1
|
Lee PJ, Papachristou GI, Speake C, Lacy-Hulbert A. Immune markers of severe acute pancreatitis. Curr Opin Gastroenterol 2024; 40:389-395. [PMID: 38967941 PMCID: PMC11305979 DOI: 10.1097/mog.0000000000001053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
PURPOSE OF REVIEW Acute pancreatitis is a common acute inflammatory disorder of the pancreas, and its incidence has been increasing worldwide. Approximately 10% of acute pancreatitis progresses to severe acute pancreatitis (SAP), which carries significant morbidity and mortality. Disordered immune response to pancreatic injury is regarded as a key event that mediates systemic injury in SAP. In this article, we review recent developments in immune biomarkers of SAP and future directions for research. RECENT FINDINGS Given the importance of the NLRP3-inflammasome pathway in mediating systemic inflammatory response syndrome and systemic injury, recent studies have investigated associations of SAP with systemic levels of activators of NLRP3, such as the damage associated molecular patterns (DAMPs) for the first time in human SAP. For example, circulating levels of histones, mitochondrial DNAs, and cell free DNAs have been associated with SAP. A panel of mechanistically relevant immune markers (e.g., panel of Angiopoeitin-2, hepatocyte growth factor, interleukin-8 (IL-8), resistin and sTNF-α R1) carried higher predictive accuracies than existing clinical scores and individual immune markers. Of the cytokines with established relevance to SAP pathogenesis, phase 2 trials of immunotherapies, including tumor necrosis factor (TNF)-alpha inhibition and stimulation of IL-10 production, are underway to determine if altering the immunologic response can reduce the severity of acute pancreatitis (AP). SUMMARY Circulating systemic levels of various DAMPs and a panel of immune markers that possibly reflect activities of different pathways that drive SAP appear promising as predictive biomarkers for SAP. But larger multicenter studies are needed for external validation. Studies investigating immune cellular pathways driving SAP using immunophenotyping techniques are scarce. Interdisciplinary efforts are also needed to bring some of the promising biomarkers to the bedside for validation and testing for clinical utility. Studies investigating the role of and characterization of altered gut-lymph and gut-microbiota in severe AP are needed.
Collapse
Affiliation(s)
- Peter J Lee
- Division of Gastroenterology, Hepatology, and Nutrition. Ohio State University Wexner Medical Center, Columbus, OH
| | - Georgios I Papachristou
- Division of Gastroenterology, Hepatology, and Nutrition. Ohio State University Wexner Medical Center, Columbus, OH
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Adam Lacy-Hulbert
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| |
Collapse
|
2
|
Idiz UO, Aru B, Kaya C, Peker KD, Tatar C, Guler M, Tunay A, Demirel GY, Gurol AO. Could we use PD-1 and PD-L1 expression on lymphocytes and monocytes as predictive markers for prognosis of acute biliary pancreatitis? Immunol Lett 2024; 265:37-43. [PMID: 38199503 DOI: 10.1016/j.imlet.2024.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
PURPOSE This study aimed to assess the significance of immunophenotyping and serum cytokines in predicting the clinical progression of acute biliary pancreatitis (ABP). MATERIALS AND METHODS Cytokine levels, T-helper, cytotoxic T, natural killer (NK) cells, monocytes, HLA-DR, and PD-1, as well as PDL-1 immune checkpoints, were measured in ABP patients at the time of diagnosis and compared with results from healthy volunteers. The study also compared leukocyte counts, hematocrit, immunophenotyping results, cytokine statuses, and PD-1, PDL-1 expression between healthy volunteers and ABP subgroups categorized by pancreatitis severity. RESULTS The study included 65 ABP patients and 20 healthy volunteers. Significant differences were observed between groups in hematocrit, leukocyte counts, total monocytes, lymphocytes, CD3+ total T cells, CD4+ Th cells, PD-1 expression on CD4+ and CD8+T lymphocytes, HLA-DR expression on CD14+ monocytes, NK cells, PD-L1 expression on CD14+ monocytes, classical and intermediate monocytes, as well as levels of IL-6, IL-8, IL-10, IL-18, and IL-33 cytokines. Moderate correlations were found with lymphocyte counts, PD-1+CD4+ cells, PD-L1+CD14+ cells, and strong correlations with HLA-DR+CD14+ cells. Hematocrit, CD3+ total T cells, NK cells, CD4+PD-1 + T cells, and CD8+PD-1 + T cells showed independent associations with the severity of ABP. Lymphocyte counts, CD14+HLA-DR+ cells, CD14+PD-L1+ cells, CD4+PD-1 + T cells, classical, and intermediate monocytes exhibited the highest Area Under the Curve rates in determining organ failure. CONCLUSIONS Hematocrit, lymphocyte counts, CD14+HLA-DR+ cells, CD14+PD-L1+ cells, and intermediate monocytes emerged as parameters most closely associated with the severity and these parameters could be useful in predicting the severity of ABP.
Collapse
Affiliation(s)
- Ufuk Oguz Idiz
- Department of General Surgery, Istanbul Training and Research Hospital, Istanbul, Turkey; Institute of Health Sciences, Istanbul University, Istanbul, Turkey; Department of Immunology, Istanbul University, DETAE, Istanbul, Turkey.
| | - Basak Aru
- Department of Immunology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Cemal Kaya
- Department of General Surgery, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Kivanc Derya Peker
- Department of General Surgery, Hisar Hospital Intercontinental, Istanbul, Turkey
| | - Cihad Tatar
- Department of General Surgery, Acibadem University, Istanbul, Turkey
| | - Mert Guler
- Department of General Surgery, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Abdurrahman Tunay
- Department of Anesthesia and Reanimation, Istanbul Training and Research Hospital, Istanbul, Turkey
| | | | - Ali Osman Gurol
- Department of Immunology, Istanbul University, DETAE, Istanbul, Turkey
| |
Collapse
|
3
|
Malheiro F, Ângelo-Dias M, Lopes T, Azeredo-Lopes S, Martins C, Borrego LM. B Cells and Double-Negative B Cells (CD27 -IgD -) Are Related to Acute Pancreatitis Severity. Diseases 2024; 12:18. [PMID: 38248369 PMCID: PMC10814478 DOI: 10.3390/diseases12010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Acute pancreatitis (AP) is an increasingly frequent disease in which inflammation plays a crucial role. Fifty patients hospitalized with AP were included and peripheral blood samples were analyzed for B and T cell subpopulations at the time of hospitalization and 48 h after diagnosis. The Bedside Index of Severity in Acute Pancreatitis (BISAP) and length of hospital stay were also recorded. A healthy control (HC) group of 15 outpatients was included. AP patients showed higher neutrophil/lymphocyte (N/L) ratios and higher percentages of B cells than the HC group. The total B cell percentages were higher in patients with moderate/severe AP than in patients with mild AP. The percentages of B cells as well as the percentages of the CD27-IgD- B cell subset decreased from admission to 48 h after admission. The patients with higher BISAP scores showed lower percentages of peripheral lymphocytes but higher percentages of CD27-IgD- B cells. Higher BISAP scores, N/L ratios, and peripheral blood B cell levels emerged as predictors of hospital stay length in AP patients. Our findings underscore the importance of early markers for disease severity. Additionally, the N/L ratio along with the BISAP score and circulating B cell levels form a robust predictive model for hospital stay duration of AP patients.
