1
|
Anderko RR, DePuyt AE, Bronson R, Bullotta AC, Aga E, Bosch RJ, Jones RB, Eron JJ, Mellors JW, Gandhi RT, McMahon DK, Macatangay BJ, Rinaldo CR, Mailliard RB. Persistence of a Skewed Repertoire of NK Cells in People with HIV-1 on Long-Term Antiretroviral Therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1564-1578. [PMID: 38551350 PMCID: PMC11073922 DOI: 10.4049/jimmunol.2300672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
HIV-1 infection greatly alters the NK cell phenotypic and functional repertoire. This is highlighted by the expansion of a rare population of FcRγ- NK cells exhibiting characteristics of traditional immunologic memory in people with HIV (PWH). Although current antiretroviral therapy (ART) effectively controls HIV-1 viremia and disease progression, its impact on HIV-1-associated NK cell abnormalities remains unclear. To address this, we performed a longitudinal analysis detailing conventional and memory-like NK cell characteristics in n = 60 PWH during the first 4 y of ART. Throughout this regimen, a skewed repertoire of cytokine unresponsive FcRγ- memory-like NK cells persisted and accompanied an overall increase in NK surface expression of CD57 and KLRG1, suggestive of progression toward immune senescence. These traits were linked to elevated serum inflammatory biomarkers and increasing Ab titers to human CMV, with human CMV viremia detected in approximately one-third of PWH at years 1-4 of ART. Interestingly, 40% of PWH displayed atypical NK cell subsets, representing intermediate stages of NK-poiesis based on single-cell multiomic trajectory analysis. Our findings indicate that NK cell irregularities persist in PWH despite long-term ART, underscoring the need to better understand the causative mechanisms that prevent full restoration of immune health in PWH.
Collapse
Affiliation(s)
- Renee R. Anderko
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Allison E. DePuyt
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Rhianna Bronson
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Arlene C. Bullotta
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Evgenia Aga
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ronald J. Bosch
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - R. Brad Jones
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Joseph J. Eron
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John W. Mellors
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rajesh T. Gandhi
- Infectious Disease Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Deborah K. McMahon
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bernard J. Macatangay
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Charles R. Rinaldo
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robbie B. Mailliard
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Araya R, Men S, Uekusa Y, Yu Z, Kikuchi H, Daitoku K, Minakawa M, Kawaguchi S, Furukawa KI, Oshima Y, Imaizumi T, Seya K. The inhibitory effect of DIF-3 on polyinosinic-polycytidylic acid-induced innate immunity activation in human cerebral microvascular endothelial cells. J Pharmacol Sci 2024; 154:157-165. [PMID: 38395516 DOI: 10.1016/j.jphs.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
For the treatment and prevention of autoinflammatory diseases, it is essential to develop the drug, regulating the innate immune system. Although differentiation-inducing factor (DIF) derivatives, extracted from the cellular slime mold, Dictyostelium discoideum, exhibit immunomodulatory effects, their effects on the regulation of innate immunity in brain are unknown. In this study, we used the human cerebral microvascular endothelial cell line, hCMEC/D3, to investigate the effects of DIF derivatives on the generation of C-X-C motif chemokine (CXCL) 10 and interferon (IFN)-β induced by polyinosinic-polycytidylic acid (poly IC). DIF-3 (1-10 μM), but not DIF-1 and DIF-2, dose-dependently inhibited the biosynthesis of not only CXCL10 but also CXCL16 and C-C motif chemokine 2 induced by poly IC. DIF-3 also strongly decreased IFN-β mRNA expression and protein release from the cells induced by poly IC through the prohibition of p65, a subtype of NF-ĸB, not interferon regulatory transcription factor 3 phosphorylation. In the docking simulation study, we confirmed that DIF-3 had a high affinity to p65. These results suggest that DIF-3 regulates the innate immune system by inhibiting TLR3/IFN-β signaling axis through the NF-ĸB phosphorylation inhibition.
Collapse
Affiliation(s)
- Ryusei Araya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Shihu Men
- Department of Thoracic and Cardiovascular Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Yoshinori Uekusa
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Zaiqiang Yu
- Department of Thoracic and Cardiovascular Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Haruhisa Kikuchi
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kazuyuki Daitoku
- Department of Thoracic and Cardiovascular Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Masahito Minakawa
- Department of Thoracic and Cardiovascular Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Shogo Kawaguchi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Ken-Ichi Furukawa
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Yoshiteru Oshima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-yama, Aoba-ku, Sendai, 980-8578, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| |
Collapse
|
3
|
Han B, He J, Chen Q, Yuan M, Zeng X, Li Y, Zeng Y, He M, Zhou Q, Feng D, Ma D. ELFN1-AS1 promotes GDF15-mediated immune escape of colorectal cancer from NK cells by facilitating GCN5 and SND1 association. Discov Oncol 2023; 14:56. [PMID: 37147528 PMCID: PMC10163203 DOI: 10.1007/s12672-023-00675-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
The ability of colorectal cancer (CRC) cells to escape from natural killer (NK) cell immune surveillance leads to anti-tumor treatment failure. The long non-coding RNA (lncRNA) ELFN1-AS1 is aberrantly expressed in multiple tumors suggesting a role as an oncogene in cancer development. However, whether ELFN1-AS1 regulates immune surveillance in CRC is unclear. Here, we determined that ELFN1-AS1 enhanced the ability of CRC cells to escape from NK cell surveillance in vitro and in vivo. In addition, we confirmed that ELFN1-AS1 in CRC cells attenuated the activity of NK cell by down-regulating NKG2D and GZMB via the GDF15/JNK pathway. Furthermore, mechanistic investigations demonstrated that ELFN1-AS1 enhanced the interaction between the GCN5 and SND1 protein and this influenced H3k9ac enrichment at the GDF15 promotor to stimulate GDF15 production in CRC cells. Taken together, our findings indicate that ELFN1-AS1 in CRC cells suppresses NK cell cytotoxicity and ELFN1-AS1 is a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Bin Han
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Jinsong He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qing Chen
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Min Yuan
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xi Zeng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yuanting Li
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yan Zeng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Meibo He
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Qilin Zhou
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Dan Feng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China.
| | - Daiyuan Ma
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
4
|
Kim SJ, Lee J, Choi WS, Kim HJ, Kim MY, Kim SC, Kim HS. Ginsenoside F1 Attenuates Eosinophilic Inflammation in Chronic Rhinosinusitis by Promoting NK Cell Function. J Ginseng Res 2021; 45:695-705. [PMID: 34764724 PMCID: PMC8569323 DOI: 10.1016/j.jgr.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Background Ginsenosides have beneficial effects on several airway inflammatory disorders primarily through glucocorticosteroid-like anti-inflammatory activity. Among inflammatory cells, eosinophils play a major pathogenic role in conferring a risk of severe refractory diseases including chronic rhinosinusitis (CRS). However, the role of ginsenosides in reducing eosinophilic inflammation and CRS pathogenesis is unexplored. Methods We investigated the therapeutic efficacy and underlying mechanism of ginsenoside F1 (G-F1) in comparison with those of dexamethasone, a representative glucocorticosteroid, in a murine model of CRS. The effects of G-F1 or dexamethasone on sinonasal abnormalities and infiltration of eosinophils and mast cells were evaluated by histological analyses. The changes in inflammatory cytokine levels in sinonasal tissues, macrophages, and NK cells were assessed by qPCR, ELISA, and immunohistochemistry. Results We found that G-F1 significantly attenuated eosinophilic inflammation, mast cell infiltration, epithelial hyperplasia, and mucosal thickening in the sinonasal mucosa of CRS mice. Moreover, G-F1 reduced the expression of IL-4 and IL-13, as well as hematopoietic prostaglandin D synthase required for prostaglandin D2 production. This therapeutic efficacy was associated with increased NK cell function, without suppression of macrophage inflammatory responses. In comparison, dexamethasone potently suppressed macrophage activation. NK cell depletion nullified the therapeutic effects of G-F1, but not dexamethasone, in CRS mice, supporting a causal link between G-F1 and NK cell activity. Conclusion Our results suggest that potentiating NK cell activity, for example with G-F1, is a promising strategy for resolving eosinophilic inflammation in CRS.
