1
|
Buffone A, Hammer DA, Kim SHJ, Anderson NR, Mochida A, Lee DH, Guin S. Not all (cells) who wander are lost: Upstream migration as a pervasive mode of amoeboid cell motility. Front Cell Dev Biol 2023; 11:1291201. [PMID: 38020916 PMCID: PMC10651737 DOI: 10.3389/fcell.2023.1291201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Leukocytes possess the ability to migrate upstream-against the direction of flow-on surfaces of specific chemistry. Upstream migration was first characterized in vitro for T-cells on surfaces comprised of intracellular adhesion molecule-1 (ICAM-1). Upstream migration occurs when the integrin receptor αLβ2 (also known as lymphocyte function-associated antigen-1, or LFA-1) binds to ICAM-1. LFA-1/ICAM-1 interactions are ubiquitous and are widely found in leukocyte trafficking. Upstream migration would be employed after cells come to arrest on the apical surface of the endothelium and might confer an advantage for both trans-endothelial migration and tissue surveillance. It has now been shown that several other motile amoeboid cells which have the responsibility of trafficking from blood vessels into tissues, such as Marginal zone B cells, hematopoietic stem cells, and neutrophils (when macrophage-1 antigen, Mac-1, is blocked), can also migrate upstream on ICAM-1 surfaces. This review will summarize what is known about the basic mechanisms of upstream migration, which cells have displayed this phenomenon, and the possible role of upstream migration in physiology and tissue homeostasis.
Collapse
Affiliation(s)
- Alexander Buffone
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
- Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Daniel A. Hammer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarah Hyun Ji Kim
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | | | - Ai Mochida
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Dong-Hun Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Subham Guin
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
2
|
Chimbetete T, Choshi P, Pedretti S, Porter M, Roberts R, Lehloenya R, Peter J. Skin infiltrating T-cell profile of drug reaction with eosinophilia and systemic symptoms (DRESS) reactions among HIV-infected patients. Front Med (Lausanne) 2023; 10:1118527. [PMID: 37215719 PMCID: PMC10196146 DOI: 10.3389/fmed.2023.1118527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Drug Reaction with Eosinophilia Systemic Symptoms (DRESS) is more common in persons living with HIV (PLHIV), and first-line anti-TB drugs (FLTDs) and cotrimoxazole are the commonest offending drugs. Limited data is available on the skin infiltrating T-cell profile among DRESS patients with systemic CD4 T-cell depletion associated with HIV. Materials and methods HIV cases with validated DRESS phenotypes (possible, probable, or definite) and confirmed reactions to either one or multiple FLTDs and/or cotrimoxazole were chosen (n = 14). These cases were matched against controls of HIV-negative patients who developed DRESS (n = 5). Immunohistochemistry assays were carried out with the following antibodies: CD3, CD4, CD8, CD45RO and FoxP3. Positive cells were normalized to the number of CD3+ cells present. Results Skin infiltrating T-cells were mainly found in the dermis. Dermal and epidermal CD4+ T-cells (and CD4+/CD8+ ratios) were lower in HIV-positive vs. negative DRESS; p < 0.001 and p = 0.004, respectively; without correlation to whole blood CD4 cell counts. In contrast, no difference in dermal CD4+FoxP3+ T-cells was found in HIV-positive vs. negative DRESS, median (IQR) CD4+FoxP3+ T-cells: [10 (0-30) cells/mm2 vs. 4 (3-8) cells/mm2, p = 0.325]. HIV-positive DRESS patients reacting to more than one drug had no difference in CD8+ T-cell infiltrates, but higher epidermal and dermal CD4+FoxP3+ T-cell infiltrates compared to single drug reactors. Conclusion DRESS, irrespective of HIV status, was associated with an increased skin infiltration of CD8+ T-cells, while CD4+ T-cells were lower in HIV-positive DRESS compared to HIV-negative DRESS skin. While inter-individual variation was high, the frequency of dermal CD4+FoxP3+ T-cells was higher in HIV-positive DRESS cases reacting to more than one drug. Further research is warranted to understand the clinical impact of these changes.
Collapse
Affiliation(s)
- Tafadzwa Chimbetete
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Phuti Choshi
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Sarah Pedretti
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Mireille Porter
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Riyaadh Roberts
- Division of Anatomical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Rannakoe Lehloenya
- Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Combined Drug Allergy Clinic, Groote Schuur Hospital, Cape Town, South Africa
| | - Jonathan Peter
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
- Combined Drug Allergy Clinic, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
3
|
Hickey MJ, Norman MU. Intravital Imaging of Regulatory T Cells in Inflamed Skin. Methods Mol Biol 2023; 2691:247-256. [PMID: 37355551 DOI: 10.1007/978-1-0716-3331-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Regulatory T cells play key roles in skin homeostasis and inflammation and in regulating antitumor responses. Understanding of the biology of this cell type has been improved by the use of intravital microscopy for their visualization in various organs. Here we describe a multiphoton microscopy-based technique for intravital imaging of regulatory T cells in the skin. We provide a protocol for a model of antigen-dependent inflammation that induces robust regulatory T cell recruitment to the skin and describe the use of a regulatory T cell reporter mouse for visualization of these cells in inflamed skin.