Collapse
Affiliation(s)
- Filipa Malheiro
- Internal Medicine Department, LUZ SAÚDE, Hospital da Luz Lisboa, 1500-650 Lisboa, Portugal
- CHRC, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal; (M.Â.-D.); (T.L.); (S.A.-L.); (C.M.)
| | - Miguel Ângelo-Dias
- CHRC, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal; (M.Â.-D.); (T.L.); (S.A.-L.); (C.M.)
- Immunology Department, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Teresa Lopes
- CHRC, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal; (M.Â.-D.); (T.L.); (S.A.-L.); (C.M.)
- Immunology Department, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Sofia Azeredo-Lopes
- CHRC, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal; (M.Â.-D.); (T.L.); (S.A.-L.); (C.M.)
- Department of Statistics and Operational Research, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Catarina Martins
- CHRC, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal; (M.Â.-D.); (T.L.); (S.A.-L.); (C.M.)
- Immunology Department, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Luis Miguel Borrego
- CHRC, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal; (M.Â.-D.); (T.L.); (S.A.-L.); (C.M.)
- Immunology Department, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
- Immunoallergy Department, LUZ SAÚDE, Hospital da Luz Lisboa, 1500-650 Lisboa, Portugal
| |
Collapse
|
4
|
Ludwig K, Chichelnitskiy E, Kühne JF, Wiegmann B, Iske J, Ledwoch N, Ius F, Beushausen K, Keil J, Iordanidis S, Rojas SV, Salman J, Knoefel AK, Haverich A, Warnecke G, Falk CS. CD14 highCD16 + monocytes are the main producers of Interleukin-10 following clinical heart transplantation. Front Immunol 2023; 14:1257526. [PMID: 37936714 PMCID: PMC10627027 DOI: 10.3389/fimmu.2023.1257526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Following heart transplantation, a cascade of immunological responses is initiated influencing the clinical outcome and long-term survival of the transplanted patients. The anti-inflammatory cytokine interleukin-10 (IL-10) was shown to be elevated in the blood of heart transplant recipients directly after transplantation but the releasing cell populations and the composition of lymphocyte subsets following transplantation have not been thoroughly studied. Methods We identified immune cells by immunophenotyping and analyzed intracellular IL-10 production in peripheral blood mononuclear cells (PBMC) of heart transplanted patients (n= 17) before, directly after and 24h post heart transplantation. The cells were stimulated with lipopolysaccharide or PMA/Ionomycin to enhance cytokine production within leukocytes in vitro. Results and discussion We demonstrate that intermediate monocytes (CD14highCD16+), but not CD8+ T cells, CD4+ T cells, CD56+ NK cells or CD20+ B cells appeared to be the major IL-10 producers within patients PBMC following heart transplantation. Consequently, the absolute monocyte count and the ratio of intermediate monocytes to classical monocytes (CD14+CD16-) were specifically increased in comparison to pre transplant levels. Hence, this population of monocytes, which has not been in the focus of heart transplantation so far, may be an important modulator of clinical outcome and long-term survival of heart transplant recipients. Alteration of blood-circulating monocytes towards a CD14highCD16+ phenotype could therefore shift the pro-inflammatory immune response towards induction of graft tolerance, and may pave the way for the optimization of immunosuppression.
Collapse
Affiliation(s)
- Kristina Ludwig
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
- Department of Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Jenny F. Kühne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany
- DZL, German Center for Lung Diseases, BREATH site, Hannover, Germany
| | - Jasper Iske
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
| | - Nadine Ledwoch
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Fabio Ius
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- DZL, German Center for Lung Diseases, BREATH site, Hannover, Germany
| | - Kerstin Beushausen
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Jana Keil
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Susanne Iordanidis
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Sebastian V. Rojas
- Heart and Diabetes Center Nordrhein-Westfalen, University Hospital Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Jawad Salman
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ann-Kathrin Knoefel
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Gregor Warnecke
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
- DZL, German Center for Lung Diseases, BREATH site, Hannover, Germany
- DZIF, German Center for Infection Research, TTU-IICH, Hannover, Germany
| |
Collapse
|
5
|
Glaubitz J, Asgarbeik S, Lange R, Mazloum H, Elsheikh H, Weiss FU, Sendler M. Immune response mechanisms in acute and chronic pancreatitis: strategies for therapeutic intervention. Front Immunol 2023; 14:1279539. [PMID: 37881430 PMCID: PMC10595029 DOI: 10.3389/fimmu.2023.1279539] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common inflammatory diseases of the gastrointestinal tract and a steady rising diagnosis for inpatient hospitalization. About one in four patients, who experience an episode of AP, will develop chronic pancreatitis (CP) over time. While the initiating causes of pancreatitis can be complex, they consistently elicit an immune response that significantly determines the severity and course of the disease. Overall, AP is associated with a significant mortality rate of 1-5%, which is caused by either an excessive pro-inflammation, or a strong compensatory inhibition of bacterial defense mechanisms which lead to a severe necrotizing form of pancreatitis. At the time-point of hospitalization the already initiated immune response is the only promising common therapeutic target to treat or prevent a severe disease course. However, the complexity of the immune response requires fine-balanced therapeutic intervention which in addition is limited by the fact that a significant proportion of patients is in danger of development or progress to recurrent and chronic disease. Based on the recent literature we survey the disease-relevant immune mechanisms and evaluate appropriate and promising therapeutic targets for the treatment of acute and chronic pancreatitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthias Sendler
