1
|
Herrmann T, Karunakaran MM. Phosphoantigen recognition by Vγ9Vδ2 T cells. Eur J Immunol 2024; 54:e2451068. [PMID: 39148158 DOI: 10.1002/eji.202451068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Vγ9Vδ2 T cells comprise 1-10% of human peripheral blood T cells. As multifunctional T cells with a strong antimicrobial and antitumor potential, they are of strong interest for immunotherapeutic development. Their hallmark is the eponymous Vγ9Vδ2 T-cell antigen receptor (TCR), which mediates activation by so-called "phosphoantigens" (PAg). PAg are small pyrophosphorylated intermediates of isoprenoid synthesis of microbial or host origin, with the latter elevated in some tumors and after administration of aminobisphosphonates. This review summarizes the progress in understanding PAg-recognition, with emphasis on the interaction between butyrophilins (BTN) and PAg and insights gained by phylogenetic studies on BTNs and Vγ9Vδ2 T cells, especially the comparison of human and alpaca. It proposes a composite ligand model in which BTN3A1-A2/A3-heteromers and BTN2A1 homodimers form a Vγ9Vδ2 TCR activating complex. An initiating step is the binding of PAg to the intracellular BTN3A1-B30.2 domain and formation of a complex with the B30.2 domains of BTN2A1. On the extracellular surface this results in BTN2A1-IgV binding to Vγ9-TCR framework determinants and BTN3A-IgV to additional complementarity determining regions of both TCR chains. Unresolved questions of this model are discussed, as well as questions on the structural basis and the physiological consequences of PAg-recognition.
Collapse
Affiliation(s)
- Thomas Herrmann
- Institute for Virology and Immunobiology, Dept of Medicine, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
2
|
Mehdikhani F, Bahar A, Bashi M, Mohammadlou M, Yousefi B. From immunomodulation to therapeutic prospects: Unveiling the biology of butyrophilins in cancer. Cell Biochem Funct 2024; 42:e4081. [PMID: 38934382 DOI: 10.1002/cbf.4081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Butyrophilin (BTN) proteins are a type of membrane protein that belongs to the Ig superfamily. They exhibit a high degree of structural similarity to molecules in the B7 family. They fulfill a complex function in regulating immune responses, including immunomodulatory roles, as they influence γδ T cells. The biology of BTN molecules indicates that they are capable of inhibiting the immune system's ability to detect antigens within tumors. A dynamic association between BTN molecules and cellular surfaces is also recognized in specific contexts, influencing their biology. Notably, the dynamism of BTN3A1 is associated with the immunosuppression of T cells or the activation of Vγ9Vδ2 T cells. Cancer immunotherapy relies heavily on T cells to modulate immune function within the intricate interaction of the tumor microenvironment (TME). A significant interaction between the TME and antitumor immunity involves the presence of BTN, which should be taken into account when developing immunotherapy. This review explores potential therapeutic applications of BTN molecules, based on the current understanding of their biology.
Collapse
Affiliation(s)
- Fatemeh Mehdikhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysa Bahar
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Bashi
- Cancer Research Center, Semnan University of Medical, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Mohammadlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
3
|
Liu H, Huang J, Zhang H, Xi S, Luo T, Jiang X. Effect and mechanism of Mn 2+ on urease activity during anaerobic biological treatment of landfill leachate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41290-41300. [PMID: 38849617 DOI: 10.1007/s11356-024-33907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
As a crucial hydrolytic enzyme, urease plays a vital role in anaerobic biological treatment. It is well-known that manganese ions are abundant in landfill leachate, but their concentration fluctuates significantly. However, few studies have investigated the effect and mechanism of different concentrations of Mn2+ on urease activity during anaerobic biological treatment of landfill leachate. This paper aimed to investigate the effects and mechanisms of different concentrations of Mn2+ on urease activity. The results showed that an appropriate amount of Mn2+ could significantly enhance urease activity, while a high concentration of Mn2+ could inhibit it. Insight into the mechanisms behind this phenomenon, various methods such as Zeta potential, particle size, ultraviolet spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and statistical analysis were employed in our study. Research suggested that, on one hand, Mn2+ may form hydrogen bonds with the side chain amino or carboxyl groups of urease amino acid residues, affecting the structure of urease through hydrogen bonding. Additionally, Mn2+ also binds to urease through hydrophobic interactions. On the other hand, the C-OH and C-N functional groups in urease have a strong affinity for Mn2+, and changes in these functional groups can greatly enhance the activity of urease. Furthermore, under the action of high concentrations of Mn2+, while the structure of urease becomes more stable, there is also a steric hindrance phenomenon that affects the substrate from entering the catalytic center. Therefore, studying the mechanism of Mn2+ affecting urease activity has significant biological significance and provides a new perspective for exploring the impact of metals on anaerobic bioprocessing of landfill leachate.