Collapse
Affiliation(s)
- Michael J Hickey
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia.
| | - M Ursula Norman
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| |
Collapse
|
4
|
Gompels UA, Bravo FJ, Briggs S, Ameri S, Cardin RD, Bernstein DI. Immunisation Using Novel DNA Vaccine Encoding Virus Membrane Fusion Complex and Chemokine Genes Shows High Protection from HSV-2. Viruses 2022; 14:v14112317. [PMID: 36366414 PMCID: PMC9698128 DOI: 10.3390/v14112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Herpes simplex virus 1 and 2 infections cause high unmet disease burdens worldwide. Mainly HSV-2 causes persistent sexually transmitted disease, fatal neonatal disease and increased transmission of HIV/AIDS. Thus, there is an urgent requirement to develop effective vaccines. We developed nucleic acid vaccines encoding a novel virus entry complex stabilising cell membrane fusion, 'virus-like membranes', VLM. Two dose intramuscular immunisations using DNA expression plasmids in a guinea pig model gave 100% protection against acute disease and significantly reduced virus replication after virus intravaginal challenge. There was also reduced establishment of latency within the dorsal root ganglia and spinal cord, but recurrent disease and recurrent virus shedding remained. To increase cellular immunity and protect against recurrent disease, cDNA encoding an inhibitor of chemokine receptors on T regulatory cells was added and compared to chemokine CCL5 effects. Immunisation including this novel human chemokine gene, newly defined splice variant from an endogenous virus genome, 'virokine immune therapeutic', VIT, protected most guinea pigs from recurrent disease and reduced recurrent virus shedding distinct from a gD protein vaccine similar to that previously evaluated in clinical trials. All DNA vaccines induced significant neutralising antibodies and warrant evaluation for new therapeutic treatments.
Collapse
Affiliation(s)
- Ursula A. Gompels
- Virothera, Milner Therapeutics Institute, Cambridge Biomedical Campus, Cambridge CB4 0WS, UK
- Correspondence:
| | - Fernando J. Bravo
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Sean Briggs
- Virothera, Milner Therapeutics Institute, Cambridge Biomedical Campus, Cambridge CB4 0WS, UK
| | - Shima Ameri
- Virothera, Milner Therapeutics Institute, Cambridge Biomedical Campus, Cambridge CB4 0WS, UK
| | - Rhonda D. Cardin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David I. Bernstein
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
5
|
Rodor J, Chen SH, Scanlon JP, Monteiro JP, Caudrillier A, Sweta S, Stewart KR, Shmakova A, Dobie R, Henderson BEP, Stewart K, Hadoke PWF, Southwood M, Moore SD, Upton PD, Morrell NW, Li Z, Chan SY, Handen A, Lafyatis R, de Rooij LPMH, Henderson NC, Carmeliet P, Spiroski AM, Brittan M, Baker AH. Single-cell RNA sequencing profiling of mouse endothelial cells in response to pulmonary arterial hypertension. Cardiovasc Res 2022; 118:2519-2534. [PMID: 34528097 PMCID: PMC9400412 DOI: 10.1093/cvr/cvab296] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
AIMS Endothelial cell (EC) dysfunction drives the initiation and pathogenesis of pulmonary arterial hypertension (PAH). We aimed to characterize EC dynamics in PAH at single-cell resolution. METHODS AND RESULTS We carried out single-cell RNA sequencing (scRNA-seq) of lung ECs isolated from an EC lineage-tracing mouse model in Control and SU5416/hypoxia-induced PAH conditions. EC populations corresponding to distinct lung vessel types, including two discrete capillary populations, were identified in both Control and PAH mice. Differential gene expression analysis revealed global PAH-induced EC changes that were confirmed by bulk RNA-seq. This included upregulation of the major histocompatibility complex class II pathway, supporting a role for ECs in the inflammatory response in PAH. We also identified a PAH response specific to the second capillary EC population including upregulation of genes involved in cell death, cell motility, and angiogenesis. Interestingly, four genes with genetic variants associated with PAH were dysregulated in mouse ECs in PAH. To compare relevance across PAH models and species, we performed a detailed analysis of EC heterogeneity and response to PAH in rats and humans through whole-lung PAH scRNA-seq datasets, revealing that 51% of up-regulated mouse genes were also up-regulated in rat or human PAH. We identified promising new candidates to target endothelial dysfunction including CD74, the knockdown of which regulates EC proliferation and barrier integrity in vitro. Finally, with an in silico cell ordering approach, we identified zonation-dependent changes across the arteriovenous axis in mouse PAH and showed upregulation of the Serine/threonine-protein kinase Sgk1 at the junction between the macro- and microvasculature. CONCLUSION This study uncovers PAH-induced EC transcriptomic changes at a high resolution, revealing novel targets for potential therapeutic candidate development.