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Kostenko S, Khatua B, Trivedi S, Pillai AN, McFayden B, Morsy M, Rajalingamgari P, Sharma V, Noel P, Patel K, El-Kurdi B, Borges da Silva H, Chen X, Chandan V, Navina S, Vela S, Cartin-Ceba R, Snozek C, Singh VP. Amphipathic Liponecrosis Impairs Bacterial Clearance and Causes Infection During Sterile Inflammation. Gastroenterology 2023; 165:999-1015. [PMID: 37263302 DOI: 10.1053/j.gastro.2023.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND & AIMS Although transient bacteremia is common during dental and endoscopic procedures, infections developing during sterile diseases like acute pancreatitis (AP) can have grave consequences. We examined how impaired bacterial clearance may cause this transition. METHODS Blood samples from patients with AP, normal controls, and rodents with pancreatitis or those administered different nonesterified fatty acids (NEFAs) were analyzed for albumin-unbound NEFAs, microbiome, and inflammatory cell injury. Macrophage uptake of unbound NEFAs using a novel coumarin tracer were done and the downstream effects-NEFA-membrane phospholipid (phosphatidylcholine) interactions-were studied on isothermal titration calorimetry. RESULTS Patients with infected AP had higher circulating unsaturated NEFAs; unbound NEFAs, including linoleic acid (LA) and oleic acid (OA); higher bacterial 16S DNA; mitochondrial DNA; altered β-diversity; enrichment in Pseudomonadales; and increased annexin V-positive myeloid (CD14) and CD3-positive T cells on admission. These, and increased circulating dead inflammatory cells, were also noted in rodents with unbound, unsaturated NEFAs. Isothermal titration calorimetry showed progressively stronger unbound LA interactions with aqueous media, phosphatidylcholine, cardiolipin, and albumin. Unbound NEFAs were taken into protein-free membranes, cells, and mitochondria, inducing voltage-dependent anion channel oligomerization, reducing ATP, and impairing phagocytosis. These were reversed by albumin. In vivo, unbound LA and OA increased bacterial loads and impaired phagocytosis, causing infection. LA and OA were more potent for these amphipathic interactions than the hydrophobic palmitic acid. CONCLUSIONS Release of stored LA and OA can increase their circulating unbound levels and cause amphipathic liponecrosis of immune cells via uptake by membrane phospholipids. This impairs bacterial clearance and causes infection during sterile inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Bryce McFayden
- Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Mahmoud Morsy
- Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Vijeta Sharma
- Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Pawan Noel
- Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Krutika Patel
- Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bara El-Kurdi
- Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Xianfeng Chen
- Department of Research Services, Mayo Clinic, Rochester, Minnesota
| | - Vishal Chandan
- Department of Pathology, School of Medicine, University of California, Irvine, California
| | | | - Stacie Vela
- Gastroenterology Section, Carl T. Hayden Veterans' Administration Medical Center, Phoenix, Arizona
| | - Rodrigo Cartin-Ceba
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Christine Snozek
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, Arizona
| | - Vijay P Singh
- Department of Medicine, Mayo Clinic, Rochester, Minnesota; Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona.
| |
Collapse
|
7
|
Purushothaman A, Oliva-Ramírez J, Treekitkarnmongkol W, Sankaran D, Hurd MW, Putluri N, Maitra A, Haymaker C, Sen S. Differential Effects of Pancreatic Cancer-Derived Extracellular Vesicles Driving a Suppressive Environment. Int J Mol Sci 2023; 24:14652. [PMID: 37834100 PMCID: PMC10572854 DOI: 10.3390/ijms241914652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) cells display extensive crosstalk with their surrounding environment to regulate tumor growth, immune evasion, and metastasis. Recent advances have attributed many of these interactions to intercellular communication mediated by small extracellular vesicles (sEVs), involving cancer-associated fibroblasts (CAF). To explore the impact of sEVs on monocyte lineage transition as well as the expression of checkpoint receptors and activation markers, peripheral blood monocytes from healthy subjects were exposed to PDAC-derived sEVs. Additionally, to analyze the role of sEV-associated HA in immune regulation and tissue-resident fibroblasts, monocytes and pancreatic stellate cells were cultured in the presence of PDAC sEVs with or depleted of HA. Exposure of monocytes to sEVs resulted in unique phenotypic changes in HLA-DR, PD-L1, CD86 and CD64 expression, and cytokine secretion that was HA-independent except for IL-1β and MIP1β. In contrast, monocyte suppression of autologous T cell proliferation was reduced following exposure to HA-low sEVs. In addition, exposure of stellate cells to sEVs upregulated the secretion of various cytokines, including MMP-9, while removal of HA from PDAC-derived sEVs attenuated the secretion of MMP-9, demonstrating the role of sEV-associated HA in regulating expression of this pro-tumorigenic cytokine from stellate cells. This observation lends credence to the findings from the TCGA database that PDAC patients with high levels of enzymes in the HA synthesis pathway had worse survival rates compared with patients having low expression of these enzymes. PDAC-derived sEVs have an immune modulatory role affecting the activation state of monocyte subtypes. However, sEV-associated HA does not affect monocyte phenotype but alters cytokine secretion and suppression of autologous T cell proliferation and induces secretion of pro-tumorigenic factors by pancreatic stellate cells (PSC), as has been seen following the conversion of PSCs to cancer-associated fibroblasts (CAFs). Interruption of the hexosamine biosynthetic pathway, activated in PDAC producing the key substrate (UDP-GlcNAc) for HA synthesis, thus, represents a potential clinical interception strategy for PDAC patients. Findings warrant further investigations of underlying mechanisms involving larger sample cohorts.