Collapse
Affiliation(s)
- Hao Liu
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei, 230601, Anhui Province, China
- Anhui Provincial Key Laboratory of Environment Pollution Control and Resource Reuse, Hefei, 230601, China
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China
| | - Jian Huang
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei, 230601, Anhui Province, China
- Anhui Provincial Key Laboratory of Environment Pollution Control and Resource Reuse, Hefei, 230601, China
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China
| | - Hua Zhang
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei, 230601, Anhui Province, China
- Anhui Provincial Key Laboratory of Environment Pollution Control and Resource Reuse, Hefei, 230601, China
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China
| | - Shanshan Xi
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei, 230601, Anhui Province, China.
- Anhui Provincial Key Laboratory of Environment Pollution Control and Resource Reuse, Hefei, 230601, China.
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China.
| | - Tao Luo
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei, 230601, Anhui Province, China
- Anhui Provincial Key Laboratory of Environment Pollution Control and Resource Reuse, Hefei, 230601, China
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China
| | - Xinqin Jiang
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei, 230601, Anhui Province, China
- Anhui Provincial Key Laboratory of Environment Pollution Control and Resource Reuse, Hefei, 230601, China
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China
| |
Collapse
|
4
|
Karunakaran MM, Subramanian H, Jin Y, Mohammed F, Kimmel B, Juraske C, Starick L, Nöhren A, Länder N, Willcox CR, Singh R, Schamel WW, Nikolaev VO, Kunzmann V, Wiemer AJ, Willcox BE, Herrmann T. A distinct topology of BTN3A IgV and B30.2 domains controlled by juxtamembrane regions favors optimal human γδ T cell phosphoantigen sensing. Nat Commun 2023; 14:7617. [PMID: 37993425 PMCID: PMC10665462 DOI: 10.1038/s41467-023-41938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/21/2023] [Indexed: 11/24/2023] Open
Abstract
Butyrophilin (BTN)-3A and BTN2A1 molecules control the activation of human Vγ9Vδ2 T cells during T cell receptor (TCR)-mediated sensing of phosphoantigens (PAg) derived from microbes and tumors. However, the molecular rules governing PAg sensing remain largely unknown. Here, we establish three mechanistic principles of PAg-mediated γδ T cell activation. First, in humans, following PAg binding to the intracellular BTN3A1-B30.2 domain, Vγ9Vδ2 TCR triggering involves the extracellular V-domain of BTN3A2/BTN3A3. Moreover, the localization of both protein domains on different chains of the BTN3A homo-or heteromers is essential for efficient PAg-mediated activation. Second, the formation of BTN3A homo-or heteromers, which differ in intracellular trafficking and conformation, is controlled by molecular interactions between the juxtamembrane regions of the BTN3A chains. Finally, the ability of PAg not simply to bind BTN3A-B30.2, but to promote its subsequent interaction with the BTN2A1-B30.2 domain, is essential for T-cell activation. Defining these determinants of cooperation and the division of labor in BTN proteins improves our understanding of PAg sensing and elucidates a mode of action that may apply to other BTN family members.