Collapse
Affiliation(s)
- So Jeong Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jinju Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Woo Sun Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Stem Cell Immunomodulation Research Center (SCIRC), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyo Jeong Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Stem Cell Immunomodulation Research Center (SCIRC), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi-Yeon Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hun Sik Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Stem Cell Immunomodulation Research Center (SCIRC), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Jaggi U, Matundan HH, Yu J, Hirose S, Mueller M, Wormley FL, Ghiasi H. Essential role of M1 macrophages in blocking cytokine storm and pathology associated with murine HSV-1 infection. PLoS Pathog 2021; 17:e1009999. [PMID: 34653236 PMCID: PMC8550391 DOI: 10.1371/journal.ppat.1009999] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/27/2021] [Accepted: 10/01/2021] [Indexed: 12/26/2022] Open
Abstract
Ocular HSV-1 infection is a major cause of eye disease and innate and adaptive immunity both play a role in protection and pathology associated with ocular infection. Previously we have shown that M1-type macrophages are the major and earliest infiltrates into the cornea of infected mice. We also showed that HSV-1 infectivity in the presence and absence of M2-macrophages was similar to wild-type (WT) control mice. However, it is not clear whether the absence of M1 macrophages plays a role in protection and disease in HSV-1 infected mice. To explore the role of M1 macrophages in HSV-1 infection, we used mice lacking M1 activation (M1-/- mice). Our results showed that macrophages from M1-/- mice were more susceptible to HSV-1 infection in vitro than were macrophages from WT mice. M1-/- mice were highly susceptible to ocular infection with virulent HSV-1 strain McKrae, while WT mice were refractory to infection. In addition, M1-/- mice had higher virus titers in the eyes than did WT mice. Adoptive transfer of M1 macrophages from WT mice to M1-/- mice reduced death and rescued virus replication in the eyes of infected mice. Infection of M1-/- mice with avirulent HSV-1 strain KOS also increased ocular virus replication and eye disease but did not affect latency-reactivation seen in WT control mice. Severity of virus replication and eye disease correlated with significantly higher inflammatory responses leading to a cytokine storm in the eyes of M1-/- infected mice that was not seen in WT mice. Thus, for the first time, our study illustrates the importance of M1 macrophages specifically in primary HSV-1 infection, eye disease, and survival but not in latency-reactivation. Macrophages circulating in the blood or present in different tissues constitute an important barrier against infection. We previously showed that the absence of M2 macrophages does not impact HSV-1 infectivity in vivo. However, in this study we demonstrated an essential role of M1 macrophages in protection from primary HSV-1 replication, death, and eye disease but not in latency-reactivation.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Jack Yu
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Satoshi Hirose
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Mathias Mueller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Floyd L. Wormley
- Department of Biology, Texas Christian University, Fort Worth, Texas, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Eberlein J, Davenport B, Nguyen TT, Victorino F, Jhun K, van der Heide V, Kuleshov M, Ma'ayan A, Kedl R, Homann D. Chemokine Signatures of Pathogen-Specific T Cells I: Effector T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:2169-2187. [PMID: 32948687 DOI: 10.4049/jimmunol.2000253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
Abstract
The choreography of complex immune responses, including the priming, differentiation, and modulation of specific effector T cell populations generated in the immediate wake of an acute pathogen challenge, is in part controlled by chemokines, a large family of mostly secreted molecules involved in chemotaxis and other patho/physiological processes. T cells are both responsive to various chemokine cues and a relevant source for certain chemokines themselves; yet, the actual range, regulation, and role of effector T cell-derived chemokines remains incompletely understood. In this study, using different in vivo mouse models of viral and bacterial infection as well as protective vaccination, we have defined the entire spectrum of chemokines produced by pathogen-specific CD8+ and CD4+T effector cells and delineated several unique properties pertaining to the temporospatial organization of chemokine expression patterns, synthesis and secretion kinetics, and cooperative regulation. Collectively, our results position the "T cell chemokine response" as a notably prominent, largely invariant, yet distinctive force at the forefront of pathogen-specific effector T cell activities and establish novel practical and conceptual approaches that may serve as a foundation for future investigations into the role of T cell-produced chemokines in infectious and other diseases.
Collapse
Affiliation(s)
- Jens Eberlein
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Bennett Davenport
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tom T Nguyen
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Francisco Victorino
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kevin Jhun
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Verena van der Heide
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maxim Kuleshov
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ross Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Dirk Homann
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; .,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
7
|
Kim KS, Park KS. XRP44X Enhances the Cytotoxic Activity of Natural Killer Cells by Activating the c-JUN N-Terminal Kinase Signaling Pathway. Dev Reprod 2020; 24:53-62. [PMID: 32411918 PMCID: PMC7201060 DOI: 10.12717/dr.2020.24.1.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 11/30/2022]
Abstract
Natural killer (NK) cells are innate lymphocytes that play an essential role in
preventing cancer development by performing immune surveillance to eradicate
abnormal cells. Since ex vivo expanded NK cells have cytotoxic
activity against various cancers, including breast cancers, their clinical
potential as immune-oncogenic therapeutics has been widely investigated. Here,
we report that the pyrazole chemical XRP44X, an inhibitor of Ras/ERK activation
of ELK3, stimulates NK-92MI cells to enhance cytotoxic activity against breast
cancer cells. Under XRP44X stimulation, NK cells did not show notable apoptosis
or impaired cell cycle progression. We demonstrated that XRP44X enhanced
interferon gamma expression in NK-92MI cells. We also elucidated that
potentiation of the cytotoxic activity of NK-92MI cells by XRP44X is induced by
activation of the c-JUN N-terminal kinase (JNK) signaling pathway. Our data
provide insight into the evaluation of XRP44X as an immune stimulant and that
XRP44X is a potential candidate compound for the therapeutic development of NK
cells.
Collapse
Affiliation(s)
- Kwang-Soo Kim
- Dept. of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
| | - Kyung-Soon Park
- Dept. of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
| |
Collapse
|
8
|
Seo W, Shimizu K, Kojo S, Okeke A, Kohwi-Shigematsu T, Fujii SI, Taniuchi I. Runx-mediated regulation of CCL5 via antagonizing two enhancers influences immune cell function and anti-tumor immunity. Nat Commun 2020; 11:1562. [PMID: 32218434 PMCID: PMC7099032 DOI: 10.1038/s41467-020-15375-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
CCL5 is a unique chemokine with distinct stage and cell-type specificities for regulating inflammation, but how these specificities are achieved and how CCL5 modulates immune responses is not well understood. Here we identify two stage-specific enhancers: the proximal enhancer mediates the constitutive CCL5 expression during the steady state, while the distal enhancer located 1.35 Mb from the promoter induces CCL5 expression in activated cells. Both enhancers are antagonized by RUNX/CBFβ complexes, and SATB1 further mediates the long-distance interaction of the distal enhancer with the promoter. Deletion of the proximal enhancer decreases CCL5 expression and augments the cytotoxic activity of tissue-resident T and NK cells, which coincides with reduced melanoma metastasis in mouse models. By contrast, increased CCL5 expression resulting from RUNX3 mutation is associated with more tumor metastasis in the lung. Collectively, our results suggest that RUNX3-mediated CCL5 repression is critical for modulating anti-tumor immunity. CCL5 is an important chemokine for modulation of inflammatory responses, but how CCL5 expression is regulated is still unclear. Here the authors show that the CCL5 locus contains two enhancers, with the proximal enhancer being responsible for homeostatic expression and the distal enhancer enforcing inducibility, while both enhancers are modulated by RUNX3.
Collapse
Affiliation(s)
- Wooseok Seo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan. .,Department of Immunology, Nagoya University Graduate School of Medicine, Showa-ku Tsurumai-Cho 65, Nagoya, 466-8550, Japan.
