1
|
Chen JH, Elmelech L, Tang AL, Hacohen N. Powerful microscopy technologies decode spatially organized cellular networks that drive response to immunotherapy in humans. Curr Opin Immunol 2024; 91:102463. [PMID: 39277910 PMCID: PMC11609032 DOI: 10.1016/j.coi.2024.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
In tumors, immune cells organize into networks of different sizes and composition, including complex tertiary lymphoid structures and recently identified networks centered around the chemokines CXCL9/10/11 and CCL19. New commercially available highly multiplexed microscopy using cyclical RNA in situ hybridization and antibody-based approaches have the potential to establish the organization of the immune response in human tissue and serve as a foundation for future immunology research.
Collapse
Affiliation(s)
- Jonathan H Chen
- Northwestern University, Feinberg School of Medicine, Department of Pathology, Chicago, IL, USA; Northwestern University, Feinberg School of Medicine, Center for Human Immunobiology, Chicago, IL, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA; Department of Pathology, MGH, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Liad Elmelech
- Krantz Family Center for Cancer Research, Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA; Department of Pathology, MGH, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Alexander L Tang
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Nir Hacohen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Yin M, Sun L, Wu S, Ma J, Zhang W, Ji X, Tang Z, Zhang X, Yang Y, Zhang X, Huang JW, Zheng S, Liu WJ, Ji C, Zhang LJ. TGFβ-mediated inhibition of hypodermal adipocyte progenitor differentiation promotes wound-induced skin fibrosis. Cell Prolif 2024:e13722. [PMID: 39072821 DOI: 10.1111/cpr.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Aberrant activation of dermal fibroblasts during wound healing often leads to debilitating fibrotic changes in the skin, such as scleroderma and keloids. However, the underlying cellular and molecular mechanisms remain elusive. Here, we established a wound-induced skin fibrosis (WISF) mouse model in mature adult mice, characterised by excessive deposition of collagen bundles, loss of dermal adipocytes, and enrichment of DPP4+Ly6A+THY1+ hypodermal interstitial adipocyte progenitors (HI-APs) and pericytes, resembling human fibrotic skin diseases. This WISF model exhibited an age-dependent gain of fibrotic characteristics, contrasting with the wound-induced hair neogenesis observed in younger mice. Through comprehensive analyses of the WISF, we delineated a trajectory of fibroblast differentiation that originates from HI-APs. These progenitors highly expressed several extracellular matrix (ECM) genes and exhibited a TGFβ pathway signature. TGFβ was identified as the key signal to inhibit the adipogenic potential and maintain the fibrogenic potential of dermal APs. Additionally, administering a TGFβ receptor inhibitor to wound scar reduced the abundance of ECM-producing APs. Finally, analysis of human scleroderma skin tissues revealed a negative correlation between the expression of AP-, ECM-, and TGFβ pathway-related genes and PPARG. Overall, this study establishes a wound-induced skin fibrosis mouse model and demonstrates that TGFβ-mediated blockage of HI-AP differentiation is crucial for driving fibrotic pathology. Targeting HI-APs and adipogenesis may provide novel avenues for developing disease-modifying therapies for fibrotic skin diseases.
Collapse
Affiliation(s)
- Meimei Yin
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Lixiang Sun
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- Central Laboratory, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Shuai Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jinhang Ma
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Wenlu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiaoxuan Ji
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zhichong Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaowei Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yichun Yang
- Central Laboratory, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Xinyuan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jin-Wen Huang
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shaoluan Zheng
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Wen-Jie Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ling-Juan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
M. S. Barron A, Fabre T, De S. Distinct fibroblast functions associated with fibrotic and immune-mediated inflammatory diseases and their implications for therapeutic development. F1000Res 2024; 13:54. [PMID: 38681509 PMCID: PMC11053351 DOI: 10.12688/f1000research.143472.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts are ubiquitous cells that can adopt many functional states. As tissue-resident sentinels, they respond to acute damage signals and shape the earliest events in fibrotic and immune-mediated inflammatory diseases. Upon sensing an insult, fibroblasts produce chemokines and growth factors to organize and support the response. Depending on the size and composition of the resulting infiltrate, these activated fibroblasts may also begin to contract or relax thus changing local stiffness within the tissue. These early events likely contribute to the divergent clinical manifestations of fibrotic and immune-mediated inflammatory diseases. Further, distinct changes to the cellular composition and signaling dialogue in these diseases drive progressive fibroblasts specialization. In fibrotic diseases, fibroblasts support the survival, activation and differentiation of myeloid cells, granulocytes and innate lymphocytes, and produce most of the pathogenic extracellular matrix proteins. Whereas, in immune-mediated inflammatory diseases, sequential accumulation of dendritic cells, T cells and B cells programs fibroblasts to support local, destructive adaptive immune responses. Fibroblast specialization has clear implications for the development of effective induction and maintenance therapies for patients with these clinically distinct diseases.