Collapse
Affiliation(s)
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Yiming Jin
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, UK
| | - Brigitte Kimmel
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg, Germany
| | - Claudia Juraske
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Lisa Starick
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Anna Nöhren
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Nora Länder
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Carrie R Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, UK
| | - Rohit Singh
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, Dr. Vishwanath Karad, MIT World peace University, Pune, 411038, India
| | - Wolfgang W Schamel
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Volker Kunzmann
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg, Germany
| | - Andrew J Wiemer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, UK
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Nguyen K, Jin Y, Howell M, Hsiao CHC, Wiemer AJ, Vinogradova O. Mutations to the BTN2A1 Linker Region Impact Its Homodimerization and Its Cytoplasmic Interaction with Phospho-Antigen-Bound BTN3A1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:23-33. [PMID: 37171180 PMCID: PMC10330345 DOI: 10.4049/jimmunol.2200949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Intracellular binding of small-molecule phospho-Ags to the HMBPP receptor complex in infected cells leads to extracellular detection by T cells expressing the Vγ9Vδ2 TCR, a noncanonical method of Ag detection. The butyrophilin proteins BTN2A1 and BTN3A1 are part of the complex; however, their precise roles are unclear. We suspected that BTN2A1 and BTN3A1 form a tetrameric (dimer of dimers) structure, and we wanted to probe the importance of the BTN2A1 homodimer. We analyzed mutations to human BTN2A1, using internal domain or full-length BTN2A1 constructs, expressed in Escherichia coli or human K562 cells, that might disrupt its structure and/or function. Although BTN2A1 is a disulfide-linked homodimer, mutation of cysteine residues C247 and C265 did not affect the ability to stimulate T cell IFN-γ production by ELISA. Two mutations of the juxtamembrane region (at EKE282) failed to impact BTN2A1 function. In contrast, single point mutations (L318G and L325G) near the BTN2A1 B30.2 domain blocked phospho-Ag response. Size exclusion chromatography and nuclear magnetic resonance (NMR) experiments showed that the isolated BTN2A1 B30.2 domain is a homodimer, even in the absence of its extracellular and transmembrane region. [31P]-NMR experiments confirmed that HMBPP binds to BTN3A1 but not BTN2A1, and binding abrogates signals from both phosphorus atoms. Furthermore, the BTN2A1 L325G mutation but not the L318G mutation prevents both homodimerization of BTN2A1 internal domain constructs in size exclusion chromatography (and NMR) experiments and their binding to HMBPP-bound BTN3A1 in isothermal titration calorimetry experiments. Together, these findings support the importance of homodimerization within the BTN2A1 internal domain for phospho-Ag detection.
Collapse
Affiliation(s)
- Khiem Nguyen
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT
| | - Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT
| | - Matthew Howell
- Department of Chemistry, University of Connecticut, Storrs, CT
| | | | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT
- Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT
| |
Collapse
|
6
|
Umeyama Y, Taniguchi H, Gyotoku H, Senju H, Tomono H, Takemoto S, Yamaguchi H, Tagod MSO, Iwasaki M, Tanaka Y, Mukae H. Three distinct mechanisms underlying human γδ T cell-mediated cytotoxicity against malignant pleural mesothelioma. Front Immunol 2023; 14:1058838. [PMID: 37006249 PMCID: PMC10063812 DOI: 10.3389/fimmu.2023.1058838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionMalignant pleural mesothelioma (MPM) is a rare and highly aggressive thoracic tumor with poor prognosis and limited therapeutic options. Although immune checkpoint inhibitors exhibit a promising effect in some patients with unresectable MPM in clinical trials, the majority of MPM patients show only modest response rates to the currently available treatments. It is thus imperative to develop novel and innovative therapeutic modalities for MPM, including immune effector cell-based therapies.Methodsγδ T cells were expanded using tetrakis-pivaloyloxymethyl 2-(thiazole-2-ylamino) ethylidene-1,1-bisphosphonate (PTA) and interleukin-2, and the therapeutic potential of γδ T cells was examined through analyzing cell surface markers and cellular cytotoxicity against MPM in vitro using a europium chelate-based time-resolved fluorescence assay system and a luciferase-based luminescence assay system.Results and discussionWe successfully expanded γδ T cells from peripheral blood mononuclear cells of healthy donors and MPM patients. γδ T cells expressed natural killer receptors such as NKG2D and DNAM-1 and exhibited a moderate level of cytotoxicity to MPM cells in the absence of antigens. The inclusion of PTA, (E)-4-hydroxy-3- methylbut-2-enyl diphosphate (HMBPP) or zoledronic acid (ZOL) induced a TCR-dependent cytotoxicity in γδ T cells and secreted interferon-γ (IFN-γ). In addition, γδ T cells expressing CD16 exhibited a significant level of cytotoxicity against MPM cells in the presence of an anti-epidermal growth factor receptor (EGFR) mAb, at lower concentrations than in clinical settings, whereas a detectable level of IFN-γ was not produced. Taken together, γδ T cells showed cytotoxic activity against MPM in three distinct mechanisms through NK receptors, TCRs and CD16. Since major histocompatibility complex (MHC) molecules are not involved in the recognition, both autologous and allogeneic γδ T cells could be used for the development of γδ T cell-based adoptive immunotherapy for MPM.