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Arinze Okeke
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | | | - Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
9
|
Shan J, Chouchane A, Mokrab Y, Saad M, Boujassoum S, Sayaman RW, Ziv E, Bouaouina N, Remadi Y, Gabbouj S, Roelands J, Ma X, Bedognetti D, Chouchane L. Genetic Variation in CCL5 Signaling Genes and Triple Negative Breast Cancer: Susceptibility and Prognosis Implications. Front Oncol 2019; 9:1328. [PMID: 31921621 PMCID: PMC6915105 DOI: 10.3389/fonc.2019.01328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for ~15–20% of breast cancer (BC) and has a higher rate of early relapse and mortality compared to other subtypes. The Chemokine (C-C motif) ligand 5 (CCL5) and its signaling pathway have been linked to TNBC. We aimed to investigate the susceptibility and prognostic implications of genetic variation in CCL5 signaling genes in TNBC in the present study. We characterized variants in CCL5 and that of six other CCL5 signaling genes (CCND1, ZMIZ1, CASP8, NOTCH2, MAP3K21, and HS6ST3) among 1,082 unrelated Tunisian subjects (544 BC patients, including 196 TNBC, and 538 healthy controls), assessed the association of the variants with BC-specific overall survival (OVS) and progression-free survival (PFS), and correlated CCL5 mRNA and serum levels with CCL5 genotypes. We found a highly significant association between the CCND1 rs614367-TT genotype (OR = 5.14; P = 0.004) and TNBC risk, and identified a significant association between the rs614367-T allele and decreased PFS in TNBC. A decreased risk of lymph node metastasis was associated with the MAP3K21 rs1294255-C allele, particularly in rs1294255-GC (OR = 0.47; P = 0.001). CCL5 variants (rs2107538 and rs2280789) were linked to CCL5 serum and mRNA levels. In the TCGA TNBC/Basal-like cohort the MAP3K21 rs1294255-G allele was associated with a decreased OVS. High expression of CCL5 in breast tumors was significantly associated with an increased OVS in all BC patients, but particularly in TNBC/Basal-like patients. In conclusion, genetic variation in CCL5 signaling genes may predict not only TNBC risk but also disease aggressiveness.
Collapse
Affiliation(s)
- Jingxuan Shan
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, United States.,Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States.,Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Aziz Chouchane
- Faculta di Medicina e Chirurgia, Universita Cattolica del Sacro Cuero, Rome, Italy
| | - Younes Mokrab
- Translational Genetics and Bioinformatics Section, Research Division, Sidra Medicine, Doha, Qatar
| | - Mohamad Saad
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Salha Boujassoum
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Rosalyn W Sayaman
- Department of Population Sciences, City of Hope, Duarte, CA, United States.,Department of Laboratory Medicine at UCSF, San Francisco, CA, United States.,Helen Diller Family Comprehensive Cancer Center at UCSF, San Francisco, CA, United States
| | - Elad Ziv
- Helen Diller Family Comprehensive Cancer Center at UCSF, San Francisco, CA, United States.,Division of General Internal Medicine, Department of Medicine, Institute for Human Genetics at UCSF, San Francisco, CA, United States
| | - Noureddine Bouaouina
- Service de Cancérologie Radiothérapie, CHU Farhat Hached, Sousse, Tunisia.,Laboratoire d'Immuno-Oncologie Moléculaire, Faculté de Médecine de Monastir, Université de Monastir, Monastir, Tunisia
| | - Yasmine Remadi
- Laboratoire d'Immuno-Oncologie Moléculaire, Faculté de Médecine de Monastir, Université de Monastir, Monastir, Tunisia
| | - Sallouha Gabbouj
- Laboratoire d'Immuno-Oncologie Moléculaire, Faculté de Médecine de Monastir, Université de Monastir, Monastir, Tunisia
| | - Jessica Roelands
- Tumor Biology Section, Research Division, Sidra Medicine, Doha, Qatar
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States
| | - Davide Bedognetti
- Tumor Biology Section, Research Division, Sidra Medicine, Doha, Qatar
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, United States.,Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States.,Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
10
|
Arnold MG, Gokulan K, Doerge DR, Vanlandingham M, Cerniglia CE, Khare S. A single or short time repeated arsenic oral exposure in mice impacts mRNA expression for signaling and immunity related genes in the gut. Food Chem Toxicol 2019; 132:110597. [PMID: 31233874 DOI: 10.1016/j.fct.2019.110597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/23/2019] [Accepted: 06/17/2019] [Indexed: 02/08/2023]
Abstract
Arsenic is prevalent in contaminated drinking water and affects more than 140 million people in 50 countries. While the wide-ranging effects of arsenic on neurological development and cancer draw the majority of concern, arsenic's effects on the gut mucosa-associated immune system are often overlooked. In this study, we show that 24 h after a single dose [low dose (50 μg/kg bw), medium dose (100 μg/kg bw) or high dose (200 μg/kg bw)] of arsenic by oral gavage, mice show significantly reduced gut mucosa-associated mRNA expression for the key genes involved in the signaling pathways central to immune responses, such as Nuclear factor κB (NFκB), Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), p38 and Myeloid differentiation protein 88-dependent (Myd88) pathways. Additionally, mRNA expression of apoptosis, inflammasomes and inflammatory response genes are significantly downregulated in the animals exposed to arsenic. Comparisons of time-dependent effects (24 h vs 48 h) from low dose arsenic exposed animals showed a significant shift in expression of Myd88 alone, suggesting that the down regulation was sustained for the key genes/signaling pathway. An extended eight-day exposure to arsenic showed a decreased state of immune preparedness, though not as diminished as seen in the single dose exposure.
Collapse
Affiliation(s)
- Matthew G Arnold
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Michelle Vanlandingham
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| |
Collapse
|
11
|
Shi Q, Ding Y, Yang Y, Liu S, Wang J, Luo B. Bioinformatic analysis of miRNA–mRNA interaction associated with LMP2A gene in nasopharyngeal carcinoma. Future Virol 2019. [DOI: 10.2217/fvl-2018-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The purpose of the study was to construct miRNA–mRNA network associated with LMP2A in nasopharyngeal carcinoma (NPC). Materials & methods: The dataset GSE53914, GSE12452 and GSE26596 were downloaded from Gene Expression Omnibus and differentially expressed genes (DEGs) identified by GEO2R. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed by ClusterProfiler R package. Protein–protein interaction network and mRNA–miRNA network associated with LMP2A were constructed. Hub genes were identified by Cytoscape. Results: The 135 DEGs associated with LMP2A were identified in NPC. Gene ontology function analysis showed DEGs were significantly enriched in cell–cell adhesion and NF-κB pathway. The hub genes were related to cell cycle. miRNA–mRNA network associated with LMP2A was constructed. Conclusion: The network may provide a way to explore the function of LMP2A in NPC by miRNA.
Collapse
Affiliation(s)
- Qianzhu Shi
- Department of Pathogeny Biology, Qingdao University Medical College, 38 Dengzhou Road, Shandong, 266021, China
| | - Yu Ding
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, 59 Haier Road, Shandong, 266003, China
| | - Yang Yang
- Department of Pathogeny Biology, Qingdao University Medical College, 38 Dengzhou Road, Shandong, 266021, China
| | - Shuzhen Liu
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shandong, 266003, China
| | - Jiayi Wang
- Department of Pathogeny Biology, Qingdao University Medical College, 38 Dengzhou Road, Shandong, 266021, China
| | - Bing Luo
- Department of Pathogeny Biology, Qingdao University Medical College, 38 Dengzhou Road, Shandong, 266021, China
| |
Collapse
|
12
|
Li H, Liu Y, Li J, Liu Y, Dong L, Yin Y, Yu Y, Zhou J, Zhang L, Lu X, Chen Z, Zuo D. Mannan-binding lectin attenuates acetaminophen-induced hepatotoxicity by regulating CYP2E1 expression via ROS-dependent JNK/SP1 pathway. Eur J Immunol 2019; 49:564-575. [PMID: 30706943 DOI: 10.1002/eji.201847830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/31/2018] [Accepted: 01/31/2019] [Indexed: 01/08/2023]
Abstract
Mannan-binding lectin (MBL) acts as a soluble pattern recognition molecule in the innate immune system, which is primarily produced by the liver. MBL deficiency occurs with high frequency in the population and is reported to be associated with susceptibility to several liver diseases. In the present study, we investigated the pathophysiological role of MBL in acetaminophen (APAP)-induced hepatotoxicity. After APAP treatment, MBL-deficient (MBL-/- ) mice had significantly higher mortality and aggravated hepatic necrosis as well as elevated serum lactate dehydrogenase and alanine aminotransferase levels compared to control mice. The enhanced hepatotoxicity in MBL-/- mice was associated with increased concentration of APAP toxic metabolisms. Furthermore, we demonstrated here that genetic ablation of MBL resulted in excessive reactive oxygen species (ROS) production and enhanced c-Jun N-terminal kinase (JNK) activation, leading to up-regulated specificity protein 1 (SP1) nuclear expression, thus promoted CYP2E1 hepatic expression and consequently exacerbated APAP-induced liver injury in mice. Importantly, we have validated that MBL protected against APAP toxicity in human HepaRG cells in vitro with the same mechanism. Our study revealed an unexpected function of MBL in drug metabolism, thus providing new insight into the drug-induced liver injury in patients with MBL deficiency.
