinger
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Heidi Sebald
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Laboratory of DC Biology, Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of DC Biology, Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrike Schleicher
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
42
|
Nowicka D, Grywalska E, Fitas E, Mielnik M, Roliński J. NK and NKT-Like Cells in Patients with Recurrent Furunculosis. Arch Immunol Ther Exp (Warsz) 2017; 66:315-319. [PMID: 29236128 PMCID: PMC6061139 DOI: 10.1007/s00005-017-0500-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/18/2017] [Indexed: 01/04/2023]
Abstract
To analyze changes in the number and percentage of NK and NKT-like cells in relation to other immune cells as well as to examine associations between increased susceptibility to infections and NK and NKT-like status in patients with recurrent furunculosis (RF) and healthy controls. Thirty patients with RF and 20 healthy age- and sex-matched volunteers were recruited. Blood samples were examined. Lymphocyte count and cytometric analyses were conducted. For statistical analysis, the Student’s t test, F test, and Brown–Forsythe test were used for comparison between groups of variables. Associations were assessed with Pearson coefficient. Patients with RF had lower lymphocyte count than controls. Additionally, they presented with the following changes in the blood picture: a significant increase in the number of NK cells with a CD3+CD16+CD56+ phenotype; a proportional increase in the number and percentage of NKT-like cells with a CD3+CD16+CD56+ phenotype; a significant decrease in the number and percentage of T CD3+ cells. The number of NK cells was strongly positively correlated with the number of CD3 cells (r = 0.6162). The number of NKT cells was strongly positively correlated with CD3 cells (r = 0.6885) and CD3CD8 cells (r = 0.5465). Periodic exacerbations in RF are associated with the development of furuncles, which are a result of many already discovered as well as just being examined mechanisms. One of them is a significant increase in the number and most likely activation of NK and NKT-like cells during the formation of the inflammatory process and furuncles.
Collapse
Affiliation(s)
- Danuta Nowicka
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, Chalubinskiego 1, 50-368, Wroclaw, Poland.
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Lublin, Poland
| | - Elżbieta Fitas
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Lublin, Poland
| | - Michał Mielnik
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Lublin, Poland
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
43
|
Natural killer cells play an essential role in resolution of antigen-induced inflammation in mice. Mol Immunol 2017; 93:1-8. [PMID: 29112834 DOI: 10.1016/j.molimm.2017.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 12/29/2022]
Abstract
This study examined whether NK cells are important for resolution of antigen-induced inflammation. C57BL/6 mice were immunized twice with methylated BSA (mBSA) and inflammation induced by intraperitoneal injection of mBSA. Mice were injected intravenously with anti-asialo GM1 (αASGM1) or a control antibody 24h prior to peritonitis induction and peritoneal exudate collected at different time points. Expression of surface molecules and apoptosis on peritoneal cells was determined by flow cytometry and concentration of chemokines, cytokines, soluble cytokine receptors and lipid mediators by ELISA and LC-MS/MS. Apoptosis in parathymic lymph nodes and spleens was determined by TUNEL staining. Mice administered αASGM1 had lower peritoneal NK cell numbers and a higher number of peritoneal neutrophils 12h after induction of inflammation than control mice. The number of neutrophils was still high in the αASGM1 treated mice when their number had returned to baseline levels in the control mice, 48h after induction of inflammation. Peritoneal concentrations of the neutrophil regulators G-CSF and IL-12p40 were higher at 12h in the αASGM1 treated mice than in the control mice, whereas concentrations of lipid mediators implicated in resolution of inflammation, i.e. LXA4 and PGE2, were lower. Reduced apoptosis was detected in peritoneal neutrophils as well as in draining lymph nodes and spleens from the αASGM1 treated mice compared with that in the control mice. In addition, αASGM1 treated mice had lower number of peritoneal NK cells expressing NKp46 and NKG2D, receptors implicated in NK cell-induced neutrophil apoptosis. Furthermore, αASGM1 treatment completely blocked the increase in CD27+ NK cells that occurred in control mice following induction of inflammation, but CD27+ NK cells have been suggested to have a regulatory role. These results indicate a crucial role for NK cells in resolution of antigen-induced inflammation and suggest their importance in tempering neutrophil recruitment and maintaining neutrophil apoptosis.