Collapse
Affiliation(s)
- Alexander M. S. Barron
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Thomas Fabre
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Saurav De
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
4
|
Bensa T, Tekkela S, Rognoni E. Skin fibroblast functional heterogeneity in health and disease. J Pathol 2023; 260:609-620. [PMID: 37553730 DOI: 10.1002/path.6159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 08/10/2023]
Abstract
Fibroblasts are the major cell population of connective tissue, including the skin dermis, and are best known for their function in depositing and remodelling the extracellular matrix. Besides their role in extracellular matrix homeostasis, fibroblasts have emerged as key players in many biological processes ranging from tissue immunity and wound healing to hair follicle development. Recent advances in single-cell RNA-sequencing technologies have revealed an astonishing transcriptional fibroblast heterogeneity in the skin and other organs. A key challenge in the field is to understand the functional relevance and significance of the identified new cell clusters in health and disease. Here, we discuss the functionally distinct fibroblast subtypes identified in skin homeostasis and repair and how they evolve in fibrotic disease conditions, in particular keloid scars and cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tjaša Bensa
- Centre for Cell Biology & Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stavroula Tekkela
- Centre for Cell Biology & Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Emanuel Rognoni
- Centre for Cell Biology & Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
5
|
Zeng F, Gao M, Liao S, Zhou Z, Luo G, Zhou Y. Role and mechanism of CD90 + fibroblasts in inflammatory diseases and malignant tumors. Mol Med 2023; 29:20. [PMID: 36747131 PMCID: PMC9900913 DOI: 10.1186/s10020-023-00616-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/29/2023] [Indexed: 02/08/2023] Open
Abstract
Fibroblasts are highly heterogeneous mesenchymal stromal cells, and different fibroblast subpopulations play different roles. A subpopulation of fibroblasts expressing CD90, a 25-37 kDa glycosylphosphatidylinositol anchored protein, plays a dominant role in the fibrotic and pro-inflammatory state. In this review, we focused on CD90+ fibroblasts, and their roles and possible mechanisms in disease processes. First, the main biological functions of CD90+ fibroblasts in inducing angiogenesis and maintaining tissue homeostasis are described. Second, the role and possible mechanism of CD90+ fibroblasts in inducing pulmonary fibrosis, inflammatory arthritis, inflammatory skin diseases, and scar formation are introduced, and we discuss how CD90+ cancer-associated fibroblasts might serve as promising cancer biomarkers. Finally, we propose future research directions related to CD90+ fibroblasts. This review will provide a theoretical basis for the diagnosis and treatment CD90+ fibroblast-related disease.
Collapse
Affiliation(s)
- Feng Zeng
- grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410078 Hunan China
| | - Mengxiang Gao
- grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410078 Hunan China
| | - Shan Liao
- grid.216417.70000 0001 0379 7164Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Zihua Zhou
- grid.508130.fDepartment of Oncology, Loudi Central Hospital, Loudi, 417000 China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine, Central South University, No. 88 of Xiangya Road, Changsha, 410008, Hunan, China.