Collapse
Affiliation(s)
- Yasuhiro Umeyama
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Center for Medical Innovation, Nagasaki University, Nagasaki, Japan
| | - Hirokazu Taniguchi
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- *Correspondence: Hirokazu Taniguchi,
| | - Hiroshi Gyotoku
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroaki Senju
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Respiratory Medicine, Senju Hospital, Sasebo, Japan
| | - Hiromi Tomono
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Center for Medical Innovation, Nagasaki University, Nagasaki, Japan
| | - Shinnosuke Takemoto
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroyuki Yamaguchi
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Clinical Oncology Center, Nagasaki University Hospital, Nagasaki, Japan
| | | | - Masashi Iwasaki
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki, Japan
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
7
|
Karunakaran MM, Subramanian H, Jin Y, Mohammed F, Kimmel B, Juraske C, Starick L, Nöhren A, Länder N, Willcox CR, Singh R, Schamel WW, Nikolaev VO, Kunzmann V, Wiemer AJ, Willcox BE, Herrmann T. Division of labor and cooperation between different butyrophilin proteins controls phosphoantigen-mediated activation of human γδ T cells. RESEARCH SQUARE 2023:rs.3.rs-2583246. [PMID: 36824912 PMCID: PMC9949253 DOI: 10.21203/rs.3.rs-2583246/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Butyrophilin (BTN)-3A and BTN2A1 molecules control TCR-mediated activation of human Vγ9Vδ2 T-cells triggered by phosphoantigens (PAg) from microbes and tumors, but the molecular rules governing antigen sensing are unknown. Here we establish three mechanistic principles of PAg-action. Firstly, in humans, following PAg binding to the BTN3A1-B30.2 domain, Vγ9Vδ2 TCR triggering involves the V-domain of BTN3A2/BTN3A3. Moreover, PAg/B30.2 interaction, and the critical γδ-T-cell-activating V-domain, localize to different molecules. Secondly, this distinct topology as well as intracellular trafficking and conformation of BTN3A heteromers or ancestral-like BTN3A homomers are controlled by molecular interactions of the BTN3 juxtamembrane region. Finally, the ability of PAg not simply to bind BTN3A-B30.2, but to promote its subsequent interaction with the BTN2A1-B30.2 domain, is essential for T-cell activation. Defining these determinants of cooperation and division of labor in BTN proteins deepens understanding of PAg sensing and elucidates a mode of action potentially applicable to other BTN/BTNL family members.
Collapse
Affiliation(s)
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Brigitte Kimmel
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg Germany
| | - Claudia Juraske
- Signaling Research Centers BIOSS and CIBSS and Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany; Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Lisa Starick
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| | - Anna Nöhren
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| | - Nora Länder
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| | - Carrie R Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Rohit Singh
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Wolfgang W Schamel
- Signaling Research Centers BIOSS and CIBSS and Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany; Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Volker Kunzmann
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg Germany
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Benjamin E Willcox
- 6Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Thomas Herrmann
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Chan KF, Duarte JDG, Ostrouska S, Behren A. γδ T Cells in the Tumor Microenvironment-Interactions With Other Immune Cells. Front Immunol 2022; 13:894315. [PMID: 35880177 PMCID: PMC9307934 DOI: 10.3389/fimmu.2022.894315] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
A growing number of studies have shown that γδ T cells play a pivotal role in mediating the clearance of tumors and pathogen-infected cells with their potent cytotoxic, cytolytic, and unique immune-modulating functions. Unlike the more abundant αβ T cells, γδ T cells can recognize a broad range of tumors and infected cells without the requirement of antigen presentation via major histocompatibility complex (MHC) molecules. Our group has recently demonstrated parts of the mechanisms of T-cell receptor (TCR)-dependent activation of Vγ9Vδ2+ T cells by tumors following the presentation of phosphoantigens, intermediates of the mevalonate pathway. This process is mediated through the B7 immunoglobulin family-like butyrophilin 2A1 (BTN2A1) and BTN3A1 complexes. Such recognition results in activation, a robust immunosurveillance process, and elicits rapid γδ T-cell immune responses. These include targeted cell killing, and the ability to produce copious quantities of cytokines and chemokines to exert immune-modulating properties and to interact with other immune cells. This immune cell network includes αβ T cells, B cells, dendritic cells, macrophages, monocytes, natural killer cells, and neutrophils, hence heavily influencing the outcome of immune responses. This key role in orchestrating immune cells and their natural tropism for tumor microenvironment makes γδ T cells an attractive target for cancer immunotherapy. Here, we review the current understanding of these important interactions and highlight the implications of the crosstalk between γδ T cells and other immune cells in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- Kok Fei Chan