Collapse
Affiliation(s)
- Anurag Purushothaman
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jacqueline Oliva-Ramírez
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
| | - Warapen Treekitkarnmongkol
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
| | - Deivendran Sankaran
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
| | - Mark W. Hurd
- Ahmed Center for Pancreatic Cancer Research, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
- Dan L Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
- Ahmed Center for Pancreatic Cancer Research, MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cara Haymaker
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
| | - Subrata Sen
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; (A.P.); (J.O.-R.); (W.T.); (D.S.); (A.M.)
| |
Collapse
|
8
|
Li Y, Zhu P, Xia Q, Huang W, Sutton R. Immune Enhancement in Patients With Predicted Severe Acute Necrotizing Pancreatitis: Important Implications for Timing and Early Stratification. Pancreas 2023; 52:e344-e346. [PMID: 37944121 DOI: 10.1097/mpa.0000000000002266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
|
9
|
Liu S, Luo W, Szatmary P, Zhang X, Lin JW, Chen L, Liu D, Sutton R, Xia Q, Jin T, Liu T, Huang W. Monocytic HLA-DR Expression in Immune Responses of Acute Pancreatitis and COVID-19. Int J Mol Sci 2023; 24:3246. [PMID: 36834656 PMCID: PMC9964039 DOI: 10.3390/ijms24043246] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Acute pancreatitis is a common gastrointestinal disease with increasing incidence worldwide. COVID-19 is a potentially life-threatening contagious disease spread throughout the world, caused by severe acute respiratory syndrome coronavirus 2. More severe forms of both diseases exhibit commonalities with dysregulated immune responses resulting in amplified inflammation and susceptibility to infection. Human leucocyte antigen (HLA)-DR, expressed on antigen-presenting cells, acts as an indicator of immune function. Research advances have highlighted the predictive values of monocytic HLA-DR (mHLA-DR) expression for disease severity and infectious complications in both acute pancreatitis and COVID-19 patients. While the regulatory mechanism of altered mHLA-DR expression remains unclear, HLA-DR-/low monocytic myeloid-derived suppressor cells are potent drivers of immunosuppression and poor outcomes in these diseases. Future studies with mHLA-DR-guided enrollment or targeted immunotherapy are warranted in more severe cases of patients with acute pancreatitis and COVID-19.
Collapse
Affiliation(s)
- Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenjuan Luo
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BE, UK
| | - Xiaoying Zhang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing-Wen Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lu Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BE, UK
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Jin
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Venkatesh K, Glenn H, Delaney A, Andersen CR, Sasson SC. Fire in the belly: A scoping review of the immunopathological mechanisms of acute pancreatitis. Front Immunol 2023; 13:1077414. [PMID: 36713404 PMCID: PMC9874226 DOI: 10.3389/fimmu.2022.1077414] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Acute pancreatitis (AP) is characterised by an inflammatory response that in its most severe form can cause a systemic dysregulated immune response and progression to acute multi-organ dysfunction. The pathobiology of the disease is unclear and as a result no targeted, disease-modifying therapies exist. We performed a scoping review of data pertaining to the human immunology of AP to summarise the current field and to identify future research opportunities. Methods A scoping review of all clinical studies of AP immunology was performed across multiple databases. Studies were included if they were human studies of AP with an immunological outcome or intervention. Results 205 studies met the inclusion criteria for the review. Severe AP is characterised by significant immune dysregulation compared to the milder form of the disease. Broadly, this immune dysfunction was categorised into: innate immune responses (including profound release of damage-associated molecular patterns and heightened activity of pattern recognition receptors), cytokine profile dysregulation (particularly IL-1, 6, 10 and TNF-α), lymphocyte abnormalities, paradoxical immunosuppression (including HLA-DR suppression and increased co-inhibitory molecule expression), and failure of the intestinal barrier function. Studies including interventions were also included. Several limitations in the existing literature have been identified; consolidation and consistency across studies is required if progress is to be made in our understanding of this disease. Conclusions AP, particularly the more severe spectrum of the disease, is characterised by a multifaceted immune response that drives tissue injury and contributes to the associated morbidity and mortality. Significant work is required to develop our understanding of the immunopathology of this disease if disease-modifying therapies are to be established.
Collapse
Affiliation(s)
- Karthik Venkatesh
- Malcolm Fisher Department of Intensive Care, Royal North Shore Hospital, St Leonards, NSW, Australia,The Kirby Institute, The University of New South Wales, Kensington, NSW, Australia,*Correspondence: Karthik Venkatesh,
| | - Hannah Glenn
- Malcolm Fisher Department of Intensive Care, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Anthony Delaney
- Malcolm Fisher Department of Intensive Care, Royal North Shore Hospital, St Leonards, NSW, Australia,Division of Critical Care, The George Institute for Global Health, Newtown, NSW, Australia
| | - Christopher R. Andersen
- Malcolm Fisher Department of Intensive Care, Royal North Shore Hospital, St Leonards, NSW, Australia,The Kirby Institute, The University of New South Wales, Kensington, NSW, Australia,Division of Critical Care, The George Institute for Global Health, Newtown, NSW, Australia
| | - Sarah C. Sasson
- The Kirby Institute, The University of New South Wales, Kensington, NSW, Australia,Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
11
|
Glaubitz J, Wilden A, Frost F, Ameling S, Homuth G, Mazloum H, Rühlemann MC, Bang C, Aghdassi AA, Budde C, Pickartz T, Franke A, Bröker BM, Voelker U, Mayerle J, Lerch MM, Weiss FU, Sendler M. Activated regulatory T-cells promote duodenal bacterial translocation into necrotic areas in severe acute pancreatitis. Gut 2023:gutjnl-2022-327448. [PMID: 36631247 DOI: 10.1136/gutjnl-2022-327448] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023]
Abstract
OBJECTIVE In acute pancreatitis (AP), bacterial translocation and subsequent infection of pancreatic necrosis are the main risk factors for severe disease and late death. Understanding how immunological host defence mechanisms fail to protect the intestinal barrier is of great importance in reducing the mortality risk of the disease. Here, we studied the role of the Treg/Th17 balance for maintaining the intestinal barrier function in a mouse model of severe AP. DESIGN AP was induced by partial duct ligation in C57Bl/6 or DEREG mice, in which regulatory T-cells (Treg) were depleted by intraperitoneal injection of diphtheria toxin. By flow cytometry, functional suppression assays and transcriptional profiling we analysed Treg activation and characterised T-cells of the lamina propria as well as intraepithelial lymphocytes (IELs) regarding their activation and differentiation. Microbiota composition was examined in intestinal samples as well as in murine and human pancreatic necrosis by 16S rRNA gene sequencing. RESULTS The prophylactic Treg-depletion enhanced the proinflammatory response in an experimental mouse model of AP but stabilised the intestinal immunological barrier function of Th17 cells and CD8+/γδTCR+ IELs. Treg depleted animals developed less bacterial translocation to the pancreas. Duodenal overgrowth of the facultative pathogenic taxa Escherichia/Shigella which associates with severe disease and infected necrosis was diminished in Treg depleted animals. CONCLUSION Tregs play a crucial role in the counterbalance against systemic inflammatory response syndrome. In AP, Treg-activation disturbs the duodenal barrier function and permits translocation of commensal bacteria into pancreatic necrosis. Targeting Tregs in AP may help to ameliorate the disease course.