Collapse
Affiliation(s)
- Huifang Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Department of Pathology, Anhui Chest Hospital, Hefei, China
| | - Yan Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Junru Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Rheumatology and Immunology, Puyang People's Hospital, Puyang, China
| | - Yunzhi Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lijun Dong
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yue Yin
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yu Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liyun Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhengliang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| | - Daming Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Gao M, Wang K, Yang M, Meng F, Lu R, Zhuang H, Cheng G, Wang X. Transcriptome Analysis of Bronchoalveolar Lavage Fluid From Children With Mycoplasma pneumoniae Pneumonia Reveals Natural Killer and T Cell-Proliferation Responses. Front Immunol 2018; 9:1403. [PMID: 29967623 PMCID: PMC6015898 DOI: 10.3389/fimmu.2018.01403] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/06/2018] [Indexed: 12/31/2022] Open
Abstract
Background Mycoplasma pneumoniae pneumonia (MPP) is one of the most common community-acquired pneumonia; this study is to explore the immune-pathogenesis of children MPP. Methods Next-generation transcriptome sequencing was performed on the bronchoalveolar lavage fluid cells from six children with MPP and three children with foreign body aspiration as control. Some of the results had been validated by quantitative real-time PCR in an expanded group of children. Results Results revealed 810 differentially expressed genes in MPP group comparing to control group, of which 412 genes including RLTPR, CARD11 and RASAL3 were upregulated. These upregulated genes were mainly enriched in mononuclear cell proliferation and signaling biological processes. Kyoto encyclopedia of genes and genomes pathway analysis revealed that hematopoietic cell linage pathway, natural killer cell-mediated cytotoxicity pathway, and T cell receptor signaling pathway were significantly upregulated in MPP children. In addition, significant alternative splicing events were found in GNLY and SLC11A1 genes, which may cause the differential expressions of these genes. Conclusion Our results suggest that NK and CD8+ T cells are over activated and proliferated in MPP children; the upregulated IFNγ, PRF1, GZMB, FASL, and GNLY may play important roles in the pathogenesis of children MPP.
Collapse
Affiliation(s)
- Man Gao
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Kuo Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Mingyue Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fanzheng Meng
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Ruihua Lu
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Huadong Zhuang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Genhong Cheng
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Microbiology Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Xiaosong Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Bongen E, Vallania F, Utz PJ, Khatri P. KLRD1-expressing natural killer cells predict influenza susceptibility. Genome Med 2018; 10:45. [PMID: 29898768 PMCID: PMC6001128 DOI: 10.1186/s13073-018-0554-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/24/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Influenza infects tens of millions of people every year in the USA. Other than notable risk groups, such as children and the elderly, it is difficult to predict what subpopulations are at higher risk of infection. Viral challenge studies, where healthy human volunteers are inoculated with live influenza virus, provide a unique opportunity to study infection susceptibility. Biomarkers predicting influenza susceptibility would be useful for identifying risk groups and designing vaccines. METHODS We applied cell mixture deconvolution to estimate immune cell proportions from whole blood transcriptome data in four independent influenza challenge studies. We compared immune cell proportions in the blood between symptomatic shedders and asymptomatic nonshedders across three discovery cohorts prior to influenza inoculation and tested results in a held-out validation challenge cohort. RESULTS Natural killer (NK) cells were significantly lower in symptomatic shedders at baseline in both discovery and validation cohorts. Hematopoietic stem and progenitor cells (HSPCs) were higher in symptomatic shedders at baseline in discovery cohorts. Although the HSPCs were higher in symptomatic shedders in the validation cohort, the increase was statistically nonsignificant. We observed that a gene associated with NK cells, KLRD1, which encodes CD94, was expressed at lower levels in symptomatic shedders at baseline in discovery and validation cohorts. KLRD1 expression in the blood at baseline negatively correlated with influenza infection symptom severity. KLRD1 expression 8 h post-infection in the nasal epithelium from a rhinovirus challenge study also negatively correlated with symptom severity. CONCLUSIONS We identified KLRD1-expressing NK cells as a potential biomarker for influenza susceptibility. Expression of KLRD1 was inversely correlated with symptom severity. Our results support a model where an early response by KLRD1-expressing NK cells may control influenza infection.
Collapse
Affiliation(s)
- Erika Bongen
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305 USA
- Program in Immunology, Stanford University School of Medicine, Stanford, 94305 CA USA
| | - Francesco Vallania
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Medicine, Division of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Paul J. Utz
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305 USA
- Program in Immunology, Stanford University School of Medicine, Stanford, 94305 CA USA
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305 USA
- Program in Immunology, Stanford University School of Medicine, Stanford, 94305 CA USA
- Department of Medicine, Division of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
15
|
MiR-181b modulates EGFR-dependent VCAM-1 expression and monocyte adhesion in glioblastoma. Oncogene 2017; 36:5006-5022. [PMID: 28459461 DOI: 10.1038/onc.2017.129] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 12/25/2022]
Abstract
Tumor-associated macrophages (TAMs) originate as circulating monocytes, and are recruited to gliomas, where they facilitate tumor growth and migration. Understanding the interaction between TAM and cancer cells may identify therapeutic targets for glioblastoma multiforme (GBM). Vascular cell adhesion molecule-1 (VCAM-1) is a cytokine-induced adhesion molecule expressed on the surface of cancer cells, which is involved in interactions with immune cells. Analysis of the glioma patient database and tissue immunohistochemistry showed that VCAM-1 expression correlated with the clinico-pathological grade of gliomas. Here, we found that VCAM-1 expression correlated positively with monocyte adhesion to GBM, and knockdown of VCAM-1 abolished the enhancement of monocyte adhesion. Importantly, upregulation of VCAM-1 is dependent on epidermal-growth-factor-receptor (EGFR) expression, and inhibition of EGFR effectively reduced VCAM-1 expression and monocyte adhesion activity. Moreover, GBM possessing higher EGFR levels (U251 cells) had higher VCAM-1 levels compared to GBMs with lower levels of EGFR (GL261 cells). Using two- and three-dimensional cultures, we found that monocyte adhesion to GBM occurs via integrin α4β1, which promotes tumor growth and invasion activity. Increased proliferation and tumor necrosis factor-α and IFN-γ levels were also observed in the adherent monocytes. Using a genetic modification approach, we demonstrated that VCAM-1 expression and monocyte adhesion were regulated by the miR-181 family, and lower levels of miR-181b correlated with high-grade glioma patients. Our results also demonstrated that miR-181b/protein phosphatase 2A-modulated SP-1 de-phosphorylation, which mediated the EGFR-dependent VCAM-1 expression and monocyte adhesion to GBM. We also found that the EGFR-dependent VCAM-1 expression is mediated by the p38/STAT3 signaling pathway. Our study suggested that VCAM-1 is a critical modulator of EGFR-dependent interaction of monocytes with GBM, which raises the possibility of developing effective and improved therapies for GBM.