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Jessica Da Gama Duarte
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
Hsiao CHC, Nguyen K, Jin Y, Vinogradova O, Wiemer AJ. Ligand-induced interactions between butyrophilin 2A1 and 3A1 internal domains in the HMBPP receptor complex. Cell Chem Biol 2022; 29:985-995.e5. [DOI: 10.1016/j.chembiol.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 11/27/2022]
|
10
|
Cano CE, Pasero C, De Gassart A, Kerneur C, Gabriac M, Fullana M, Granarolo E, Hoet R, Scotet E, Rafia C, Herrmann T, Imbert C, Gorvel L, Vey N, Briantais A, le Floch AC, Olive D. BTN2A1, an immune checkpoint targeting Vγ9Vδ2 T cell cytotoxicity against malignant cells. Cell Rep 2021; 36:109359. [PMID: 34260935 DOI: 10.1016/j.celrep.2021.109359] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/27/2020] [Accepted: 06/17/2021] [Indexed: 01/20/2023] Open
Abstract
The anti-tumor response of Vγ9Vδ2 T cells requires the sensing of accumulated phosphoantigens (pAgs) bound intracellularly to butyrophilin 3A1 (BTN3A1). In this study, we show that butyrophilin 2A1 (BTN2A1) is required for BTN3A-mediated Vγ9Vδ2 T cell cytotoxicity against cancer cells, and that expression of the BTN2A1/BTN3A1 complex is sufficient to trigger Vγ9Vδ2 TCR activation. Also, BTN2A1 interacts with all isoforms of BTN3A (BTN3A1, BTN3A2, BTN3A3), which appears to be a rate-limiting factor to BTN2A1 export to the plasma membrane. BTN2A1/BTN3A1 interaction is enhanced by pAgs and, strikingly, B30.2 domains of both proteins are required for pAg responsiveness. BTN2A1 expression in cancer cells correlates with bisphosphonate-induced Vγ9Vδ2 T cell cytotoxicity. Vγ9Vδ2 T cell killing of cancer cells is modulated by anti-BTN2A1 monoclonal antibodies (mAbs), whose action relies on the inhibition of BTN2A1 binding to the Vγ9Vδ2TCR. This demonstrates the potential of BTN2A1 as a therapeutic target and adds to the emerging butyrophilin-family cooperation pathway in γδ T cell activation.
Collapse
Affiliation(s)
- Carla E Cano
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France.
| | - Christine Pasero
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Aude De Gassart
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Clement Kerneur
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Mélanie Gabriac
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Marie Fullana
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Emilie Granarolo
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - René Hoet
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Emmanuel Scotet
- Université de Nantes, INSERM, CNRS, CRCINA, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes 44000, France
| | - Chirine Rafia
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France; Université de Nantes, INSERM, CNRS, CRCINA, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes 44000, France
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Caroline Imbert
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Laurent Gorvel
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Norbert Vey
- Institut Paoli-Calmettes, 13009 Marseille, France
| | - Antoine Briantais
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Anne Charlotte le Floch
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France; Institut Paoli-Calmettes, 13009 Marseille, France; Aix-Marseille Université UM105, CNRS UMR 7258, 13009 Marseille, France.
| |
Collapse
|
11
|
Chen S, Li Z, Huang W, Wang Y, Fan S. Prognostic and Therapeutic Significance of BTN3A Proteins in Tumors. J Cancer 2021; 12:4505-4512. [PMID: 34149914 PMCID: PMC8210570 DOI: 10.7150/jca.57831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
The Butyrophilin 3A (BTN3A) family is a type I transmembrane protein belonging to the immunoglobulin (Ig) superfamily. The family contains three members: BTN3A1, BTN3A2 and BTN3A3, which share 95% homology in the extracellular domain. The expression of BTN3A family members is different in different types of tumors, which plays an important role in tumor prognosis. Among them, there are many studies on tumor immunity of BTN3A1, which shows that it is essential for the activation of Vγ9Vδ2 T cells, while BTN3A3 is expected to become a potential therapeutic target for breast cancer. Recent studies have shown that the BTN3A family is closely related to the occurrence and development of tumors. Now the BTN3A family has become one of the research hotspots and is expected to become new tumor prediction and treatment targets.
