1
|
Hota S, Kumar M. Unveiling the impact of Leptospira TolC efflux protein on host tissue adherence, complement evasion, and diagnostic potential. Infect Immun 2024:e0041924. [PMID: 39392312 DOI: 10.1128/iai.00419-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
The TolC family protein of Leptospira is a type I outer membrane efflux protein. Phylogenetic analysis revealed significant sequence conservation among pathogenic Leptospira species (83%-98% identity) compared with intermediate and saprophytic species. Structural modeling indicated a composition of six β-strands and 10 α-helices arranged in two repeats, resembling bacterial outer membrane efflux proteins. Recombinant TolC (rTolC), expressed in a heterologous host and purified via Ni-NTA chromatography, maintained its secondary structural integrity, as verified by circular dichroism spectroscopy. Polyclonal antibodies against rTolC detected native TolC expression in pathogenic Leptospira but not in nonpathogenic ones. Immunoassays and detergent fractionation assays indicated surface localization of TolC. The rTolC's recognition by sera from leptospirosis-infected hosts across species suggests its utility as a diagnostic marker. Notably, rTolC demonstrated binding affinity for various extracellular matrix components, including collagen and chondroitin sulfate A, as well as plasma proteins such as factor H, C3b, and plasminogen, indicating potential roles in tissue adhesion and immune evasion. Functional assays demonstrated that rTolC-bound FH retained cofactor activity for C3b cleavage, highlighting TolC's role in complement regulation. The rTolC protein inhibited both the alternative and the classical pathway-mediated membrane attack complex (MAC) deposition in vitro. Blocking surface-expressed TolC on leptospires using specific antibodies reduced FH acquisition by Leptospira and increased MAC deposition on the spirochete. These findings indicate that TolC contributes to leptospiral virulence by promoting host tissue colonization and evading the immune response, presenting it as a potential target for diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Saswat Hota
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
2
|
The Mutation of Conservative Asp268 Residue in the Peptidoglycan-Associated Domain of the OmpA Protein Affects Multiple Acinetobacter baumannii Virulence Characteristics. Molecules 2019; 24:molecules24101972. [PMID: 31121924 PMCID: PMC6572160 DOI: 10.3390/molecules24101972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/07/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Acinetobacter baumannii is a nosocomial human pathogen of increasing concern due to its multidrug resistance profile. The outer membrane protein A (OmpA) is an abundant bacterial cell surface component involved in A. baumannii pathogenesis. It has been shown that the C-terminal domain of OmpA is located in the periplasm and non-covalently associates with the peptidoglycan layer via two conserved amino acids, thereby anchoring OmpA to the cell wall. Here, we investigated the role of one of the respective residues, D268 in OmpA of A. baumannii clinical strain Ab169, on its virulence characteristics by complementing the ΔompA mutant with the plasmid-borne ompAD268A allele. We show that while restoring the impaired biofilm formation of the ΔompA strain, the Ab169ompAD268A mutant tended to form bacterial filaments, indicating the abnormalities in cell division. Moreover, the Ab169 OmpA D268-mediated association to peptidoglycan was required for the manifestation of twitching motility, desiccation resistance, serum-induced killing, adhesion to epithelial cells and virulence in a nematode infection model, although it was dispensable for the uptake of β-lactam antibiotics by outer membrane vesicles. Overall, the results of this study demonstrate that the OmpA C-terminal domain-mediated association to peptidoglycan is critical for a number of virulent properties displayed by A. baumannii outside and within the host.