Collapse
|
16
|
Ho HY, Lin CW, Chien MH, Reiter RJ, Su SC, Hsieh YH, Yang SF. Melatonin suppresses TPA-induced metastasis by downregulating matrix metalloproteinase-9 expression through JNK/SP-1 signaling in nasopharyngeal carcinoma. J Pineal Res 2016; 61:479-492. [PMID: 27600920 DOI: 10.1111/jpi.12365] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/02/2016] [Indexed: 12/24/2022]
Abstract
Nasopharyngeal carcinoma (NPC), a disease common in the South-East Asian population, has high lymph node metastatic ability. Melatonin, an endogenously produced substance present in animals, plants, fungi, and bacteria, has oncostatic activity via several mechanisms. The molecular mechanisms involved in melatonin-mediated tumor inhibitory potential are not completely defined. Here, we show that melatonin treatment inhibits TPA-induced cell motility by regulating the matrix metalloproteinase-9 (MMP-9) expression in NPC. We also identified the signaling cascade through which melatonin inhibits MMP-9 expression; this involves melatonin regulating the binding activity of the transcription factor specificity protein-1 (SP-1)-DNA. Our mechanistic analysis further reveals that the c-Jun N-terminal kinase/mitogen-activated protein kinase pathway is involved in the melatonin-mediated tumor suppressor activity. Furthermore, the findings indicate a functional link between melatonin-mediated MMP-9 regulation and tumor suppressing ability and provide new insights into the role of melatonin-induced molecular and epigenetic regulation of tumor growth. Thus, we conclude that melatonin suppresses the motility of NPC by regulating TPA-induced MMP-9 gene expression via inhibiting SP-1-DNA binding ability. The results provide a functional link between melatonin-mediated SP-1 regulation and the antimetastatic actions of melatonin on nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Hsin-Yu Ho
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
17
|
Sam68 is a regulator of Toll-like receptor signaling. Cell Mol Immunol 2016; 14:107-117. [PMID: 27374795 PMCID: PMC5214940 DOI: 10.1038/cmi.2016.32] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/14/2016] [Accepted: 05/15/2016] [Indexed: 12/17/2022] Open
Abstract
Recognition of pathogens by Toll-like receptors (TLR) activate multiple signaling cascades and expression of genes tailored to mount a primary immune response, inflammation, cell survival and apoptosis. Although TLR-induced activation of pathways, such as nuclear factor kappaB (NF-κB) and mitogen-activated protein kinases (MAPK), has been well studied, molecular entities controlling quantitative regulation of these pathways during an immune response remain poorly defined. We identified Sam68 as a novel regulator of TLR-induced NF-κB and MAPK activation. We found that TLR2 and TLR3 are totally dependent, whereas TLR4 is only partially dependent on Sam68 to induce the activation of NF-κB c-Rel. Absence of Sam68 greatly decreased TLR2- and TLR3-induced NF-κB p65 activation, whereas TLR4-induced p65 activation in a Sam68-independent manner. In contrast, Sam68 appeared to be a negative regulator of MAPK pathways because absence of Sam68 enhanced TLR2-induced activation of extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK). Interestingly, TLR2- and TLR3-induced gene expression showed a differential requirement of Sam68. Absence of Sam68 impaired TLR2-induced gene expression, suggesting that Sam68 has a critical role in myeloid differentiation primary response gene 88-dependent TLR2 signaling. TLR3-induced gene expression that utilize Toll/Interleukin-1 receptor-domain-containing adapter-inducing beta interferon pathway, depend only partially on Sam68. Our findings suggest that Sam68 may function as an immune rheostat that balances the activation of NF-κB p65 and c-Rel, as well as MAPK, revealing a potential novel target to manipulate TLR signaling.
Collapse
|
18
|
PP2A inhibitors arrest G2/M transition through JNK/Sp1- dependent down-regulation of CDK1 and autophagy-dependent up-regulation of p21. Oncotarget 2016; 6:18469-83. [PMID: 26053095 PMCID: PMC4621904 DOI: 10.18632/oncotarget.4063] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/14/2015] [Indexed: 01/07/2023] Open
Abstract
Protein phosphatase 2A (PP2A) plays an important role in the control of the cell cycle. We previously reported that the PP2A inhibitors, cantharidin and okadaic acid (OA), efficiently repressed the growth of cancer cells. In the present study, we found that PP2A inhibitors arrested the cell cycle at the G2 phase through a mechanism that was dependent on the JNK pathway. Microarrays further showed that PP2A inhibitors induced expression changes in multiple genes that participate in cell cycle transition. To verify whether these expression changes were executed in a PP2A-dependent manner, we targeted the PP2A catalytic subunit (PP2Ac) using siRNA and evaluated gene expression with a microarray. After the cross comparison of these microarray data, we identified that CDK1 was potentially the same target when treated with either PP2A inhibitors or PP2Ac siRNA. In addition, we found that the down-regulation of CDK1 occurred in a JNK-dependent manner. Luciferase reporter gene assays demonstrated that repression of the transcription of CDK1 was executed through the JNK-dependent activation of the Sp1 transcription factor. By constructing deletion mutants of the CDK1 promoter and by using ChIP assays, we identified an element in the CDK1 promoter that responded to the JNK/Sp1 pathway after stimulation with PP2A inhibitors. Cantharidin and OA also up-regulated the expression of p21, an inhibitor of CDK1, via autophagy rather than PP2A/JNK pathway. Thus, this present study found that the PP2A/JNK/Sp1/CDK1 pathway and the autophagy/p21 pathway participated in G2/M cell cycle arrest triggered by PP2A inhibitors.
Collapse
|
19
|
Yeh CR, Slavin S, Da J, Hsu I, Luo J, Xiao GQ, Ding J, Chou FJ, Yeh S. Estrogen receptor α in cancer associated fibroblasts suppresses prostate cancer invasion via reducing CCL5, IL6 and macrophage infiltration in the tumor microenvironment. Mol Cancer 2016; 15:7. [PMID: 26790618 PMCID: PMC4721150 DOI: 10.1186/s12943-015-0488-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 12/16/2015] [Indexed: 02/07/2023] Open
Abstract
Background Cancer associated fibroblasts (CAF) play important roles in tumor growth that involves inflammation and epithelial cell differentiation. Early studies suggested that estrogen receptor alpha (ERα) was expressed in stromal cells in normal prostates and prostate cancer (PCa), but the detailed functions of stromal ERα in the PCa remain to be further elucidated. Methods Migration and invasion assays demonstrated the presence of high levels of ERα in CAF cells (CAF.ERα(+)) suppressed PCa invasion via influencing the infiltration of tumor associated macrophages. ERα decreased CAF CCL5 secretion via suppressing the CCL5 promoter activity was examined by luciferase assay. ERα decreased CCL5 and IL-6 expression in conditioned media that was collected from CAF cell only or CAF cell co-cultured with macrophages as measured by ELISA assay. Results Both in vitro and in vivo studies demonstrated CAF.ERα(+) led to a reduced macrophage migration toward PCa via inhibiting CAF cells secreted chemokine CCL5. This CAF.ERα(+) suppressed macrophage infiltration affected the neighboring PCa cells invasion and the reduced invasiveness of PCa cells are at least partly due to reduced IL6 expression in the macrophages and CAF. Conclusion Our data suggest that CAF ERα could be applied as a prognostic marker to predict cancer progression, and targeting CCL5 and IL6 may be applied as an alternative therapeutic approach to reduce M2 type macrophages and PCa invasion in PCa patients with low or little ERα expression in CAF cells. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0488-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chiuan-Ren Yeh
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Spencer Slavin
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jun Da
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Iawen Hsu
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jie Luo
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Guang-Qian Xiao
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jie Ding
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Fu-Ju Chou
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
20
|
Kaul D, Arora M, Garg A, Sharma S. MALT1 induced immune response is governed by miR-2909 RNomics. Mol Immunol 2015; 64:210-7. [DOI: 10.1016/j.molimm.2014.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022]
|
21
|
Lu CC, Wu TS, Hsu YJ, Chang CJ, Lin CS, Chia JH, Wu TL, Huang TT, Martel J, Ojcius DM, Young JD, Lai HC. NK cells kill mycobacteria directly by releasing perforin and granulysin. J Leukoc Biol 2014; 96:1119-29. [DOI: 10.1189/jlb.4a0713-363rr] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
22
|
Awad A, Yassine H, Barrier M, Vorng H, Marquillies P, Tsicopoulos A, Duez C. Natural killer cells induce eosinophil activation and apoptosis. PLoS One 2014; 9:e94492. [PMID: 24727794 PMCID: PMC3984162 DOI: 10.1371/journal.pone.0094492] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/17/2014] [Indexed: 12/18/2022] Open
Abstract
Eosinophils are potent inflammatory cells with numerous immune functions, including antigen presentation and exacerbation of inflammatory responses through their capacity to release a range of largely preformed cytokines and lipid mediators. Thus, timely regulation of eosinophil activation and apoptosis is crucial to develop beneficial immune response and to avoid tissue damage and induce resolution of inflammation. Natural Killer (NK) cells have been reported to influence innate and adaptive immune responses by multiple mechanisms including cytotoxicity against other immune cells. In this study, we analyzed the effect of the interaction between NK cells and eosinophils. Co-culture experiments revealed that human NK cells could trigger autologous eosinophil activation, as shown by up-regulation of CD69 and down-regulation of CD62L, as well as degranulation, evidenced by increased CD63 surface expression, secretion of eosinophil cationic protein (ECP) and eosinophil derived neurotoxin (EDN). Moreover, NK cells significantly and dose dependently increased eosinophil apoptosis as shown by annexin V and propidium iodide (PI) staining. Direct contact was necessary for eosinophil degranulation and apoptosis. Increased expression of phosphorylated extracellular signal-regulated kinase (ERK) in cocultured eosinophils and inhibition of eosinophil CD63 expression by pharmacologic inhibitors suggest that MAPK and PI3K pathways are involved in NK cell-induced eosinophil degranulation. Finally, we showed that NK cells increased reactive oxygen species (ROS) expression by eosinophils in co-culture and that mitochondrial inhibitors (rotenone and antimycin) partially diminished NK cell-induced eosinophil apoptosis, suggesting the implication of mitochondrial ROS in NK cell-induced eosinophil apoptosis. Pan-caspase inhibitor (ZVAD-FMK) only slightly decreased eosinophil apoptosis in coculture. Altogether, our results suggest that NK cells regulate eosinophil functions by inducing their activation and their apoptosis.