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
6
|
Browning JL, Bhawan J, Tseng A, Crossland N, Bujor AM, Akassoglou K, Assassi S, Skaug B, Ho J. Extensive and Persistent Extravascular Dermal Fibrin Deposition Characterizes Systemic Sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.523256. [PMID: 36711912 PMCID: PMC9882194 DOI: 10.1101/2023.01.16.523256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by progressive multiorgan fibrosis. While the cause of SSc remains unknown, a perturbed vasculature is considered a critical early step in the pathogenesis. Using fibrinogen as a marker of vascular leakage, we found extensive extravascular fibrinogen deposition in the dermis of both limited and diffuse systemic sclerosis disease, and it was present in both early and late-stage patients. Based on a timed series of excision wounds, retention on the fibrin deposit of the splice variant domain, fibrinogen αEC, indicated a recent event, while fibrin networks lacking the αEC domain were older. Application of this timing tool to SSc revealed considerable heterogeneity in αEC domain distribution providing unique insight into disease activity. Intriguingly, the fibrinogen-αEC domain also accumulated in macrophages. These observations indicate that systemic sclerosis is characterized by ongoing vascular leakage resulting in extensive interstitial fibrin deposition that is either continually replenished and/or there is impaired fibrin clearance. Unresolved fibrin deposition might then incite chronic tissue remodeling.
Collapse
Affiliation(s)
- Jeffrey L Browning
- Department of Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
- Department of Rheumatology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
| | - Jag Bhawan
- Department of Dermatopathology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
| | - Anna Tseng
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA
| | - Nicholas Crossland
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA
| | - Andreea M Bujor
- Department of Rheumatology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
| | - Katerina Akassoglou
- Gladstone Institute of Neurological Disease San Francisco California USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Shervin Assassi
- Division of Rheumatology, University of Texas Health Science Center, Houston, TX
| | - Brian Skaug
- Division of Rheumatology, University of Texas Health Science Center, Houston, TX
| | - Jonathan Ho
- Department of Dermatopathology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
- Section Dermatology University of the West Indies, Mona Jamaica
| |
Collapse
|
7
|
Martínez BA, Shrotri S, Kingsmore KM, Bachali P, Grammer AC, Lipsky PE. Machine learning reveals distinct gene signature profiles in lesional and nonlesional regions of inflammatory skin diseases. SCIENCE ADVANCES 2022; 8:eabn4776. [PMID: 35486723 PMCID: PMC9054015 DOI: 10.1126/sciadv.abn4776] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Analysis of gene expression from cutaneous lupus erythematosus, psoriasis, atopic dermatitis, and systemic sclerosis using gene set variation analysis (GSVA) revealed that lesional samples from each condition had unique features, but all four diseases displayed common enrichment in multiple inflammatory signatures. These findings were confirmed by both classification and regression tree analysis and machine learning (ML) models. Nonlesional samples from each disease also differed from normal samples and each other by ML. Notably, the features used in classification of nonlesional disease were more distinct than their lesional counterparts, and GSVA confirmed unique features of nonlesional disease. These data show that lesional and nonlesional skin samples from inflammatory skin diseases have unique profiles of gene expression abnormalities, especially in nonlesional skin, and suggest a model in which disease-specific abnormalities in "prelesional" skin may permit environmental stimuli to trigger inflammatory responses leading to both the unique and shared manifestations of each disease.
Collapse
|
8
|
Kadefors M, Rolandsson Enes S, Åhrman E, Michaliková B, Löfdahl A, Dellgren G, Scheding S, Westergren-Thorsson G. CD105 +CD90 +CD13 + identifies a clonogenic subset of adventitial lung fibroblasts. Sci Rep 2021; 11:24417. [PMID: 34952905 PMCID: PMC8709856 DOI: 10.1038/s41598-021-03963-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal cells are important components of specified niches in the lung, and can mediate a wide range of processes including tissue regeneration and repair. Dysregulation of these processes can lead to improper remodeling of tissue as observed in several lung diseases. The mesenchymal cells responsible remain poorly described, partially due to the heterogenic nature of the mesenchymal compartment and the absence of appropriate markers. Here, we describe that CD105+CD90+ mesenchymal cells can be divided into two populations based on their expression of CD13/aminopeptidase N (CD105+CD90+CD13− and CD105+CD90+CD13+). By prospective isolation using FACS, we show that both these populations give rise to clonogenic fibroblast-like cells, but with an increased clonogenic and proliferative capacity of CD105+CD90+CD13+ cells. Transcriptomic and spatial analysis pinpoints an adventitial fibroblast subset as the origin of CD105+CD90+CD13+ clonogenic mesenchymal cells in human lung.