Collapse
|
3
|
Chaudhary A, Kamischke C, Leite M, Altura MA, Kinman L, Kulasekara H, Blanc MP, Wang G, Terhorst C, Miller SI. β-Barrel outer membrane proteins suppress mTORC2 activation and induce autophagic responses. Sci Signal 2018; 11:11/558/eaat7493. [PMID: 30482849 DOI: 10.1126/scisignal.aat7493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The outer membranes of Gram-negative bacteria and mitochondria contain proteins with a distinct β-barrel tertiary structure that could function as a molecular pattern recognized by the innate immune system. Here, we report that purified outer membrane proteins (OMPs) from different bacterial and mitochondrial sources triggered the induction of autophagy-related endosomal acidification, LC3B lipidation, and p62 degradation. Furthermore, OMPs reduced the phosphorylation and therefore activation of the multiprotein complex mTORC2 and its substrate Akt in macrophages and epithelial cells. The cell surface receptor SlamF8 and the DNA-protein kinase subunit XRCC6 were required for these OMP-specific responses in macrophages and epithelial cells, respectively. The addition of OMPs to mouse bone marrow-derived macrophages infected with Salmonella Typhimurium facilitated bacterial clearance. These data identify a specific cellular response mediated by bacterial and mitochondrial OMPs that can alter inflammatory responses and influence the killing of pathogens.
Collapse
Affiliation(s)
- Anu Chaudhary
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA.,Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Cassandra Kamischke
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Mara Leite
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Melissa A Altura
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Loren Kinman
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Hemantha Kulasekara
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Marie-Pierre Blanc
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Guoxing Wang
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel I Miller
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA. .,Department of Immunology, University of Washington, Seattle, WA 98195, USA.,Department of Medicine, University of Washington, Seattle, WA 98195, USA.,Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Park MJ, Ryu HS, Kim JS, Lee HK, Kang JS, Yun J, Kim SY, Lee MK, Hong JT, Kim Y, Han SB. Platycodon grandiflorum polysaccharide induces dendritic cell maturation via TLR4 signaling. Food Chem Toxicol 2014; 72:212-20. [DOI: 10.1016/j.fct.2014.07.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/05/2014] [Accepted: 07/08/2014] [Indexed: 11/25/2022]
|
5
|
A polysaccharide isolated from Pueraria lobata enhances maturation of murine dendritic cells. Int J Biol Macromol 2013; 52:184-91. [DOI: 10.1016/j.ijbiomac.2012.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 09/12/2012] [Accepted: 09/15/2012] [Indexed: 02/07/2023]
|
6
|
Shin BR, Kim HS, Yun MJ, Lee HK, Kim YJ, Kim SY, Lee MK, Hong JT, Kim Y, Han SB. Promoting effect of polysaccharide isolated from Mori fructus on dendritic cell maturation. Food Chem Toxicol 2013; 51:411-8. [DOI: 10.1016/j.fct.2012.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/17/2012] [Accepted: 10/18/2012] [Indexed: 01/18/2023]
|
7
|
Retinoid agonist Am80-enhanced neutrophil bactericidal activity arising from granulopoiesis in vitro and in a neutropenic mouse model. Blood 2012; 121:996-1007. [PMID: 23243275 DOI: 10.1182/blood-2012-06-436022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Despite advances in the therapeutic use of recombinant granulocyte colony-stimulating factor (G-CSF) to promote granulopoiesis of human hematopoietic stem cells (HSCs), neutropenia remains one of the most serious complications of cancer chemotherapy. We discovered that retinoid agonist Am80 (tamibarotene) is more potent than G-CSF in coordinating neutrophil differentiation and immunity development. Am80-induced neutrophils (AINs) either in vitro or in neutropenic mouse model displayed strong bactericidal activities, similar to those of human peripheral blood neutrophils (PBNs) or mouse peripheral blood neutrophils (MPBNs) but markedly greater than did G-CSF–induced neutrophils (GINs). In contrast to GINs but similar to PBNs, the enhanced bacterial killing by AINs accompanied both better granule maturation and greater coexpression of CD66 antigen with the integrin β2 subunit CD18. Consistently, anti-CD18 antibody neutralized Am80-induced bactericidal activities of AINs. These studies demonstrate that Am80 is more effective than G-CSF in promoting neutrophil differentiation and bactericidal activities, probably through coordinating the functional interaction of CD66 with CD18 to enhance the development of neutrophil immunity during granulopoiesis. Our findings herein suggest a molecular rationale for developing new therapy against neutropenia using Am80 as a cost-effective treatment option.