Collapse
Affiliation(s)
- Juliane Glaubitz
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| | - Anika Wilden
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| | - Fabian Frost
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Hala Mazloum
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| | - Malte Christoph Rühlemann
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Ali A Aghdassi
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| | - Christoph Budde
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| | - Tilmann Pickartz
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Barbara M Bröker
- Department of Immunology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Uwe Voelker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Medizinische Klinik und Poliklinik 2, Klinikum der Universitat Munchen, Munchen, Germany
| | - Markus M Lerch
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| | - Frank-Ulrich Weiss
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| |
Collapse
|
12
|
Liu S, Szatmary P, Lin JW, Wang Q, Sutton R, Chen L, Liu T, Huang W, Xia Q. Circulating monocytes in acute pancreatitis. Front Immunol 2022; 13:1062849. [PMID: 36578487 PMCID: PMC9791207 DOI: 10.3389/fimmu.2022.1062849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Acute pancreatitis is a common gastrointestinal disease characterized by inflammation of the exocrine pancreas and manifesting itself through acute onset of abdominal pain. It is frequently associated with organ failure, pancreatic necrosis, and death. Mounting evidence describes monocytes - phagocytic, antigen presenting, and regulatory cells of the innate immune system - as key contributors and regulators of the inflammatory response and subsequent organ failure in acute pancreatitis. This review highlights the recent advances of dynamic change of numbers, phenotypes, and functions of circulating monocytes as well as their underling regulatory mechanisms with a special focus on the role of lipid modulation during acute pancreatitis.
Collapse
Affiliation(s)
- Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jing-wen Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qiqi Wang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lu Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| |
Collapse
|
13
|
Bottomley MJ, Harden PN, Wood KJ, Hester J, Issa F. Dampened Inflammatory Signalling and Myeloid-Derived Suppressor-Like Cell Accumulation Reduces Circulating Monocytic HLA-DR Density and May Associate With Malignancy Risk in Long-Term Renal Transplant Recipients. Front Immunol 2022; 13:901273. [PMID: 35844527 PMCID: PMC9283730 DOI: 10.3389/fimmu.2022.901273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Background Malignancy is a major cause of morbidity and mortality in transplant recipients. Identification of those at highest risk could facilitate pre-emptive intervention such as reduction of immunosuppression. Reduced circulating monocytic HLA-DR density is a marker of immune depression in the general population and associates with poorer outcome in critical illness. It has recently been used as a safety marker in adoptive cell therapy trials in renal transplantation. Despite its potential as a marker of dampened immune responses, factors that impact upon monocytic HLA-DR density and the long-term clinical sequelae of this have not been assessed in transplant recipients. Methods A cohort study of stable long-term renal transplant recipients was undertaken. Serial circulating monocytic HLA-DR density and other leucocyte populations were quantified by flow cytometry. Gene expression of monocytes was performed using the Nanostring nCounter platform, and 13-plex cytokine bead array used to quantify serum concentrations. The primary outcome was malignancy development during one-year follow-up. Risk of malignancy was calculated by univariate and multivariate proportionate hazards modelling with and without adjustment for competing risks. Results Monocytic HLA-DR density was stable in long-term renal transplant recipients (n=135) and similar to non-immunosuppressed controls (n=29), though was suppressed in recipients receiving prednisolone. Decreased mHLA-DRd was associated with accumulation of CD14+CD11b+CD33+HLA-DRlo monocytic myeloid-derived suppressor-like cells. Pathway analysis revealed downregulation of pathways relating to cytokine and chemokine signalling in monocytes with low HLA-DR density; however serum concentrations of major cytokines did not differ between these groups. There was an independent increase in malignancy risk during follow-up with decreased HLA-DR density. Conclusions Dampened chemokine and cytokine signalling drives a stable reduction in monocytic HLA-DR density in long-term transplant recipients and associates with subsequent malignancy risk. This may function as a novel marker of excess immunosuppression. Further study is needed to understand the mechanism behind this association.
Collapse
Affiliation(s)
- Matthew J. Bottomley
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- *Correspondence: Matthew J. Bottomley,
| | - Paul N. Harden
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kathryn J. Wood
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Joanna Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Zhang L, Shi J, Du D, Niu N, Liu S, Yang X, Lu P, Shen X, Shi N, Yao L, Zhang R, Hu G, Lu G, Zhu Q, Zeng T, Liu T, Xia Q, Huang W, Xue J. Ketogenesis acts as an endogenous protective programme to restrain inflammatory macrophage activation during acute pancreatitis. EBioMedicine 2022; 78:103959. [PMID: 35339899 PMCID: PMC8960978 DOI: 10.1016/j.ebiom.2022.103959] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Background Innate immunity and metabolites link to the pathogenesis and severity of acute pancreatitis (AP). However, liver metabolism and its role in immune response and AP progression remain elusive. We investigated the function of liver metabolism in the pathogenesis of AP. Methods Circulating ketone body β-hydroxybutyrate (βOHB) levels were determined in AP clinical cohorts and caerulein-induced AP (CER-AP) mouse models receiving seven (Cer*7) or twelve (Cer*12) injection regimens at hourly intervals. Liver transcriptomics and metabolomics were compared between CER-AP (Cer*7) and CER-AP (Cer*12). Inhibition of fatty acid β-oxidation (FAO)-ketogenesis, or supplementation of βOHB was performed in mouse models of AP. The effect and mechanism of βOHB were examined in vitro. Findings Elevated circulating βOHB was observed in patients with non-severe AP (SAP) but not SAP. These findings were replicated in CER-AP (Cer*7) and CER-AP (Cer*12), which manifested as limited and hyperactive immune responses, respectively. FAO-ketogenesis was activated in CER-AP (Cer*7), while impaired long-chain FAO and mitochondrial function were observed in the liver of CER-AP (Cer*12). Blockage of FAO-ketogenesis (Cpt1a antagonism or Hmgcs2 knockdown) worsened, while supplementation of βOHB or its precursor 1,3-butanediol alleviated the severity of CER-AP. Mechanistically, βOHB had a discernible effect on pancreatic acinar cell damage, instead, it greatly attenuated the activation of pancreatic and systemic proinflammatory macrophages via class I histone deacetylases. Interpretation Our findings reveal that hepatic ketogenesis is activated as an endogenous protective programme to restrain AP progression, indicating its potential therapeutic value. Funding This work was supported by the National Natural Science Foundation of China, Shanghai Youth Talent Support Programme, and Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China
| | - Juanjuan Shi
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China
| | - Dan Du
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; Advanced Mass Spectrometry Centre, Research Core Facility, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China
| | - Shiyu Liu
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Xiaotong Yang
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China
| | - Ping Lu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China
| | - Xuqing Shen
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China
| | - Na Shi
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Linbo Yao
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Ruling Zhang
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Guoyong Hu
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Guotao Lu
- Department of Gastroenterology, Pancreatic Centre, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Qingtian Zhu
- Department of Gastroenterology, Pancreatic Centre, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Tao Zeng
- Zhangjiang Laboratory, Institute of Brain-Intelligence Technology, Shanghai, China
| | - Tingting Liu
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Qing Xia
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Wei Huang
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Centre for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China.