Collapse
Affiliation(s)
- Måns Kadefors
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | | - Emma Åhrman
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Anna Löfdahl
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Göran Dellgren
- Department of Cardiothoracic Surgery and Transplant Institute, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Stefan Scheding
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Hematology, Skåne University Hospital Lund, Lund, Sweden
| | | |
Collapse
|
9
|
Bala N, McGurk AI, Zilch T, Rup AN, Carter EM, Leddon SA, Fowell DJ. T cell activation niches-Optimizing T cell effector function in inflamed and infected tissues. Immunol Rev 2021; 306:164-180. [PMID: 34859453 PMCID: PMC9218983 DOI: 10.1111/imr.13047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/29/2022]
Abstract
Successful immunity to infection, malignancy, and tissue damage requires the coordinated recruitment of numerous immune cell subsets to target tissues. Once within the target tissue, effector T cells rely on local chemotactic cues and structural cues from the tissue matrix to navigate the tissue, interact with antigen-presenting cells, and release effector cytokines. This highly dynamic process has been "caught on camera" in situ by intravital multiphoton imaging. Initial studies revealed a surprising randomness to the pattern of T cell migration through inflamed tissues, behavior thought to facilitate chance encounters with rare antigen-bearing cells. Subsequent tissue-wide visualization has uncovered a high degree of spatial preference when it comes to T cell activation. Here, we discuss the basic tenants of a successful effector T cell activation niche, taking cues from the dynamics of Tfh positioning in the lymph node germinal center. In peripheral tissues, steady-state microanatomical organization may direct the location of "pop-up" de novo activation niches, often observed as perivascular clusters, that support early effector T cell activation. These perivascular activation niches appear to be regulated by site-specific chemokines that coordinate the recruitment of dendritic cells and other innate cells for local T cell activation, survival, and optimized effector function.
Collapse
Affiliation(s)
- Noor Bala
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Alexander I McGurk
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Tiago Zilch
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Anastasia N Rup
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Evan M Carter
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Scott A Leddon
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Deborah J Fowell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
10
|
Lai Y, Wei X, Ye T, Hang L, Mou L, Su J. Interrelation Between Fibroblasts and T Cells in Fibrosing Interstitial Lung Diseases. Front Immunol 2021; 12:747335. [PMID: 34804029 PMCID: PMC8602099 DOI: 10.3389/fimmu.2021.747335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Interstitial lung diseases (ILDs) are a heterogeneous group of diseases characterized by varying degrees of inflammation and fibrosis of the pulmonary interstitium. The interrelations between multiple immune cells and stromal cells participate in the pathogenesis of ILDs. While fibroblasts contribute to the development of ILDs through secreting extracellular matrix and proinflammatory cytokines upon activation, T cells are major mediators of adaptive immunity, as well as inflammation and autoimmune tissue destruction in the lung of ILDs patients. Fibroblasts play important roles in modulating T cell recruitment, differentiation and function and conversely, T cells can balance fibrotic sequelae with protective immunity in the lung. A more precise understanding of the interrelation between fibroblasts and T cells will enable a better future therapeutic design by targeting this interrelationship. Here we highlight recent work on the interactions between fibroblasts and T cells in ILDs, and consider the implications of these interactions in the future development of therapies for ILDs.