Collapse
|
8
|
Mahawar M, Atianand MK, Dotson RJ, Mora V, Rabadi SM, Metzger DW, Huntley JF, Harton JA, Malik M, Bakshi CS. Identification of a novel Francisella tularensis factor required for intramacrophage survival and subversion of innate immune response. J Biol Chem 2012; 287:25216-29. [PMID: 22654100 DOI: 10.1074/jbc.m112.367672] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is one of the deadliest agents of biological warfare and bioterrorism. Extremely high virulence of this bacterium is associated with its ability to dampen or subvert host innate immune response. The objectives of this study were to identify factors and understand the mechanisms of host innate immune evasion by F. tularensis. We identified and explored the pathogenic role of a mutant interrupted at gene locus FTL_0325, which encodes an OmpA-like protein. Our results establish a pathogenic role of FTL_0325 and its ortholog FTT0831c in the virulent F. tularensis SchuS4 strain in intramacrophage survival and suppression of proinflammatory cytokine responses. This study provides mechanistic evidence that the suppressive effects on innate immune responses are due specifically to these proteins and that FTL_0325 and FTT0831c mediate immune subversion by interfering with NF-κB signaling. Furthermore, FTT0831c inhibits NF-κB activity primarily by preventing the nuclear translocation of p65 subunit. Collectively, this study reports a novel F. tularensis factor that is required for innate immune subversion caused by this deadly bacterium.
Collapse
Affiliation(s)
- Manish Mahawar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Krishnan S, Prasadarao NV. Outer membrane protein A and OprF: versatile roles in Gram-negative bacterial infections. FEBS J 2012; 279:919-31. [PMID: 22240162 DOI: 10.1111/j.1742-4658.2012.08482.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Outer membrane protein A (OmpA) is an abundant protein of Escherichia coli and other enterobacteria and has a multitude of functions. Although the structural features and porin function of OmpA have been well studied, its role in the pathogenesis of various bacterial infections has emerged only during the last decade. The four extracellular loops of OmpA interact with a variety of host tissues for adhesion to and invasion of the cell and for evasion of host-defense mechanisms when inside the cell. This review describes how various regions present in the extracellular loops of OmpA contribute to the pathogenesis of neonatal meningitis induced by E. coli K1 and to many other functions. In addition, the function of OmpA-like proteins, such as OprF of Pseudomonas aeruginosa, is discussed.
Collapse
Affiliation(s)
- Subramanian Krishnan
- Division of Infectious Diseases, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, CA, USA
| | | |
Collapse
|
10
|
gp96 expression in neutrophils is critical for the onset of Escherichia coli K1 (RS218) meningitis. Nat Commun 2011; 2:552. [PMID: 22109526 PMCID: PMC3537828 DOI: 10.1038/ncomms1554] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 10/19/2011] [Indexed: 01/01/2023] Open
Abstract
Despite the fundamental function of neutrophils (PMNs) in innate immunity, their role in Escherichia coli K1 (EC-K1) induced meningitis is unexplored. Here we show that PMN-depleted mice are resistant to EC-K1 (RS218) meningitis. EC-K1 survives and multiplies in PMNs for which outer membrane protein A (OmpA) expression is essential. EC-K1infection of PMNs increases the cell surface expression of gp96, which acts as a receptor for bacterial entry. Suppression of gp96 expression in newborn mice prevents the onset of EC-K1 meningitis. Infection of PMNs with EC-K1 suppresses oxidative burst by down regulating rac1, rac2 and gp91phox transcription both in vitro and in vivo. The interaction of loop 2 of OmpA with gp96 is essential for EC-K1-mediated inhibition of oxidative burst. These results reveal that EC-K1 exploits surface expressed gp96 in PMNs to prevent oxidative burst for the onset of neonatal meningitis.