| |
Collapse
|
15
|
Manohar M, Jones EK, Rubin SJS, Subrahmanyam PB, Swaminathan G, Mikhail D, Bai L, Singh G, Wei Y, Sharma V, Siebert JC, Maecker HT, Husain SZ, Park WG, Pandol SJ, Habtezion A. Novel Circulating and Tissue Monocytes as Well as Macrophages in Pancreatitis and Recovery. Gastroenterology 2021; 161:2014-2029.e14. [PMID: 34450180 PMCID: PMC8796698 DOI: 10.1053/j.gastro.2021.08.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Acute pancreatitis (AP) is an inflammatory disease with mild to severe course that is associated with local and systemic complications and significant mortality. Uncovering inflammatory pathways that lead to progression and recovery will inform ways to monitor and/or develop effective therapies. METHODS We performed single-cell mass Cytometry by Time Of Flight (CyTOF) analysis to identify pancreatic and systemic inflammatory signals during mild AP (referred to as AP), severe AP (SAP), and recovery using 2 independent experimental models and blood from patients with AP and recurrent AP. Flow cytometric validation of monocytes subsets identified using CyTOF analysis was performed independently. RESULTS Ly6C+ inflammatory monocytes were the most altered cells in the pancreas during experimental AP, recovery, and SAP. Deep profiling uncovered heterogeneity among pancreatic and blood monocytes and identified 7 novel subsets during AP and recovery, and 6 monocyte subsets during SAP. Notably, a dynamic shift in pancreatic CD206+ macrophage population was observed during AP and recovery. Deeper profiling of the CD206+ macrophage identified 7 novel subsets during AP, recovery, and SAP. Differential expression analysis of these novel monocyte and CD206+ macrophage subsets revealed significantly altered surface (CD44, CD54, CD115, CD140a, CD196, podoplanin) and functional markers (interferon-γ, interleukin 4, interleukin 22, latency associated peptide-transforming growth factor-β, tumor necrosis factor-α, T-bet, RoRγt) that were associated with recovery and SAP. Moreover, a targeted functional analysis further revealed distinct expression of pro- and anti-inflammatory cytokines by pancreatic CD206+ macrophage subsets as the disease either progressed or resolved. Similarly, we identified heterogeneity among circulating classical inflammatory monocytes (CD14+CD16-) and novel subsets in patients with AP and recurrent AP. CONCLUSIONS We identified several novel monocyte/macrophage subsets with unique phenotype and functional characteristics that are associated with AP, recovery, and SAP. Our findings highlight differential innate immune responses during AP progression and recovery that can be leveraged for future disease monitoring and targeting.
Collapse
Affiliation(s)
- Murli Manohar
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California; Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California.
| | - Elaina K Jones
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California; Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Samuel J S Rubin
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Priyanka B Subrahmanyam
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, California
| | - Gayathri Swaminathan
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - David Mikhail
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Lawrence Bai
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Gulshan Singh
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Yi Wei
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Vishal Sharma
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Holden T Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, California
| | - Sohail Z Husain
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Walter G Park
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
16
|
Development an Inflammation-Related Factor-Based Model for Predicting Organ Failure in Acute Pancreatitis: A Retrospective Cohort Study. Mediators Inflamm 2021; 2021:4906768. [PMID: 34545276 PMCID: PMC8449737 DOI: 10.1155/2021/4906768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
Several inflammation-related factors (IRFs) have been reported to predict organ failure of acute pancreatitis (AP) in previous clinical studies. However, there are a few shortcomings in these models. The aim of this study was to develop a new prediction model based on IRFs that could accurately identify the risk for organ failure in AP. Methods. 100 patients with their clinical information and IRF data (levels of 10 cytokines, percentages of different immune cells, and data obtained from white blood cell count) were retrospectively enrolled in this study, and 94 patients were finally selected for further analysis. Univariate and multivariate analysis were applied to evaluate the potential risk factors for the organ failure of AP. The area under the ROC curve (AUCs), sensitivity, and specificity of the relevant model were assessed to evaluate the prediction ability of IRFs. A new scoring system to predict the organ failure of AP was created based on the regression coefficient of a multivariate logistic regression model. Results. The incidence of OF in AP patients was nearly 16% (15/94) in our derivation cohort. Univariate analytic data revealed that IL6, IL8, IL10, MCP1, CD3+ CD4+ T lymphocytes, CD19+ B lymphocytes, PCT, APACHE II score, and RANSON score were potential predictors for AP organ failure, and IL6 (P = 0.038), IL8 (P = 0.043), and CD19+B lymphocytes (P = 0.045) were independent predictors according to further multivariate analysis. In addition, a preoperative scoring system (0-11 points) was constructed to predict the organ failure of AP using these three factors. The AUC of the new score system was 0.86. The optimal cut-off value of the new scoring system was 6 points. Conclusions. Our prediction model (based on IL6, IL8, and CD19+ B Lymphocyte) has satisfactory working efficiency to identify AP patients with high risk of organ failure.