Collapse
|
44
|
Lukic J, Chen V, Strahinic I, Begovic J, Lev-Tov H, Davis SC, Tomic-Canic M, Pastar I. Probiotics or pro-healers: the role of beneficial bacteria in tissue repair. Wound Repair Regen 2017; 25:912-922. [PMID: 29315980 PMCID: PMC5854537 DOI: 10.1111/wrr.12607] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
Abstract
Probiotics are beneficial microorganisms, known to exert numerous positive effects on human health, primarily in the battle against pathogens. Probiotics have been associated with improved healing of intestinal ulcers, and healing of infected cutaneous wounds. This article reviews the latest findings on probiotics related to their pro-healing properties on gut epithelium and skin. Proven mechanisms by which probiotic bacteria exert their beneficial effects include direct killing of pathogens, competitive displacement of pathogenic bacteria, reinforcement of epithelial barrier, induction of fibroblasts, and epithelial cells' migration and function. Beneficial immunomodulatory effects of probiotics relate to modulation and activation of intraepithelial lymphocytes, natural killer cells, and macrophages through induced production of cytokines. Systemic effects of beneficial bacteria and link between gut microbiota, immune system, and cutaneous health through gut-brain-skin axes are discussed as well. In light of growing antibiotic resistance of pathogens, antibiotic use is becoming less effective in treating cutaneous and systemic infections. This review points to a new perspective and therapeutic potential of beneficial probiotic species as a safe alternative approach for treatment of patients affected by wound healing disorders and cutaneous infections.
Collapse
Affiliation(s)
- Jovanka Lukic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Vivien Chen
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Ivana Strahinic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Jelena Begovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Hadar Lev-Tov
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Stephen C Davis
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Marjana Tomic-Canic
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Irena Pastar
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| |
Collapse
|
45
|
Nájera-Medina O, Valencia-Chavarría F, Cortés-Bejar C, Palacios-Martínez M, Rodríguez-López CP, González-Torres MC. Infected malnourished children displayed changes in early activation and lymphocyte subpopulations. Acta Paediatr 2017; 106:1499-1506. [PMID: 28520183 DOI: 10.1111/apa.13930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/06/2017] [Accepted: 05/15/2017] [Indexed: 11/30/2022]
Abstract
AIM Malnutrition and infections cause immunological changes in lymphocyte subpopulations and their functionality. We evaluated the activation capacity of lymphocytes and memory cells in 10 well nourished, seven well-nourished infected and eight malnourished infected children before and after treatment. METHODS All the children were patients in Mexico City and were less than three years of age. The expression of various cluster of differentiation (CD) cells was assessed by flow cytometry: CD45RA (naïve) and CD45RO (memory) antigens on CD4 lymphocytes and CD69 in all lymphocytes. RESULTS Well-nourished infected children showed a higher percentage of activated T lymphocyte (T cells), CD8+ and CD4+ memory cells during the infectious phase, suggesting that the activation mechanisms were triggered by infection. T cells from malnourished infected children showed a lower percentage of activated and memory cells. The T cell population size returned to baseline during the resolution phase of the infection in well-nourished infected children, but their T, B lymphocyte and natural killer (NK) cell counts remained high. In malnourished infected children, activated NK cells counts were low before and after therapy. CONCLUSION After therapy, malnourished infected children showed poor NK cell responses during the infection's resolution phase, suggesting a persistent malnutrition-mediated immunological deficiency.