Collapse
Affiliation(s)
- Ali Awad
- Pulmonary Immunity, Institut National de la Santé Et de la Recherche Médicale, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Univ Lille Nord de France, Lille, France
| | - Hanane Yassine
- Pulmonary Immunity, Institut National de la Santé Et de la Recherche Médicale, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Univ Lille Nord de France, Lille, France
| | - Mathieu Barrier
- Pulmonary Immunity, Institut National de la Santé Et de la Recherche Médicale, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Univ Lille Nord de France, Lille, France
| | - Han Vorng
- Pulmonary Immunity, Institut National de la Santé Et de la Recherche Médicale, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Univ Lille Nord de France, Lille, France
| | - Philippe Marquillies
- Pulmonary Immunity, Institut National de la Santé Et de la Recherche Médicale, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Univ Lille Nord de France, Lille, France
| | - Anne Tsicopoulos
- Pulmonary Immunity, Institut National de la Santé Et de la Recherche Médicale, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Univ Lille Nord de France, Lille, France
- Clinique des Maladies Respiratoires et Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Catherine Duez
- Pulmonary Immunity, Institut National de la Santé Et de la Recherche Médicale, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Univ Lille Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
23
|
Breunig C, Mueller BJ, Umansky L, Wahl K, Hoffmann K, Lehner F, Manns MP, Bantel H, Falk CS. BRaf and MEK Inhibitors Differentially Regulate Cell Fate and Microenvironment in Human Hepatocellular Carcinoma. Clin Cancer Res 2014; 20:2410-23. [DOI: 10.1158/1078-0432.ccr-13-1635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Adada MM, Orr-Gandy KA, Snider AJ, Canals D, Hannun YA, Obeid LM, Clarke CJ. Sphingosine kinase 1 regulates tumor necrosis factor-mediated RANTES induction through p38 mitogen-activated protein kinase but independently of nuclear factor κB activation. J Biol Chem 2013; 288:27667-27679. [PMID: 23935096 DOI: 10.1074/jbc.m113.489443] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine kinase 1 (SK1) produces the pro-survival sphingolipid sphingosine 1-phosphate and has been implicated in inflammation, proliferation, and angiogenesis. Recent studies identified TRAF2 as a sphingosine 1-phosphate target, implicating SK1 in activation of the NF-κB pathway, but the functional consequences of this connection on gene expression are unknown. Here, we find that loss of SK1 potentiates induction of the chemokine RANTES (regulated on activation, normal T cell expressed and secreted; also known as CCL5) in HeLa cells stimulated with TNF-α despite RANTES induction being highly dependent on the NF-κB pathway. Additionally, we find that SK1 is not required for TNF-induced IKK phosphorylation, IκB degradation, nuclear translocation of NF-κB subunits, and transcriptional NF-κB activity. In contrast, loss of SK1 prevented TNF-induced phosphorylation of p38 MAPK, and inhibition of p38 MAPK, like SK1 knockdown, also potentiates RANTES induction. Finally, in addition to RANTES, loss of SK1 also potentiated the induction of multiple chemokines and cytokines in the TNF response. Taken together, these data identify a potential and novel anti-inflammatory function of SK1 in which chemokine levels are suppressed through SK1-mediated activation of p38 MAPK. Furthermore, in this system, activation of NF-κB is dissociated from SK1, suggesting that the interaction between these pathways may be more complex than currently thought.
Collapse
Affiliation(s)
- Mohamad M Adada
- Department of Medicine, Stony Brook University, Stony Brook, New York 11794
| | - K Alexa Orr-Gandy
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, South Carolina 29209
| | - Ashley J Snider
- Department of Medicine, Stony Brook University, Stony Brook, New York 11794; Northport Veterans Affairs Medical Center, Northport, New York 11768
| | - Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, New York 11794
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, New York 11794
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, New York 11794; Northport Veterans Affairs Medical Center, Northport, New York 11768.
| | | |
Collapse
|
25
|
Hasegawa K, Wakino S, Kimoto M, Minakuchi H, Fujimura K, Hosoya K, Komatsu M, Kaneko Y, Kanda T, Tokuyama H, Hayashi K, Itoh H. The hydrolase DDAH2 enhances pancreatic insulin secretion by transcriptional regulation of secretagogin through a Sirt1-dependent mechanism in mice. FASEB J 2013; 27:2301-15. [PMID: 23430976 DOI: 10.1096/fj.12-226092] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The role of dimethylarginine dimethylaminohydrolase 2 (DDAH2) in glucose metabolism is unknown. Here, we generated DDAH2 transgenic (Tg) mice. These mice had lower plasma glucose levels (60 min: 298±32 vs. 418±35 mg/dl; 120 min: 205±15 vs. 284±20 mg/dl) and higher insulin levels (15 min: 2.1±0.2 vs. 1.5±0.1 ng/ml; 30 min: 1.8±0.1 vs. 1.5±0.1 ng/ml) during intraperitoneal glucose tolerance tests when fed a high-fat diet (HFD) compared with HFD-fed wild-type (WT) mice. Glucose-stimulated insulin secretion (GSIS) was increased in Tg islets by 33%. Pancreatic asymmetrical dimethylarginine, nitric oxide, and oxidative stress levels were not correlated with improvements in insulin secretion in Tg mice. Secretagogin, an insulin vesicle docking protein, was up-regulated by 2.7-fold in Tg mice and in pancreatic MIN-6 cells overexpressing DDAH2. GSIS in MIN-6 cells was dependent on DDAH2-induced secretagogin expression. Pancreatic Sirt1, DDAH2, and secretagogin were down-regulated in HFD-fed WT mice by 70, 75, and 85%, respectively. Overexpression of Sirt1 overexpression by 3.9-fold increased DDAH2 and secretagogin expression in MIN-6 cells by 3.2- and 2.5-fold, respectively. DDAH2 overexpression improved GSIS in pancreas-specific Sirt1-deficient mice. In summary, the Sirt1/DDAH2/secretagogin pathway is a novel regulator of GSIS.