Collapse
Affiliation(s)
- Sihan Chen
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Zhangyun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Wenyi Huang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, Xuzhou First People's Hospital, Jiangsu, China
| | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
12
|
Liu Y, Han Y, Zeng S, Shen H. In respond to commensal bacteria: γδT cells play a pleiotropic role in tumor immunity. Cell Biosci 2021; 11:48. [PMID: 33653419 PMCID: PMC7927236 DOI: 10.1186/s13578-021-00565-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
γδT cells are a mixture of innate programming and acquired adaptability that bridge the adaptive and innate immune systems. γδT cells are mainly classified as tissue-resident Vδ1 or circulating Vδ2 γδT cells. In the tumor microenvironment, tumor immunity is influenced by the increased quantity and phenotype plasticity of γδT cells. Commensal bacteria are ubiquitous in the human body, and they have been confirmed to exist in various tumor tissues. With the participation of commensal bacteria, γδT cells maintain homeostasis and are activated to affect the development and progression of tumors. Here, we summarize the relationship between γδT cells and commensal bacteria, the potential protumor and antitumor effects underlying γδT cells, and the new developments in γδT cell-based tumor therapy which is expected to open new opportunities for tumor immunotherapy.
Collapse
Affiliation(s)
- Yongting Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China. .,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
13
|
Jiang L, Kirshenbaum K. A modular approach for organizing dimeric coiled coils on peptoid oligomer scaffolds. Org Biomol Chem 2020; 18:2312-2320. [PMID: 32159574 DOI: 10.1039/d0ob00453g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a general approach to promote the folding of synthetic oligopeptides capable of forming homodimeric coiled coil assemblies. By pre-organizing the peptides on macrocyclic oligomer scaffolds, the stability of the coiled coils is enhanced with an observed increase in the melting temperature of 30 °C to 40 °C. Molecular dynamics simulations substantiate the hypothesis that the enhanced stability is established by constraining motion at the peptide termini and by pre-organizing intramolecular helix-helix contacts. We demonstrate the modularity of this approach by using a family of peptoid scaffolds to promote the folding of a dimeric coiled coil. Importantly, this strategy for templating coiled coils allows preservation of native amino acid sequences. Comparing a macrocyclic peptoid scaffold to its linear counterparts indicates that both types of assemblies are effective for organizing stable coiled coils. These results will guide future designs of coiled coil peptides for biomedical applications and as building blocks for more complex supramolecular assemblies.
Collapse
Affiliation(s)
- Linhai Jiang
- Chemistry Department, New York University, New York, NY 10003, USA.
| | - Kent Kirshenbaum
- Chemistry Department, New York University, New York, NY 10003, USA.
| |
Collapse
|
14
|
Uldrich AP, Rigau M, Godfrey DI. Immune recognition of phosphoantigen-butyrophilin molecular complexes by γδ T cells. Immunol Rev 2020; 298:74-83. [PMID: 33017054 DOI: 10.1111/imr.12923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Gamma-delta (γδ) T cells are an important component of the immune system. They are often enriched in non-lymphoid tissues and exhibit diverse functional attributes including rapid activation, cytokine production, proliferation, and acquisition of cytotoxicity following both TCR-dependent and TCR-independent stimulation, but poor capacity for immunological memory. They can detect a broad range of antigens, although typically not peptide-MHC complexes in contrast to alpha-beta (αβ) T cells. In humans, a prominent population of γδ T cells, defined as Vγ9Vδ2+ cells, reacts to small phosphorylated non-peptide "phosphoantigens" (pAgs). The molecular mechanism underpinning this recognition is poorly defined, but is known to involve butyrophilin family members and appears to involve indirect pAg recognition via alterations to butyrophilin molecular complexes. In this review, we discuss recent advances in our understanding of pAg recognition by γδ T cells including the role of butyrophilins and in particular, a newly described role for butyrophilin 2A1.