Collapse
Affiliation(s)
- Oralia Nájera-Medina
- Departamento de Atención a la Salud; CBS; Universidad Autónoma Metropolitana-Xochimilco; Ciudad de México Mexico
| | - Fernando Valencia-Chavarría
- Hospital Materno-Pediátrico Xochimilco de la Secretaria de Salud del Gobierno del Distrito Federal; Xochimilco Ciudad de México Mexico
| | - Consuelo Cortés-Bejar
- Hospital Materno-Pediátrico Xochimilco de la Secretaria de Salud del Gobierno del Distrito Federal; Xochimilco Ciudad de México Mexico
| | - Monika Palacios-Martínez
- Departamento de Producción Agrícola y Animal; CBS; Universidad Autónoma Metropolitana-Xochimilco; Ciudad de México Mexico
| | - C. Paulina Rodríguez-López
- Departamento de Ciencias de la Salud; CBS; Universidad Autónoma Metropolitana-Iztapalapa; Ciudad de México Mexico
| | | |
Collapse
|
46
|
Ziegler S, Weiss E, Schmitt AL, Schlegel J, Burgert A, Terpitz U, Sauer M, Moretta L, Sivori S, Leonhardt I, Kurzai O, Einsele H, Loeffler J. CD56 Is a Pathogen Recognition Receptor on Human Natural Killer Cells. Sci Rep 2017; 7:6138. [PMID: 28733594 PMCID: PMC5522490 DOI: 10.1038/s41598-017-06238-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 06/12/2017] [Indexed: 11/09/2022] Open
Abstract
Aspergillus (A.) fumigatus is an opportunistic fungal mold inducing invasive aspergillosis (IA) in immunocompromised patients. Although antifungal activity of human natural killer (NK) cells was shown in previous studies, the underlying cellular mechanisms and pathogen recognition receptors (PRRs) are still unknown. Using flow cytometry we were able to show that the fluorescence positivity of the surface receptor CD56 significantly decreased upon fungal contact. To visualize the interaction site of NK cells and A. fumigatus we used SEM, CLSM and dSTORM techniques, which clearly demonstrated that NK cells directly interact with A. fumigatus via CD56 and that CD56 is re-organized and accumulated at this interaction site time-dependently. The inhibition of the cytoskeleton showed that the receptor re-organization was an active process dependent on actin re-arrangements. Furthermore, we could show that CD56 plays a role in the fungus mediated NK cell activation, since blocking of CD56 surface receptor reduced fungal mediated NK cell activation and reduced cytokine secretion. These results confirmed the direct interaction of NK cells and A. fumigatus, leading to the conclusion that CD56 is a pathogen recognition receptor. These findings give new insights into the functional role of CD56 in the pathogen recognition during the innate immune response.
Collapse
Affiliation(s)
- Sabrina Ziegler
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Esther Weiss
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Anna-Lena Schmitt
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Jan Schlegel
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian-University Wuerzburg, Wuerzburg, Germany
| | - Anne Burgert
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian-University Wuerzburg, Wuerzburg, Germany
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian-University Wuerzburg, Wuerzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian-University Wuerzburg, Wuerzburg, Germany
| | - Lorenzo Moretta
- Immunology Area, Pediatric Hospital Bambino Gesù, Rome, Italy
| | - Simona Sivori
- Dipartimento di Medicina Sperimentale (DIMES) and Centro di Eccellenza per la Ricerca Biomedica, Universita' di Genova, Genova, Italy
| | - Ines Leonhardt
- Septomics Research Centre, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Oliver Kurzai
- Septomics Research Centre, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Juergen Loeffler
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
47
|
Lemire P, Galbas T, Thibodeau J, Segura M. Natural Killer Cell Functions during the Innate Immune Response to Pathogenic Streptococci. Front Microbiol 2017; 8:1196. [PMID: 28706510 PMCID: PMC5489694 DOI: 10.3389/fmicb.2017.01196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/12/2017] [Indexed: 01/21/2023] Open
Abstract
Dendritic cells (DCs) and NK cells play a crucial role in the first phase of host defense against infections. Group B Streptococcus (GBS) and Streptococcus suis are encapsulated streptococci causing severe systemic inflammation, leading to septicemia and meningitis. Yet, the involvement of NK cells in the innate immune response to encapsulated bacterial infection is poorly characterized. Here, it was observed that these two streptococcal species rapidly induce the release of IFN-γ and that NK cells are the major cell type responsible for this production during the acute phase of the infection. Albeit S. suis capacity to activate NK cells was lower than that of GBS, these cells partially contribute to S. suis systemic infection; mainly through amplification of the inflammatory loop. In contrast, such a role was not observed during GBS systemic infection. IFN-γ release by NK cells required the presence of DCs, which in turn had a synergistic effect on DC cytokine production. These responses were mainly mediated by direct DC-NK cell contact and partially dependent on soluble factors. Though IL-12 and LFA-1 were shown to be critical in S. suis-mediated activation of the DC-NK cell crosstalk, different or redundant molecular pathways modulate DC-NK interactions during GBS infection. The bacterial capsular polysaccharides also differently modulated NK cell activation. Together, these results demonstrated a role of NK cells in the innate immune response against encapsulated streptococcal infections; yet the molecular pathways governing NK activation seem to differ upon the pathogen and should not be generalized when studying bacterial infections.