Collapse
|
17
|
Early Posttransplant Mobilization of Monocytic Myeloid-derived Suppressor Cell Correlates With Increase in Soluble Immunosuppressive Factors and Predicts Cancer in Kidney Recipients. Transplantation 2021; 104:2599-2608. [PMID: 32068661 DOI: 10.1097/tp.0000000000003179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) increase in patients with cancer and are associated with poor prognosis; however, their role in transplantation is not yet understood. Here we aimed to study the MDSC effects on the evolution of kidney transplant recipients (KTRs). METHODS A cohort of 229 KTRs was prospectively analyzed. Two myeloid cells subsets. CD11bCD33CD14CD15HLA-DR (monocytic MDSC [M-MDSC]) and CD11bCD33CD14CD15HLA-DR (monocytes), were defined by flow cytometry. The suppressive capacity of myeloid cells was tested in cocultures with autologous lymphocytes. Suppressive soluble factors, cytokines, anti-HLA antibodies, and total antioxidant capacity were quantified in plasma. RESULTS Pretransplant, M-MDSC, and monocytes were similar in KTRs and healthy volunteers. M-MDSCs increased immediately posttransplantation and suppressed CD4 and CD8 T cells proliferation. M-MDSCs remained high for 1 y posttransplantation. Higher M-MDSC counts at day 14 posttransplant were observed in patients who subsequently developed cancer, and KTRs with higher M-MDSC at day 14 had significantly lower malignancy-free survival. Day 14 M-MDSC >179.2 per microliter conferred 6.98 times (95% confidence interval, 1.28-37.69) more risk to develop cancer, independently from age, gender, and immunosuppression. Early posttransplant M-MDSCs were lower in patients with enhanced alloimmune response as represented by anti-HLA sensitization. M-MDSC counts correlated with higher circulatory suppressive factors arginase-1 and interleukin-10, and lower total antioxidant capacity. CONCLUSIONS Early posttransplant mobilization of M-MDSCs predicts cancer and adds risk as an independent factor. M-MDSC may favor an immunosuppressive environment that promotes tumoral development.
Collapse
|
18
|
Glaubitz J, Wilden A, van den Brandt C, Weiss FU, Bröker BM, Mayerle J, Lerch MM, Sendler M. Experimental pancreatitis is characterized by rapid T cell activation, Th2 differentiation that parallels disease severity, and improvement after CD4 + T cell depletion. Pancreatology 2020; 20:1637-1647. [PMID: 33097430 DOI: 10.1016/j.pan.2020.10.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute pancreatitis is a gastrointestinal disorder of high incidence resulting in life threatening complications in up to 20% of patients. Its severe form is characterized by an extensive and systemic immune response. We investigated the role of the adaptive immune response in two experimental models of pancreatitis. METHODS In C57BI/6-mice mild pancreatitis was induced by 8-hourly injections of caerulein and severe pancreatitis by additional, partial pancreatic duct ligation. T-cell-activation was determined by flow-cytometry of CD25/CD69, T-cell-differentiation by nuclear staining of the transcription-factors Tbet, Gata3 and Foxp3. In vivo CD4+ T-cells were depleted using anti-CD4 antibody. Disease severity was determined by histology, serum amylase and lipase activities, lung MPO and serum cytokine levels (IL-6, TNFα, IL-10). RESULTS In both models T-cells were activated. Th1-differentiation (Tbet) was absent during pancreatitis but we detected a pronounced Th2/Treg (Gata3/Foxp3) response which paralleled disease severity in both models. The complete depletion of CD4+ T-cells via anti-CD4 antibody, surprisingly, reduced disease severity significantly, as well as granulocyte infiltration and pro- and anti-inflammatory cytokine levels. Co-incubation of acini and T-cells did not lead to T-cell-activation by acinar cells but to acinar damage by T-cells. During pancreatitis no significant T-cell-infiltration into the pancreas was observed. CONCLUSION T cells orchestrate the early local as well as the systemic immune responses in pancreatitis and are directly involved in organ damage. The Th2 response appears to increase disease severity, rather than conferring an immunological protection.
Collapse
Affiliation(s)
- Juliane Glaubitz
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Anika Wilden
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Cindy van den Brandt
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Frank U Weiss
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Barbara M Bröker
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine, University of Greifswald, Germany; Medizinische Klinik und Poliklinik II, Klinikum der LMU München-Grosshadern, München, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine, University of Greifswald, Germany.
| |
Collapse
|
19
|
Bálint ER, Fűr G, Kiss L, Németh DI, Soós A, Hegyi P, Szakács Z, Tinusz B, Varjú P, Vincze Á, Erőss B, Czimmer J, Szepes Z, Varga G, Rakonczay Z. Assessment of the course of acute pancreatitis in the light of aetiology: a systematic review and meta-analysis. Sci Rep 2020; 10:17936. [PMID: 33087766 PMCID: PMC7578029 DOI: 10.1038/s41598-020-74943-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
The main causes of acute pancreatitis (AP) are biliary disease, alcohol consumption, hypertriglyceridaemia (HTG) and endoscopic retrograde cholangiopancreatography (ERCP). The aim of this meta-analysis was to evaluate the effects of these aetiological factors on the severity and outcome of AP. Pubmed and Embase were searched between 01/01/2012 and 31/05/2020. Included articles involved adult alcoholic, biliary, HTG- or post-ERCP AP (PAP) patients. Primary outcome was severity, secondary outcomes were organ failures, intensive care unit admission, recurrence rate, pancreatic necrosis, mortality, length of hospital stay, pseudocyst, fluid collection and systematic inflammatory response syndrome. Data were analysed from 127 eligible studies. The risk for non-mild (moderately severe and severe) condition was the highest in HTG-induced AP (HTG-AP) followed by alcoholic AP (AAP), biliary AP (BAP) and PAP. Recurrence rate was significantly lower among BAP vs. HTG-AP or AAP patients (OR = 2.69 and 2.98, 95% CI 1.55–4.65 and 2.22–4.01, respectively). Mortality rate was significantly greater in HTG-AP vs. AAP or BAP (OR = 1.72 and 1.50, 95% CI 1.04–2.84 and 0.96–2.35, respectively), pancreatic necrosis occurred more frequently in AAP than BAP patients (OR = 1.58, 95% CI 1.08–2.30). Overall, there is a potential association between aetiology and the development and course of AP. HTG-AP is associated with the highest number of complications. Furthermore, AAP is likely to be more severe than BAP or PAP. Greater emphasis should be placed on determining aetiology on admission.