Collapse
Affiliation(s)
- Kazuhiro Hasegawa
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Butt AQ, Ahmed S, Maratha A, Miggin SM. 14-3-3ε and 14-3-3σ inhibit Toll-like receptor (TLR)-mediated proinflammatory cytokine induction. J Biol Chem 2012; 287:38665-79. [PMID: 22984265 DOI: 10.1074/jbc.m112.367490] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Toll-like receptors (TLRs) are a group of pattern recognition receptors that play a crucial role in the induction of the innate immune response against bacterial and viral infections. TLR3 has emerged as a key sensor of viral double-stranded RNA. Thus, a clearer understanding of the biological processes that modulate TLR3 signaling is essential. Limited studies have applied proteomics toward understanding the dynamics of TLR signaling. Herein, a proteomics approach identified 14-3-3ε and 14-3-3σ proteins as new members of the TLR signaling complex. Toward the functional characterization of 14-3-3ε and 14-3-3σ in TLR signaling, we have shown that both of these proteins impair TLR2, TLR3, TLR4, TLR7/8, and TLR9 ligand-induced IL-6, TNFα, and IFN-β production. We also show that 14-3-3ε and 14-3-3σ impair TLR2-, TLR3-, TLR4-, TLR7/8-, and TLR9-mediated NF-κB and IFN-β reporter gene activity. Interestingly, although the 14-3-3 proteins inhibit poly(I:C)-mediated RANTES production, 14-3-3 proteins augment Pam(3)CSK(4), LPS, R848, and CpG-mediated production of RANTES (regulated on activation normal T cell expressed and secreted) in a Mal (MyD88 adaptor-like)/MyD88-dependent manner. 14-3-3ε and 14-3-3σ also bind to the TLR adaptors and to both TRAF3 and TRAF6. Our study conclusively shows that 14-3-3ε and 14-3-3σ play a major regulatory role in balancing the host inflammatory response to viral and bacterial infections through modulation of the TLR signaling pathway. Thus, manipulation of 14-3-3 proteins may represent novel therapeutic targets for inflammatory conditions and infections.
Collapse
Affiliation(s)
- Aisha Qasim Butt
- Immune Signaling Group, Institute of Immunology, Department of Biology, National University of Ireland Maynooth, County Kildare, Ireland
| | | | | | | |
Collapse
|
27
|
Chai J, He Y, Cai SY, Jiang Z, Wang H, Li Q, Chen L, Peng Z, He X, Wu X, Xiao T, Wang R, Boyer JL, Chen W. Elevated hepatic multidrug resistance-associated protein 3/ATP-binding cassette subfamily C 3 expression in human obstructive cholestasis is mediated through tumor necrosis factor alpha and c-Jun NH2-terminal kinase/stress-activated protein kinase-signaling pathway. Hepatology 2012; 55:1485-94. [PMID: 22105759 PMCID: PMC3297707 DOI: 10.1002/hep.24801] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED Multidrug resistance-associated protein 3 (MRP3, ABC subfamily C [ABCC]3) plays an important role in protecting hepatocytes and other tissues by excreting an array of toxic organic anion conjugates, including bile salts. MRP3/ABCC3 expression is increased in the liver of some cholestatic patients, but the molecular mechanism of this up-regulation remains elusive. In this report, we assessed liver MRP3/ABCC3 expression in patients (n = 22) with obstructive cholestasis caused by gallstone blockage of bile ducts and noncholestatic patient controls (n = 22). MRP3/ABCC3 messenger RNA (mRNA) and protein expression were significantly increased by 3.4- and 4.6-fold, respectively, in these cholestatic patients where elevated plasma tumor necrosis factor alpha (TNFα) (4.7-fold; P < 0.01) and hepatic specificity protein 1 transcription factor (SP1) and liver receptor homolog 1 expression (3.1- and 2.1-fold at mRNA level, 3.5- and 2.5-fold at protein level, respectively) were also observed. The induction of hepatic MRP3/ABCC3 mRNA expression is significantly positively correlated with the level of plasma TNFα in these patients. In HepG2 cells, TNFα treatment induced SP1 and MRP3/ABCC3 expression in a dose- and time-dependent manner, where increased phosphorylation of c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) was also detected. These inductions were significantly reduced in the presence of the JNK inhibitor, SP600125. TNFα treatment enhanced HepG2 cell nuclear extract-binding activity to the MRP3/ABCC3 promoter, but was abolished by SP600125, as demonstrated by electrophoretic mobility shift assay (EMSA). An increase in nuclear protein-binding activity to the MRP3/ABCC3 promoter, consisting primarily of SP1, was also observed in liver samples from cholestatic patients, as assessed by supershift EMSA assays. CONCLUSIONS Our findings indicate that up-regulation of hepatic MRP3/ABCC3 expression in human obstructive cholestasis is likely triggered by TNFα, mediated by activation of JNK/SAPK and SP1.
Collapse
Affiliation(s)
- Jin Chai
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038 P.R. China
| | - Yu He
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038 P.R. China
| | - Shi-Ying Cai
- Liver Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510
| | - Zhongyong Jiang
- Department of Clinical Laboratory, General Hospital of PLA Chengdu Military Area Command, Chengdu 610083, P.R. China
| | - Huaizhi Wang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038 P.R. China
| | - Qiong Li
- Laboratory and Education Center, College of Basic Medical Science,P.R. China
| | - Lei Chen
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038 P.R. China
| | - Zhihong Peng
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038 P.R. China
| | - Xiaochong He
- School of Nursing, Third Military Medical University, Chongqing 400038
| | - Xiaoping Wu
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038 P.R. China
| | - Tianli Xiao
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038 P.R. China
| | - Rongquan Wang
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038 P.R. China
| | - James L. Boyer
- Liver Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510
| | - Wensheng Chen
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038 P.R. China,Contact Information: Wensheng Chen, M.D., Ph.D., Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China. Tel: 86-23-68765183; Fax: 86-23-65410853;
| |
Collapse
|
28
|
Chenoweth MJ, Mian MF, Barra NG, Alain T, Sonenberg N, Bramson J, Lichty BD, Richards CD, Ma A, Ashkar AA. IL-15 can signal via IL-15Rα, JNK, and NF-κB to drive RANTES production by myeloid cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:4149-57. [PMID: 22447977 DOI: 10.4049/jimmunol.1101883] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
IL-15 plays many important roles within the immune system. IL-15 signals in lymphocytes via trans presentation, where accessory cells such as macrophages and dendritic cells present IL-15 bound to IL-15Rα in trans to NK cells and CD8(+) memory T cells expressing IL-15/IL-2Rβ and common γ chain (γ(c)). Previously, we showed that the prophylactic delivery of IL-15 to Rag2(-/-)γ(c)(-/-) mice (mature T, B, and NK cell negative) afforded protection against a lethal HSV-2 challenge and metastasis of B16/F10 melanoma cells. In this study, we demonstrated that in vivo delivery of an adenoviral construct optimized for the secretion of human IL-15 to Rag2(-/-)γ(c)(-/-) mice resulted in significant increases in spleen size and cell number, leading us to hypothesize that IL-15 signals differently in myeloid immune cells compared with lymphocytes, for which IL-15/IL-2Rβ and γ(c) expression are essential. Furthermore, treatment with IL-15 induced RANTES production by Rag2(-/-)γ(c)(-/-) bone marrow cells, but the presence of γ(c) did not increase bone marrow cell sensitivity to IL-15. This IL-15-mediated RANTES production by Rag2(-/-)γ(c)(-/-) bone marrow cells occurred independently of the IL-15/IL-2Rβ and Jak/STAT pathways and instead required IL-15Rα signaling as well as activation of JNK and NF-κB. Importantly, we also showed that the trans presentation of IL-15 by IL-15Rα boosts IL-15-mediated IFN-γ production by NK cells but reduces IL-15-mediated RANTES production by Rag2(-/-)γ(c)(-/-) myeloid bone marrow cells. Our data clearly show that IL-15 signaling in NK cells is different from that of myeloid immune cells. Additional insights into IL-15 biology may lead to novel therapies aimed at bolstering targeted immune responses against cancer and infectious disease.