Collapse
Affiliation(s)
- Yunxin Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinru Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ting Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lilin Hang
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ling Mou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Su
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Barker KA, Etesami NS, Shenoy AT, Arafa EI, Lyon de Ana C, Smith NM, Martin IM, Goltry WN, Barron AM, Browning JL, Kathuria H, Belkina AC, Guillon A, Zhong X, Crossland NA, Jones MR, Quinton LJ, Mizgerd JP. Lung-resident memory B cells protect against bacterial pneumonia. J Clin Invest 2021; 131:e141810. [PMID: 34060477 DOI: 10.1172/jci141810] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Lung-resident memory B cells (BRM cells) are elicited after influenza infections of mice, but connections to other pathogens and hosts - as well as their functional significance - have yet to be determined. We postulate that BRM cells are core components of lung immunity. To test this, we examined whether lung BRM cells are elicited by the respiratory pathogen pneumococcus, are present in humans, and are important in pneumonia defense. Lungs of mice that had recovered from pneumococcal infections did not contain organized tertiary lymphoid organs, but did have plasma cells and noncirculating memory B cells. The latter expressed distinctive surface markers (including CD69, PD-L2, CD80, and CD73) and were poised to secrete antibodies upon stimulation. Human lungs also contained B cells with a resident memory phenotype. In mice recovered from pneumococcal pneumonia, depletion of PD-L2+ B cells, including lung BRM cells, diminished bacterial clearance and the level of pneumococcus-reactive antibodies in the lung. These data define lung BRM cells as a common feature of pathogen-experienced lungs and provide direct evidence of a role for these cells in pulmonary antibacterial immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicole Ms Smith
- Pulmonary Center.,Department of Pathology and Laboratory Medicine, and
| | | | | | | | | | | | - Anna C Belkina
- Pulmonary Center.,Department of Pathology and Laboratory Medicine, and.,Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Antoine Guillon
- Pulmonary Center.,Centre Hospitalier Régional Universitaire de (CHRU) de Tours, Service de Médecine Intensive Réanimation, INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, University of Tours, Tours, France
| | | | | | | | - Lee J Quinton
- Pulmonary Center.,Department of Microbiology.,Department of Medicine.,Department of Pathology and Laboratory Medicine, and
| | - Joseph P Mizgerd
- Pulmonary Center.,Department of Microbiology.,Department of Medicine.,Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Xiang M, Chen Q, Feng Y, Wang Y, Wang J, Liang J, Xu J. Bioinformatic analysis of key biomarkers and immune filtration of skin biopsy in discoid lupus erythematosus. Lupus 2021; 30:807-817. [PMID: 33530816 DOI: 10.1177/0961203321992434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Discoid lupus erythematosus (DLE) is the most common category of chronic cutaneous lupus erythematosus, where the pathological process is proved to be closely associated with immunity. This bioinformatic analysis sought to identify key biomarkers and to perform immune infiltration analysis in the skin biopsy samples of DLE. METHODS GSE120809, GSE100093, GSE72535, GSE81071 were used as the data source of gene expression profiles, altogether containing 79 DLE samples and 47 normal controls (NC). Limma package was applied to identify differentially expressed genes (DEGs) and additional Gene Ontology (GO) together with The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were done. Protein-protein interaction network (PPI) was constructed using STRING and Cytoscape. Hub genes were selected by CytoHubba. Finally, immune filtration analysis was finished by the CIBERSORT algorithm, and comparisons between the two groups were accomplished. RESULTS A total of 391 DEGs were identified, which were composed of 57 up-regulated genes and 334 down-regulated genes. GO and KEGG enrichment analyses revealed that DEGs were closely related with different steps in the immune response. Top 10 hub genes included GBP2, HLA-F, IFIT2, RSAD2, ISG15, IFIT1, IFIT3, MX1, XAF1 and IFI6. Immune filtration analysis from CIBERSORT had found that compared with NC, DLE samples had higher percentages of CD8+ T cells, T cells CD4 memory activated, T cells gamma delta, macrophages M1 and lower percentages of T cells regulatory, macrophages M2, dendritic cells resting, mast cells resting, mast cells activated. CONCLUSION This bioinformatic study selected key biomarkers from the contrast between DLE and NC skin samples and is the first research to analyze immune cell filtration in DLE.