Collapse
Affiliation(s)
- Paul Lemire
- Laboratory of Immunology of the Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of MontrealSt-Hyacinthe, QC, Canada
| | - Tristan Galbas
- Laboratory of Molecular Immunology, Faculty of Medicine, University of MontrealMontreal, QC, Canada
| | - Jacques Thibodeau
- Laboratory of Molecular Immunology, Faculty of Medicine, University of MontrealMontreal, QC, Canada
| | - Mariela Segura
- Laboratory of Immunology of the Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of MontrealSt-Hyacinthe, QC, Canada
| |
Collapse
|
48
|
Baranek T, Morello E, Valayer A, Aimar RF, Bréa D, Henry C, Besnard AG, Dalloneau E, Guillon A, Dequin PF, Narni-Mancinelli E, Vivier E, Laurent F, Wei Y, Paget C, Si-Tahar M. FHL2 Regulates Natural Killer Cell Development and Activation during Streptococcus pneumoniae Infection. Front Immunol 2017; 8:123. [PMID: 28243234 PMCID: PMC5303898 DOI: 10.3389/fimmu.2017.00123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Recent in silico studies suggested that the transcription cofactor LIM-only protein FHL2 is a major transcriptional regulator of mouse natural killer (NK) cells. However, the expression and role of FHL2 in NK cell biology are unknown. Here, we confirm that FHL2 is expressed in both mouse and human NK cells. Using FHL2−/− mice, we found that FHL2 controls NK cell development in the bone marrow and maturation in peripheral organs. To evaluate the importance of FHL2 in NK cell activation, FHL2−/− mice were infected with Streptococcus pneumoniae. FHL2−/− mice are highly susceptible to this infection. The activation of lung NK cells is altered in FHL2−/− mice, leading to decreased IFNγ production and a loss of control of bacterial burden. Collectively, our data reveal that FHL2 is a new transcription cofactor implicated in NK cell development and activation during pulmonary bacterial infection.
Collapse
Affiliation(s)
- Thomas Baranek
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Eric Morello
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Alexandre Valayer
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Rose-France Aimar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Déborah Bréa
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Clemence Henry
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Anne-Gaelle Besnard
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Emilie Dalloneau
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France; Service de Réanimation Polyvalente, Centre Hospitalier Régional Universitaire, Tours, France
| | - Pierre-François Dequin
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France; Service de Réanimation Polyvalente, Centre Hospitalier Régional Universitaire, Tours, France
| | - Emilie Narni-Mancinelli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS , Marseille , France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France; Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | | | - Yu Wei
- Hépacivirus et immunité innée, Institut Pasteur , Paris , France
| | - Christophe Paget
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| |
Collapse
|
49
|
Dietary flavonoids and modulation of natural killer cells: implications in malignant and viral diseases. J Nutr Biochem 2017; 46:1-12. [PMID: 28182964 DOI: 10.1016/j.jnutbio.2017.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 12/30/2016] [Accepted: 01/14/2017] [Indexed: 01/08/2023]
Abstract
Flavonoids are a large group of secondary plant metabolites present in the diet with numerous potentially health-beneficial biological activities. In addition to antioxidant, anti-inflammatory, cholesterol-lowering, and many other biological functions reported in the literature, flavonoids appear to inhibit cancer cell proliferation and stimulate immune function. Although the immunomodulatory potential of flavonoids has been intensively investigated, only little is known about their impact on natural killer (NK) cells. Enhancing NK cell activity, however, would have strong implications for a possible clinical use of flavonoids, especially in the treatment and prevention of diseases like cancer and viral infections. Therefore, the purpose of this review is to summarize the currently available information on NK cell modulation by flavonoids. Many of the structurally diverse flavonoids stimulate NK cell activity and have thus great potential as diet-derived immune-modulatory chemopreventive agents and may even serve as therapeutic compounds or lead structures for the development of novel drugs for the treatment of both malignant and viral diseases.