Collapse
Affiliation(s)
- Meghan J Chenoweth
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre and Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Angiotensin II inhibits chemokine CCL5 expression in vascular smooth muscle cells from spontaneously hypertensive rats. Hypertens Res 2011; 34:1313-20. [DOI: 10.1038/hr.2011.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Hamuro J, Hishida Y, Higuchi O, Yamanashi Y. The transcription factor Sp1 plays a crucial role in dok-7 gene expression. Biochem Biophys Res Commun 2011; 408:293-9. [DOI: 10.1016/j.bbrc.2011.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 04/05/2011] [Indexed: 11/27/2022]
|
31
|
Friebe A, Friederichs S, Scholz K, Janssen U, Scholz C, Schlapp T, Mercer A, Siegling A, Volk HD, Weber O. Characterization of immunostimulatory components of orf virus (parapoxvirus ovis). J Gen Virol 2011; 92:1571-1584. [PMID: 21346027 DOI: 10.1099/vir.0.028894-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inactivated orf virus (ORFV, parapoxvirus ovis) induces antiviral activity in animal models of acute and chronic viral infections and exerts strong effects on human immune cells. ORFV activates antigen presenting cells (APC) via CD14 and, probably, Toll-like receptor signalling, and triggers the release of IFN-γ that has been identified as the key mediator of the antiviral activity. After delineating virus proteins as being the most likely active constituent, we aimed to characterize the ORFV proteins responsible for the therapeutic effect. By using a vaccinia virus/ORFV expression library we identified several multi-gene DNA fragments with strong immunomodulatory activity. Together these fragments contain 27 ORFs. The encoded proteins are related to virion structure and transcription but are otherwise unrelated. Two proteins were separately expressed and purified, and demonstrated immunostimulatory activity. Gene expression profiles induced by ORFV and the identified fragments were investigated by microarray analysis. Interestingly, all active fragments induced a similar gene-expression pattern, differing only in quantitative aspects. Obviously, several proteins of ORFV activate similar cellular pathways, modulating APC to generate a strong T-helper 1-dominated immune response. This was balanced by additional induction of immune dampening mechanisms, suggesting regulatory differences compared to single cytokine therapies. We conclude that ORFV may have the potential to enrich the armamentarium of antiviral therapies.
Collapse
Affiliation(s)
- Astrid Friebe
- Institute of Medical Immunology and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Kai Scholz
- Bayer HealthCare AG, Leverkusen, Germany
| | | | | | | | | | | | - Hans-Dieter Volk
- Institute of Medical Immunology and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Olaf Weber
- Bayer HealthCare AG, Leverkusen, Germany
| |
Collapse
|
32
|
Eberlein J, Nguyen TT, Victorino F, Golden-Mason L, Rosen HR, Homann D. Comprehensive assessment of chemokine expression profiles by flow cytometry. J Clin Invest 2010; 120:907-23. [PMID: 20197626 DOI: 10.1172/jci40645] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 12/14/2009] [Indexed: 11/17/2022] Open
Abstract
The chemokines are a large family of mainly secreted molecules involved in the regulation of numerous physiological and pathophysiological processes. Despite many years of investigation, the precise cellular sources of most chemokines have remained incompletely defined as a consequence of the limited availability of suitable reagents to visualize the expression of chemokine proteins at the single-cell level. Here, we developed a simple flow cytometry-based assay using commercially available chemokine-specific antibodies for efficient cell-associated detection of 37 of 39 murine chemokines. To demonstrate the utility of this methodology, we used it to reevaluate the nature of homeostatic chemokines in the hematopoietic compartment, to delineate the complete chemokine profiles of NK cells and B cells in response to major polyclonal stimuli, and to assess the chemokine response of DCs to bacterial infection. The versatility of this analytical methodology was further demonstrated by its application to selected human chemokines and should greatly facilitate any future investigation into chemokine biology at large.
Collapse
Affiliation(s)
- Jens Eberlein
- Barbara Davis Center for Childhood Diabetes, Department of Medicine, University of Colorado Denver, Aurora, 80045-0511, USA
| | | | | | | | | | | |
Collapse
|
33
|
Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann Surg 2009; 250:747-53. [PMID: 19826249 DOI: 10.1097/sla.0b013e3181bd62d0] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To analyze the efficacy of engineered mesenchymal stem cell based therapy directed towards pancreatic tumor stroma. SUMMARY BACKGROUND DATA Mesenchymal stem cells (MSC) are actively recruited to tumor stroma where they enhance tumor growth and metastases. Upregulation of chemotactic cytokine (CCL5) by MSCs within the tumor stroma has been shown to play a central role in this process. Murine MSCs were engineered to express reporter genes or therapeutic genes under control of the CCL5 promoter and adoptively transferred into mice with growing pancreatic tumors. The effect on tumor growth and metastases was then evaluated. METHODS MSCs isolated from bone marrow of C57/Bl6 p53 mice were stably transfected with red fluorescent protein (RFP), enhanced green fluorescent protein (eGFP), or herpes simplex virus (HSV) thymidine kinase (Tk) gene driven by the RANTES promoter. MSCs were intravenously applied once per week over 3 weeks to mice carrying an orthotopic, syngeneic pancreatic Panc02 tumor. RESULTS eGFP and RFP signals driven by the CCL5 promoter were detected by fluorescence in treated pancreatic tumor samples. The HSV-Tk therapy group treated intraperitoneal with the prodrug ganciclovir 5 to 7 days after stem cell application lead to a 50% reduction of primary pancreatic tumor growth (P < 0.0003, student t test) and reduced liver metastases (0% vs. 60%). CONCLUSION The active homing of MSCs into primary pancreatic tumor stroma and activation of the CCL5 promoter was verified using eGFP- and RFP-reporter genes. In the presence of ganciclovir, HSV-Tk transfected MSCs led to a significant reduction of primary pancreatic tumor growth and incidence of metastases.
Collapse
|
34
|
Harashima A, Toraya T, Okochi A, Yamamoto M, Suzuki M, Otani T, Inoue T, Tsuji-Takayama K, Sugimoto A, Takeuchi M, Yamasaki F, Nakamura S, Kibata M. Interleukin-8 and RANTES are signature cytokines made by HOZOT, a new type of regulatory T cells. Mol Immunol 2009; 46:3310-9. [PMID: 19699525 DOI: 10.1016/j.molimm.2009.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 07/26/2009] [Indexed: 10/20/2022]
Abstract
Distinct cytokine production profiles define the effector functions of both helper and regulatory T cells. Recently, we established novel cytotoxic regulatory T (Treg) cell lines, HOZOT, which have been characterized as IL-10-producing T cells. In this study, we further characterized HOZOT by performing comprehensive analyses of cytokines produced by HOZOTs in order to identify a signature cytokine profile. Using DNA microarrays, we compared the gene expression profiles of HOZOT-4, a representative HOZOT cell line, under three different conditions. Seven genes, including IL-8, IL-10, IL-13, MIP-1alpha, and MIP-1beta, were identified as inducible cytokines when stimulated with stromal cells or anti-CD3/CD28 antibodies. Twelve genes, including IL-2, IL-3, IL-4, IL-22, CCL1, and lymphotactin, were categorized as antibody stimulation-responsive but stromal cell-non-responsive. Three genes, IL-32, RANTES, and CCL23, were constitutively expressed irrespective of stimulation condition. Among these cytokines, we focused on two chemokines, IL-8 and RANTES for further studies, and found that only HOZOT produced both of them at considerable levels whereas other T cell subsets, including Tregs and helper T cells, did not. Kinetic and inhibition experiments revealed contrasting properties for the two chemokines. IL-8 was induced only after stimulation, whereas RANTES mRNA and protein accumulated to high levels even before stimulation. Interestingly, IL-8 mRNA was induced by cycloheximide treatment and RANTES showed reduced mRNA but increased protein expression by antibody stimulation. As a whole, the unique cytokine signature profile consisting of Th1, Th2, and cytolytic T cell cytokines as well as Treg cytokines reflect the multifunctional nature of HOZOT. In particular, the dual production of IL-8 and RANTES by distinct mechanisms is a hallmark of HOZOT.
Collapse
Affiliation(s)
- Akira Harashima
- Cell Biology Institute, Research Center, Hayashibara Biochemical Laboratories Inc, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|