Collapse
Affiliation(s)
- Mengmeng Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Feng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,Cutaneous Biology Research Center & Melanoma Program MGH Cancer Center, Harvard Medical School/Massachusetts General Hospital, Boston, MA, USA
| | - Yilun Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Liang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Dermatology, Shanghai Institute of Dermatology, Shanghai, China
| |
Collapse
|
13
|
Masum MA, Ichii O, Elewa YHA, Otani Y, Namba T, Kon Y. Vasculature-Associated Lymphoid Tissue: A Unique Tertiary Lymphoid Tissue Correlates With Renal Lesions in Lupus Nephritis Mouse Model. Front Immunol 2020; 11:595672. [PMID: 33384689 PMCID: PMC7770167 DOI: 10.3389/fimmu.2020.595672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Lupus nephritis (LN) is a common complication in young patients and the most predominant cause of glomerulonephritis. Infiltrating immune cells and presence of immunocomplexes in the kidney are hallmarks of LN, which is closely associated with renal lesions (RLs). However, their regulatory mechanism in the kidney remains unclear, which is valuable for prevention of RL development. Here, we show the development of vasculature-associated lymphoid tissue (VALT) in LN, which is related to renal inflammatory cytokines, indicating that VALT is a unique tertiary lymphoid tissue. Transcriptomic analysis revealed different chemokines and costimulatory molecules for VALT induction and organization. Vascular and perivascular structures showed lymphoid tissue organization through lymphorganogenic chemokine production. Transcriptional profile and intracellular interaction also demonstrated antigen presentation, lymphocyte activity, clonal expansion, follicular, and germinal center activity in VALT. Importantly, VALT size was correlated with infiltrating immune cells in kidney and RLs, indicating its direct correlation with the development of RLs. In addition, dexamethasone administration reduced VALT size. Therefore, inhibition of VALT formation would be a novel therapeutic strategy against LN.
Collapse
Affiliation(s)
- Md Abdul Masum
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yaser Hosny Ali Elewa
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Histology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yuki Otani
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Namba
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Role of type I interferons and innate immunity in systemic sclerosis: unbalanced activities on distinct cell types? Curr Opin Rheumatol 2020; 31:569-575. [PMID: 31436583 DOI: 10.1097/bor.0000000000000659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW The role of type I IFNs (IFN-I) in the promotion of autoimmunity has been well established. However, its role in the skin fibrosis of systemic sclerosis (SSc) is less clear. IFN-I can participate to tissue repair, and, here, we will consider the extent to which IFN-I's role in SSc skin fibrosis may reflect in part IFN-I functions during wound healing. RECENT FINDINGS Studies are beginning to delineate whether IFN-I has a protective or pathogenic role and how IFN-I affects tissue biology. Recent support for a pathogenic role came from a study depleting plasmacytoid dendritic cells during bleomycin-induced skin fibrosis. The depletion reduced the bleomycin-induced IFN-I-stimulated transcripts and both prevented and reversed fibrosis. Additionally, two recent articles, one identifying SSc endothelial cell injury markers and one showing repressed IFN signaling in SSc keratinocytes, suggest the possibility of unbalanced IFN-I activities on distinct cells types. SUMMARY Recent results support a pathogenic role for IFN-I in skin fibrosis, and recent studies along with others suggest a scenario whereby SSc skin damage results from too much IFN-I-activity driving vasculopathy in combination with too little IFN-I-mediated epidermal integrity and antifibrotic fibroblast phenotype.
Collapse
|
15
|
Shipman WD, Sandoval MJ, Veiga K, Donlin LT, Lu TT. Fibroblast subtypes in tissues affected by autoimmunity: with lessons from lymph node fibroblasts. Curr Opin Immunol 2020; 64:63-70. [PMID: 32387902 DOI: 10.1016/j.coi.2020.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The recent advent of single-cell technologies has fast-tracked the discovery of multiple fibroblast subsets in tissues affected by autoimmune disease. In recent years, interest in lymph node fibroblasts that support and regulate immune cells has also grown, leading to an expanding framework of stromal cell subsets with distinct spatial, transcriptional, and functional characteristics. Inflammation can drive tissue fibroblasts to adopt a lymphoid tissue stromal cell phenotype, suggesting that fibroblasts in diseased tissues can have counterparts in lymphoid tissues. Here, we examine fibroblast subsets in tissues affected by autoimmunity in the context of knowledge gained from studies on lymph node fibroblasts, with the ultimate aim to better understand stromal cell heterogeneity in these immunologically reactive tissues.