Collapse
|
50
|
Cohen TS, Hilliard JJ, Jones-Nelson O, Keller AE, O'Day T, Tkaczyk C, DiGiandomenico A, Hamilton M, Pelletier M, Wang Q, Diep BA, Le VTM, Cheng L, Suzich J, Stover CK, Sellman BR. Staphylococcus aureus α toxin potentiates opportunistic bacterial lung infections. Sci Transl Med 2016; 8:329ra31. [PMID: 26962155 DOI: 10.1126/scitranslmed.aad9922] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Broad-spectrum antibiotic use may adversely affect a patient's beneficial microbiome and fuel cross-species spread of drug resistance. Although alternative pathogen-specific approaches are rationally justified, a major concern for this precision medicine strategy is that co-colonizing or co-infecting opportunistic bacteria may still cause serious disease. In a mixed-pathogen lung infection model, we find that the Staphylococcus aureus virulence factor α toxin potentiates Gram-negative bacterial proliferation, systemic spread, and lethality by preventing acidification of bacteria-containing macrophage phagosomes, thereby reducing effective killing of both S. aureus and Gram-negative bacteria. Prophylaxis or early treatment with a single α toxin neutralizing monoclonal antibody prevented proliferation of co-infecting Gram-negative pathogens and lethality while also promoting S. aureus clearance. These studies suggest that some pathogen-specific, antibody-based approaches may also work to reduce infection risk in patients colonized or co-infected with S. aureus and disparate drug-resistant Gram-negative bacterial opportunists.
Collapse
Affiliation(s)
- Taylor S Cohen
- Department of Infectious Disease, MedImmune, Gaithersburg, MD 20878, USA
| | - Jamese J Hilliard
- Department of Infectious Disease, MedImmune, Gaithersburg, MD 20878, USA
| | - Omari Jones-Nelson
- Department of Infectious Disease, MedImmune, Gaithersburg, MD 20878, USA
| | - Ashley E Keller
- Department of Infectious Disease, MedImmune, Gaithersburg, MD 20878, USA
| | - Terrence O'Day
- Department of Translational Science, MedImmune, Gaithersburg, MD 20878, USA
| | - Christine Tkaczyk
- Department of Infectious Disease, MedImmune, Gaithersburg, MD 20878, USA
| | | | - Melissa Hamilton
- Department of Infectious Disease, MedImmune, Gaithersburg, MD 20878, USA
| | - Mark Pelletier
- Department of Infectious Disease, MedImmune, Gaithersburg, MD 20878, USA
| | - Qun Wang
- Department of Infectious Disease, MedImmune, Gaithersburg, MD 20878, USA
| | - Binh An Diep
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA. Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vien T M Le
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Lily Cheng
- Department of Translational Science, MedImmune, Gaithersburg, MD 20878, USA
| | - JoAnn Suzich
- Department of Infectious Disease, MedImmune, Gaithersburg, MD 20878, USA
| | - C Kendall Stover
- Department of Infectious Disease, MedImmune, Gaithersburg, MD 20878, USA
| | - Bret R Sellman
- Department of Infectious Disease, MedImmune, Gaithersburg, MD 20878, USA.
| |
Collapse
|