Collapse
Affiliation(s)
- Emese Réka Bálint
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Gabriella Fűr
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Lóránd Kiss
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Dávid István Németh
- Institute for Translational Medicine and Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Alexandra Soós
- Institute for Translational Medicine and Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Clinical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine and Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,MTA-SZTE Momentum Translational Gastroenterology Research Group, Szeged, Hungary
| | - Zsolt Szakács
- Institute for Translational Medicine and Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Benedek Tinusz
- Institute for Translational Medicine and Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Péter Varjú
- First Department of Medicine, University of Pécs, Pécs, Hungary
| | - Áron Vincze
- First Department of Medicine, University of Pécs, Pécs, Hungary
| | - Bálint Erőss
- Institute for Translational Medicine and Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - József Czimmer
- Institute for Translational Medicine and Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Zoltán Szepes
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary.
| |
Collapse
|
20
|
Alcohol and Smoking Mediated Modulations in Adaptive Immunity in Pancreatitis. Cells 2020; 9:cells9081880. [PMID: 32796685 PMCID: PMC7463831 DOI: 10.3390/cells9081880] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatitis is a condition of pancreatic inflammation driven by injury to the pancreatic parenchyma. The extent of acinar insult, intensity, and type of immune response determines the severity of the disease. Smoking, alcohol and autoimmune pancreatitis are some of the predominant risk factors that increase the risk of pancreatitis by differentially influencing the adaptive immune system. The overall decrease in peripheral lymphocyte (T-, B- and (natural killer T-) NKT-cell) count and increased infiltration into the damaged pancreatic tissue highlight the contribution of adaptive immunity in the disease pathology. Smoking and alcohol modulate the responsiveness and apoptosis of T- and B-cells during pancreatic insult. Acute pancreatitis worsens with smoking and alcohol, leading to the development of systemic inflammatory response syndrome and compensatory anti-inflammatory response syndrome, suggesting the critical role of adaptive immunity in fatal outcomes such as multiple organ dysfunction. The presence of CD4+ and CD8+ T-lymphocytes and perforin-expressing cells in the fibrotic tissue in chronic pancreatitis modulate the severity of the disease. Due to their important role in altering the severity of the disease, attempts to target adaptive immune mediators will be critical for the development of novel therapeutic interventions.
Collapse
|
21
|
Sendler M, van den Brandt C, Glaubitz J, Wilden A, Golchert J, Weiss FU, Homuth G, De Freitas Chama LL, Mishra N, Mahajan UM, Bossaller L, Völker U, Bröker BM, Mayerle J, Lerch MM. NLRP3 Inflammasome Regulates Development of Systemic Inflammatory Response and Compensatory Anti-Inflammatory Response Syndromes in Mice With Acute Pancreatitis. Gastroenterology 2020; 158:253-269.e14. [PMID: 31593700 DOI: 10.1053/j.gastro.2019.09.040] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Pancreatitis starts with primarily sterile local inflammation that induces systemic inflammatory response syndrome, followed by compensatory anti-inflammatory response syndrome (CARS). We investigated the mechanisms of these processes in mice and human serum. METHODS We induced severe acute pancreatitis by partial duct ligation with caerulein stimulation or intraperitoneal injection of l-arginine in mice with deletion of interleukin (IL)12B, NLRP3, or IL18 and in mice given MCC950, a small molecule inhibitor of the NLRP3-inflammasome. Pancreata were collected from mice and analyzed by histology, and cytokine levels were measured in serum samples. We measured activation of adaptive immune responses in mice with pancreatitis by flow cytometry analysis of T cells (CD25 and CD69) isolated from the spleen. Differentiation of T-helper (Th1) cells, Th2 cells, and T-regulatory cells was determined by nuclear staining for TBET, GATA3, and FOXP3. We performed transcriptome analysis of mouse lymph nodes and bone marrow-derived macrophages after incubation with acini. We measured levels of cytokines in serum samples from patients with mild and severe acute pancreatitis. RESULTS Activation of the adaptive immune response in mice was initiated by macrophage-derived, caspase 1-processed cytokines and required activation of NLRP3 (confirmed in serum samples from patients with pancreatitis). Spleen cells from mice with pancreatitis had increases in Th2 cells but not in Th1 cells. Bone marrow-derived macrophages secreted IL1B and IL18, but not IL12, after co-incubation with pancreatic acini. T-cell activation and severity of acute pancreatitis did not differ significantly between IL12B-deficient and control mice. In contrast, NLRP3- or IL18-deficient mice had reduced activation of T cells and no increase in Th2 cell-mediated responses compared with control mice. The systemic type 2 immune response was mediated by macrophage-derived cytokines of the IL1 family. Specifically, IL18 induced a Th2 cell-mediated response in the absence of IL12. MCC950 significantly reduced neutrophil infiltration, T-cell activation, and disease severity in mice. CONCLUSIONS In mice with severe pancreatitis, we found systemic inflammatory response syndrome and compensatory anti-inflammatory response syndrome developed in parallel. Infiltrating macrophages promote inflammation and simultaneously induce a Th2 cell-mediated response via IL18. Inhibition of NLRP3 reduces systemic inflammatory response syndrome and compensatory anti-inflammatory response syndrome and might be used to treat patients with severe pancreatitis.
Collapse
Affiliation(s)
- Matthias Sendler
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany.
| | - Cindy van den Brandt
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Juliane Glaubitz
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Anika Wilden
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Janine Golchert
- Department of Functional Genomics, Interfaculty Institutes for Genetics and Functional Genomics, University Medicine, University of Greifswald, Greifswald, Germany
| | - Frank Ulrich Weiss
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institutes for Genetics and Functional Genomics, University Medicine, University of Greifswald, Greifswald, Germany
| | | | - Neha Mishra
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Ujjwal Mukund Mahajan
- Medizinische Klinik und Poliklinik II, Klinikum der Ludwig Maximilian University München-Grosshadern, München, Germany
| | - Lukas Bossaller
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institutes for Genetics and Functional Genomics, University Medicine, University of Greifswald, Greifswald, Germany
| | - Barbara M Bröker
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, University of Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany; Medizinische Klinik und Poliklinik II, Klinikum der Ludwig Maximilian University München-Grosshadern, München, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| |
Collapse
|