Collapse
Affiliation(s)
- Adam P Uldrich
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Vic., Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Vic., Australia
| | - Marc Rigau
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Vic., Australia.,Institute of Experimental Immunology at the University Clinic of the Rheinische Friedrich-Wilhelms, University of Bonn, Bonn, Germany
| | - Dale I Godfrey
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Vic., Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
15
|
Herrmann T, Karunakaran MM, Fichtner AS. A glance over the fence: Using phylogeny and species comparison for a better understanding of antigen recognition by human γδ T-cells. Immunol Rev 2020; 298:218-236. [PMID: 32981055 DOI: 10.1111/imr.12919] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 01/20/2023]
Abstract
Both, jawless and jawed vertebrates possess three lymphocyte lineages defined by highly diverse antigen receptors: Two T-cell- and one B-cell-like lineage. In both phylogenetic groups, the theoretically possible number of individual antigen receptor specificities can even outnumber that of lymphocytes of a whole organism. Despite fundamental differences in structure and genetics of these antigen receptors, convergent evolution led to functional similarities between the lineages. Jawed vertebrates possess αβ and γδ T-cells defined by eponymous αβ and γδ T-cell antigen receptors (TCRs). "Conventional" αβ T-cells recognize complexes of Major Histocompatibility Complex (MHC) class I and II molecules and peptides. Non-conventional T-cells, which can be αβ or γδ T-cells, recognize a large variety of ligands and differ strongly in phenotype and function between species and within an organism. This review describes similarities and differences of non-conventional T-cells of various species and discusses ligands and functions of their TCRs. A special focus is laid on Vγ9Vδ2 T-cells whose TCRs act as sensors for phosphorylated isoprenoid metabolites, so-called phosphoantigens (PAg), associated with microbial infections or altered host metabolism in cancer or after drug treatment. We discuss the role of butyrophilin (BTN)3A and BTN2A1 in PAg-sensing and how species comparison can help in a better understanding of this human Vγ9Vδ2 T-cell subset.
Collapse
Affiliation(s)
- Thomas Herrmann
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
16
|
Okuno D, Sugiura Y, Sakamoto N, Tagod MSO, Iwasaki M, Noda S, Tamura A, Senju H, Umeyama Y, Yamaguchi H, Suematsu M, Morita CT, Tanaka Y, Mukae H. Comparison of a Novel Bisphosphonate Prodrug and Zoledronic Acid in the Induction of Cytotoxicity in Human Vγ2Vδ2 T Cells. Front Immunol 2020; 11:1405. [PMID: 32793196 PMCID: PMC7385076 DOI: 10.3389/fimmu.2020.01405] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022] Open
Abstract
Increasing attention has been paid to human γδ T cells expressing Vγ2Vδ2 T cell receptor (also termed Vγ9Vδ2) in the field of cancer immunotherapy. We have previously demonstrated that a novel bisphosphonate prodrug, tetrakis-pivaloyloxymethyl 2-(thiazole-2-ylamino)ethylidene-1,1-bisphosphonate (PTA), efficiently expands peripheral blood Vγ2Vδ2 T cells to purities up to 95–99% in 10–11 days. In the present study, we first examined the effect of PTA on farnesyl diphosphate synthase (FDPS) using liquid chromatography mass spectrometry (LC-MS) to analyze the mechanism underlying the PTA-mediated expansion of Vγ2Vδ2 T cells. We find that the prodrug induced the accumulation of both isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), direct upstream metabolites of FDPS. This indicates that not only IPP but also DMAPP plays an important role in PTA-mediated stimulation of Vγ2Vδ2 T cells. We next analyzed TCR-independent cytotoxicity of Vγ2Vδ2 T cells. When human lung cancer cell lines were challenged by Vγ2Vδ2 T cells, no detectable cytotoxicity was observed in 40 min. The lung cancer cell lines were, however, significantly killed by Vγ2Vδ2 T cells after 4–16 h in an effector-to-target ratio-dependent manner, demonstrating that Vγ2Vδ2 T cell-based cell therapy required a large number of cells and longer time when tumor cells were not sensitized. By contrast, pulsing tumor cell lines with 10–30 nM of PTA induced significant lysis of tumor cells by Vγ2Vδ2 T cells even in 40 min. Similar levels of cytotoxicity were elicited by ZOL at concentrations of 100–300 μM, which were much higher than blood levels of ZOL after infusion (1–2 μM), suggesting that standard 4 mg infusion of ZOL was not enough to sensitize lung cancer cells in clinical settings. In addition, Vγ2Vδ2 T cells secreted interferon-γ (IFN-γ) when challenged by lung cancer cell lines pulsed with PTA in a dose-dependent manner. Taken together, PTA could be utilized for both expansion of Vγ2Vδ2 T cells ex vivo and sensitization of tumor cells in vivo in Vγ2Vδ2 T cell-based cancer immunotherapy. For use in patients, further studies on drug delivery are essential because of the hydrophobic nature of the prodrug.