Collapse
|
11
|
Chen X, Song CH, Feng BS, Li TL, Li P, Zheng PY, Chen XM, Xing Z, Yang PC. Intestinal epithelial cell-derived integrin αβ6 plays an important role in the induction of regulatory T cells and inhibits an antigen-specific Th2 response. J Leukoc Biol 2011; 90:751-9. [PMID: 21724807 DOI: 10.1189/jlb.1210696] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Toleroge nic DCs and Tregs are believed to play a critical role in oral tolerance. However, the mechanisms of the generation of tolerogenic DCs and activation of Tregs in the gut remain poorly understood. This study aims to dissect the molecular mechanisms by which IECs and protein antigen induce functional tolerogenic DCs and Tregs. Expression of αvβ6 by gut epithelial cell-derived exosomes, its coupling with food antigen, and their relationship with the development of functional tolerogenic DCs and Tregs were examined by using in vitro and in vivo approaches. The results show that IECs up-regulated the integrin αvβ6 upon uptake of antigens. The epithelial cell-derived exosomes entrapped and transported αvβ6 and antigens to the extracellular environment. The uptake of antigens alone induced DCs to produce LTGFβ, whereas exosomes carrying αvβ6/antigen resulted in the production of abundant, active TGF-β in DCs that conferred to DCs the tolerogenic properties. Furthermore, αvβ6/OVA-carrying, exosome-primed DCs were found to promote the production of active TGF-β in Tregs. Thus, in vivo administration of αvβ6/OVA-laden exosomes induced the generation of Tregs and suppressed skewed Th2 responses toward food antigen in the intestine. Our study provides important molecular insights into the molecular mechanisms of Treg development by demonstrating an important role of IEC-derived exosomes carrying αvβ6 and food antigen in the induction of tolerogenic DCs and antigen-specific Tregs.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mittal R, Krishnan S, Gonzalez-Gomez I, Prasadarao NV. Deciphering the roles of outer membrane protein A extracellular loops in the pathogenesis of Escherichia coli K1 meningitis. J Biol Chem 2011; 286:2183-93. [PMID: 21071448 PMCID: PMC3023514 DOI: 10.1074/jbc.m110.178236] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/05/2010] [Indexed: 11/06/2022] Open
Abstract
Outer membrane protein A (OmpA) has been implicated as an important virulence factor in several gram-negative bacterial infections such as Escherichia coli K1, a leading cause of neonatal meningitis associated with significant mortality and morbidity. In this study, we generated E. coli K1 mutants that express OmpA in which three or four amino acids from various extracellular loops were changed to alanines, and we examined their ability to survive in several immune cells. We observed that loop regions 1 and 2 play an important role in the survival of E. coli K1 inside neutrophils and dendritic cells, and loop regions 1 and 3 are needed for survival in macrophages. Concomitantly, E. coli K1 mutants expressing loop 1 and 2 mutations were unable to cause meningitis in a newborn mouse model. Of note, mutations in loop 4 of OmpA enhance the severity of the pathogenesis by allowing the pathogen to survive better in circulation and to produce high bacteremia levels. These results demonstrate, for the first time, the roles played by different regions of extracellular loops of OmpA of E. coli K1 in the pathogenesis of meningitis and may help in designing effective preventive strategies against this deadly disease.