Collapse
Affiliation(s)
- William D Shipman
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA; Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Marvin J Sandoval
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Keila Veiga
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA; Pediatric Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA
| | - Laura T Donlin
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA; Pediatric Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
16
|
Henrot P, Moisan F, Laurent P, Manicki P, Kaulanjan-Checkmodine P, Jolivel V, Rezvani HR, Leroy V, Picard F, Boulon C, Schaeverbeke T, Seneschal J, Lazaro E, Taïeb A, Truchetet ME, Cario M. Decreased CCN3 in Systemic Sclerosis Endothelial Cells Contributes to Impaired Angiogenesis. J Invest Dermatol 2020; 140:1427-1434.e5. [PMID: 31954725 DOI: 10.1016/j.jid.2019.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/30/2022]
Abstract
Systemic sclerosis (SSc) is a rare and severe connective tissue disease combining autoimmune and vasculopathy features, ultimately leading to organ fibrosis. Impaired angiogenesis is an often silent and life-threatening complication of the disease. We hypothesize that CCN3, a member of the CCN family of extracellular matrix proteins, which is an antagonist of the profibrotic protein CCN2 as well as a proangiogenic factor, is implicated in SSc pathophysiology. We performed skin biopsies on 26 patients with SSc, both in fibrotic and nonfibrotic areas for 17 patients, and collected 18 healthy control skin specimens for immunohistochemistry and cell culture. Histological analysis of nonfibrotic and fibrotic SSc skin shows a systemic decrease of papillary dermis surface as well as disappearance of capillaries. CCN3 expression is systematically decreased in the dermis of patients with SSc compared with healthy controls, particularly in dermal blood vessels. Moreover, CCN3 is decreased in vitro in endothelial cells from patients with SSc. We show that CCN3 is essential for endothelial cell migration and angiogenesis in vitro. In conclusion, CCN3 may represent a promising therapeutic target for patients with SSc presenting with vascular involvement.
Collapse
Affiliation(s)
- Pauline Henrot
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France; Department of Rheumatology, National Reference Center for Systemic Autoimmune Rare Diseases, Hopital Pellegrin, Bordeaux, France.
| | - François Moisan
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France
| | - Paôline Laurent
- University of Bordeaux, CNRS, Immunoconcept, UMR 5164, Bordeaux, France
| | - Pauline Manicki
- Department of Rheumatology, National Reference Center for Systemic Autoimmune Rare Diseases, Hopital Pellegrin, Bordeaux, France; University of Bordeaux, CNRS, Immunoconcept, UMR 5164, Bordeaux, France
| | | | - Valérie Jolivel
- University of Bordeaux, CNRS, Immunoconcept, UMR 5164, Bordeaux, France
| | - Hamid Reza Rezvani
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France; Department of Dermatology and Pediatric Dermatology, National Center for Rare Skin Disorders, Hôpital Saint André, Bordeaux, France
| | - Vaianu Leroy
- Department of Dermatology and Pediatric Dermatology, National Center for Rare Skin Disorders, Hôpital Saint André, Bordeaux, France
| | - François Picard
- Department of Cardiology, Hôpital Haut-Levêque, Pessac, France
| | - Carine Boulon
- Department of Vascular Medicine, Hôpital Saint André, Bordeaux, France
| | - Thierry Schaeverbeke
- Department of Rheumatology, National Reference Center for Systemic Autoimmune Rare Diseases, Hopital Pellegrin, Bordeaux, France
| | - Julien Seneschal
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France; Department of Dermatology and Pediatric Dermatology, National Center for Rare Skin Disorders, Hôpital Saint André, Bordeaux, France
| | - Estibaliz Lazaro
- University of Bordeaux, CNRS, Immunoconcept, UMR 5164, Bordeaux, France; Department of Internal Medicine, National Reference Center for Systemic Autoimmune Rare Diseases, Hôpital Haut-Levêque, Pessac, France
| | - Alain Taïeb
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France; Department of Dermatology and Pediatric Dermatology, National Center for Rare Skin Disorders, Hôpital Saint André, Bordeaux, France