Collapse
Affiliation(s)
- Daisuke Okuno
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | - Masashi Iwasaki
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuto Noda
- Center for Medical Innovation, Nagasaki University, Nagasaki, Japan
| | - Akihiro Tamura
- Center for Medical Innovation, Nagasaki University, Nagasaki, Japan
| | - Hiroaki Senju
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yasuhiro Umeyama
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroyuki Yamaguchi
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Craig T Morita
- Department of Internal Medicine and the Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Veterans Affairs Health Care System, Iowa City, IA, United States
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki, Japan.,Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
17
|
An Update on the Molecular Basis of Phosphoantigen Recognition by Vγ9Vδ2 T Cells. Cells 2020; 9:cells9061433. [PMID: 32527033 PMCID: PMC7348870 DOI: 10.3390/cells9061433] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 01/29/2023] Open
Abstract
About 1-5% of human blood T cells are Vγ9Vδ2 T cells. Their hallmark is the expression of T cell antigen receptors (TCR) whose γ-chains contain a rearrangement of Vγ9 with JP (TRGV9JP or Vγ2Jγ1.2) and are paired with Vδ2 (TRDV2)-containing δ-chains. These TCRs respond to phosphoantigens (PAg) such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which is found in many pathogens, and isopentenyl pyrophosphate (IPP), which accumulates in certain tumors or cells treated with aminobisphosphonates such as zoledronate. Until recently, these cells were believed to be restricted to primates, while no such cells are found in rodents. The identification of three genes pivotal for PAg recognition encoding for Vγ9, Vδ2, and butyrophilin (BTN) 3 in various non-primate species identified candidate species possessing PAg-reactive Vγ9Vδ2 T cells. Here, we review the current knowledge of the molecular basis of PAg recognition. This not only includes human Vγ9Vδ2 T cells and the recent discovery of BTN2A1 as Vγ9-binding protein mandatory for the PAg response but also insights gained from the identification of functional PAg-reactive Vγ9Vδ2 T cells and BTN3 in the alpaca and phylogenetic comparisons. Finally, we discuss models of the molecular basis of PAg recognition and implications for the development of transgenic mouse models for PAg-reactive Vγ9Vδ2 T cells.
Collapse
|
18
|
Alpaca ( Vicugna pacos), the first nonprimate species with a phosphoantigen-reactive Vγ9Vδ2 T cell subset. Proc Natl Acad Sci U S A 2020; 117:6697-6707. [PMID: 32139608 DOI: 10.1073/pnas.1909474117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Vγ9Vδ2 T cells are a major γδ T cell population in the human blood expressing a characteristic Vγ9JP rearrangement paired with Vδ2. This cell subset is activated in a TCR-dependent and MHC-unrestricted fashion by so-called phosphoantigens (PAgs). PAgs can be microbial [(E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate, HMBPP] or endogenous (isopentenyl pyrophosphate, IPP) and PAg sensing depends on the expression of B7-like butyrophilin (BTN3A, CD277) molecules. IPP increases in some transformed or aminobisphosphonate-treated cells, rendering those cells a target for Vγ9Vδ2 T cells in immunotherapy. Yet, functional Vγ9Vδ2 T cells have only been described in humans and higher primates. Using a genome-based study, we showed in silico translatable genes encoding Vγ9, Vδ2, and BTN3 in a few nonprimate mammalian species. Here, with the help of new monoclonal antibodies, we directly identified a T cell population in the alpaca (Vicugna pacos), which responds to PAgs in a BTN3-dependent fashion and shows typical TRGV9- and TRDV2-like rearrangements. T cell receptor (TCR) transductants and BTN3-deficient human 293T cells reconstituted with alpaca or human BTN3 or alpaca/human BTN3 chimeras showed that alpaca Vγ9Vδ2 TCRs recognize PAg in the context of human and alpaca BTN3. Furthermore, alpaca BTN3 mediates PAg recognition much better than human BTN3A1 alone and this improved functionality mapped to the transmembrane/cytoplasmic part of alpaca BTN3. In summary, we found remarkable similarities but also instructive differences of PAg-recognition by human and alpaca, which help in better understanding the molecular mechanisms controlling the activation of this prominent population of γδ T cells.
Collapse
|