Collapse
Affiliation(s)
- Rahul Mittal
- From the Division of Infectious Diseases, Department of Pediatrics, and
| | | | | | - Nemani V. Prasadarao
- From the Division of Infectious Diseases, Department of Pediatrics, and
- Surgery
- Saban Research Institute, Childrens Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| |
Collapse
|
13
|
Švajger U, Obermajer N, Jeras M. Novel Findings in Drug-Induced Dendritic Cell Tolerogenicity. Int Rev Immunol 2010; 29:574-607. [DOI: 10.3109/08830185.2010.522280] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Mittal R, Gonzalez-Gomez I, Prasadarao NV. Escherichia coli K1 promotes the ligation of CD47 with thrombospondin-1 to prevent the maturation of dendritic cells in the pathogenesis of neonatal meningitis. THE JOURNAL OF IMMUNOLOGY 2010; 185:2998-3006. [PMID: 20675593 DOI: 10.4049/jimmunol.1001296] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) are professional APCs providing a critical link between adaptive and innate immune responses. Our previous studies have shown that Escherichia coli K1 internalization of myeloid DCs suppressed the maturation of the cells for which outer membrane protein A (OmpA) expression is essential. In this study, we demonstrate that infection of DCs with OmpA(+) E. coli significantly upregulates the expression of CD47, an integrin-associated protein, and its natural ligand thrombospondin 1 (TSP-1). Pretreatment of DCs with anti-CD47 blocking Ab or knocking down the expression of CD47 or TSP-1, but not signal regulatory protein alpha by small interfering RNA, abrogated the suppressive effect of E. coli K1. Ligation of CD47 with a mAb prevented the maturation and cytokine production by DCs upon stimulation with LPS similar to the inhibitory effect induced by OmpA(+) E. coli. In agreement with the in vitro studies, suppression of CD47 or TSP-1 expression in newborn mice by a novel in vivo small interfering RNA technique protected the animals against E. coli K1 meningitis. Reconstitution of CD47 knockdown mice with CD47(+) DCs renders the animals susceptible to meningitis by E. coli K1, substantiating the role of CD47 expression in DCs for the occurrence of meningitis. Our results demonstrate a role for CD47 for the first time in bacterial pathogenesis and may be a novel target for designing preventive approaches for E. coli K1 meningitis.
Collapse
Affiliation(s)
- Rahul Mittal
- Division of Infectious Diseases, Saban Research Institute, Children's Hospital, Los Angeles, CA 90027, USA
| | | | | |
Collapse
|
15
|
Mittal R, Gonzalez-Gomez I, Panigrahy A, Goth K, Bonnet R, Prasadarao NV. IL-10 administration reduces PGE-2 levels and promotes CR3-mediated clearance of Escherichia coli K1 by phagocytes in meningitis. ACTA ACUST UNITED AC 2010; 207:1307-19. [PMID: 20498022 PMCID: PMC2882833 DOI: 10.1084/jem.20092265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ineffectiveness of antibiotics in treating neonatal Escherichia coli K1 meningitis and the emergence of antibiotic-resistant strains evidently warrants new prevention strategies. We observed that administration of interleukin (IL)-10 during high-grade bacteremia clears antibiotic-sensitive and -resistant E. coli from blood of infected mice. Micro-CT studies of brains from infected animals displayed gross morphological changes similar to those observed in infected human neonates. In mice, IL-10, but not antibiotic or anti-TNF antibody treatment prevented brain damage caused by E. coli. IL-10 administration elevated CR3 expression in neutrophils and macrophages of infected mice, whereas infected and untreated mice displayed increased expression of FcγRI and TLR2. Neutrophils or macrophages pretreated with IL-10 ex vivo exhibited a significantly greater microbicidal activity against E. coli compared with cells isolated from wild-type or IL-10−/− mice. The protective effect of IL-10 was abrogated when CR3 was knocked-down in vivo by siRNA. The increased expression of CR3 in phagocytes was caused by inhibition of prostaglandin E-2 (PGE-2) levels, which were significantly increased in neutrophils and macrophages upon E. coli infection. These findings describe a novel modality of IL-10–mediated E. coli clearance by diverting the entry of bacteria via CR3 and preventing PGE-2 formation in neonatal meningitis.
Collapse
Affiliation(s)
- Rahul Mittal
- Division of Infectious Diseases, Department of Pathology, Childrens Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, CA 90027, USA
| | | | | | | | | | | |
Collapse
|
16
|
Li X, Xu W, Chen J. Polysaccharide purified from Polyporus umbellatus (Per) Fr induces the activation and maturation of murine bone-derived dendritic cells via toll-like receptor 4. Cell Immunol 2010; 265:50-6. [DOI: 10.1016/j.cellimm.2010.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/08/2010] [Accepted: 07/08/2010] [Indexed: 12/29/2022]
|
17
|
Croxen MA, Finlay BB. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 2009; 8:26-38. [DOI: 10.1038/nrmicro2265] [Citation(s) in RCA: 668] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|