| | - Marie-Elise Truchetet
- Department of Rheumatology, National Reference Center for Systemic Autoimmune Rare Diseases, Hopital Pellegrin, Bordeaux, France; University of Bordeaux, CNRS, Immunoconcept, UMR 5164, Bordeaux, France
| | - Muriel Cario
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France; Department of Dermatology and Pediatric Dermatology, National Center for Rare Skin Disorders, Hôpital Saint André, Bordeaux, France
| |
Collapse
|
17
|
Perivascular Lymphocyte Clusters Induced by Gastric Subserous Layer Vaccination Mediate Optimal Immunity against Helicobacter through Facilitating Immune Cell Infiltration and Local Antibody Response. J Immunol Res 2020; 2020:1480281. [PMID: 32411786 PMCID: PMC7201474 DOI: 10.1155/2020/1480281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/19/2019] [Indexed: 01/16/2023] Open
Abstract
Background In situ vaccination-induced local inflammatory response resulted in the establishment of a pool of tissue-resident memory T (TRM) cells and new vessels after the resolution of inflammation. TRM cells have received increasing attention; however, the role of new vessels in protective response is still unknown. Materials and Methods We performed the laparotomy to access the stomach and injected alum-based vaccine into the gastric subserous layer (GSL). At 28 days post vaccination, a parabiosis mouse model along with depletion of anti-CD90.2 antibody was employed to explore the function of perivascular lymphocyte clusters in recall responses. The composition of the gastric lymphocyte clusters was analyzed by immunofluorescence staining. Antibody responses were detected using ELISA. Gastric lymphocytes were analyzed using flow cytometry. Results GSL vaccination induced the formation of new vessels in the inflamed region. These new vessels were different from native vessels in that they were generally accompanied by perivascular lymphocyte clusters that mainly consisted of CD90-expressing cells. Additionally, histological analysis revealed the presence of CD4+ and CD8+ T cells in the perivascular lymphocyte clusters. Administration of a dose of an anti-CD90.2 antibody to GSL-vaccinated mice resolved these clusters. The efficacy of protection was compared in the parabiosis mice. Upon challenge, the presence of perivascular lymphocyte clusters was responsible for the fast recall response, as depletion of these clusters by CD90.2 antibody administration resulted in decreased expressions of VCAM-1, Madcam-1, and TNF-α, as well as lower recruitment of proinflammatory immune cells, decreased antibody levels, and poor protection. Conclusions Our research demonstrates that in situ vaccination-induced regional inflammatory response contributes to optimal recall response not only by establishing a CD4+ TRM pool but also by creating an “expressway,” i.e., perivascular lymphocyte cluster.
Collapse
|
18
|
Elmentaite R, Teichmann S, Madissoon E. Studying immune to non-immune cell cross-talk using single-cell technologies. CURRENT OPINION IN SYSTEMS BIOLOGY 2019; 18:87-94. [PMID: 32984660 PMCID: PMC7493433 DOI: 10.1016/j.coisb.2019.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Single-cell RNA-sequencing has uncovered immune heterogeneity, including novel cell types, states and lineages that have expanded our understanding of the immune system as a whole. More recently, studies involving both immune and non-immune cells have demonstrated the importance of immune microenvironment in development, homeostasis and disease. This review focuses on the single-cell studies mapping cell-cell interactions for variety of tissues in development, health and disease. In addition, we address the need to generate a comprehensive interaction map to answer fundamental questions in immunology as well as experimental and computational strategies required for this purpose.
Collapse
Affiliation(s)
- R. Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
| | - S.A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
- Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, United Kingdom
| | - E. Madissoon
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, United Kingdom
| |
Collapse
|