Collapse
Affiliation(s)
- Julie Rodor
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Shiau Haln Chen
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Jessica P Scanlon
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - João P Monteiro
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Axelle Caudrillier
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Sweta Sweta
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Katherine Ross Stewart
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Alena Shmakova
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Ross Dobie
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Beth E P Henderson
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Kevin Stewart
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Patrick W F Hadoke
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Mark Southwood
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Stephen D Moore
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Paul D Upton
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Nick W Morrell
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Ziwen Li
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Stephen Y Chan
- Divisions of Cardiology and Rheumatology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Adam Handen
- Divisions of Cardiology and Rheumatology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Divisions of Cardiology and Rheumatology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Laura P M H de Rooij
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Center for Cancer Biology, Leuven Cancer Institute (LKI), VIB and KU Leuven, Leuven 3000, Belgium
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Center for Cancer Biology, Leuven Cancer Institute (LKI), VIB and KU Leuven, Leuven 3000, Belgium
| | - Ana Mishel Spiroski
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Andrew H Baker
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
6
|
Darragh LB, Karam SD. Amateur antigen-presenting cells in the tumor microenvironment. Mol Carcinog 2022; 61:153-164. [PMID: 34570920 PMCID: PMC9899420 DOI: 10.1002/mc.23354] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Presentation of tumor antigens is a critical step in producing a robust antitumor immune response. Classically tumor antigens are thought to be presented to both CD8 and CD4 T cells by professional antigen-presenting cells (pAPCs) like dendritic cells using major histocompatibility complexes (MHC) I and II. But recent evidence suggests that in the tumor microenvironment (TME) cells other than pAPCs are capable of presenting tumor antigens on both MHC I and II. The evidence currently available on tumor antigen presentation by epithelial cells, vascular endothelial cells (VECs), fibroblasts, and cancer cells is reviewed herein. We refer to these cell types in the TME as "amateur" APCs (aAPCs). These aAPCs greatly outnumber pAPCs in the TME and could, potentially, play a significant role in priming an antitumor immune response. This new evidence supports a different perspective on antigen presentation and suggests new approaches that can be taken in designing immunotherapies to increase T cell priming.
Collapse
Affiliation(s)
- Laurel B. Darragh
- Department of Immunology, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Kitching AR, Hickey MJ. Immune cell behaviour and dynamics in the kidney - insights from in vivo imaging. Nat Rev Nephrol 2022; 18:22-37. [PMID: 34556836 DOI: 10.1038/s41581-021-00481-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
The actions of immune cells within the kidney are of fundamental importance in kidney homeostasis and disease. In disease settings such as acute kidney injury, anti-neutrophil cytoplasmic antibody-associated vasculitis, lupus nephritis and renal transplant rejection, immune cells resident within the kidney and those recruited from the circulation propagate inflammatory responses with deleterious effects on the kidney. As in most forms of inflammation, intravital imaging - particularly two-photon microscopy - has been critical to our understanding of immune cell responses in the renal microvasculature and interstitium, enabling visualization of immune cell dynamics over time rather than statically. These studies have demonstrated differences in the recruitment and function of these cells from those in more conventional vascular beds, and provided a wealth of information on the actions of blood-borne immune cells such as neutrophils, monocytes and T cells, as well as kidney-resident mononuclear phagocytes, in a range of diseases affecting different kidney compartments. In particular, in vivo imaging has furthered our understanding of leukocyte function within the glomerulus in acute glomerulonephritis, and in the tubulointerstitium and interstitial microvasculature during acute kidney injury and following transplantation, revealing mechanisms of immune surveillance, antigen presentation and inflammation in the kidney.
Collapse
Affiliation(s)
- A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia. .,Departments of Nephrology and Paediatric Nephrology, Monash Medical Centre, Clayton, Victoria, Australia.
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Olkowska-Truchanowicz J, Sztokfisz-Ignasiak A, Zwierzchowska A, Janiuk I, Dąbrowski F, Korczak-Kowalska G, Barcz E, Bocian K, Malejczyk J. Endometriotic Peritoneal Fluid Stimulates Recruitment of CD4 +CD25 highFOXP3 + Treg Cells. J Clin Med 2021; 10:jcm10173789. [PMID: 34501240 PMCID: PMC8432020 DOI: 10.3390/jcm10173789] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is a common gynecological disorder characterized by the presence of endometrial-like tissue outside the uterus. The disease is associated with disturbed local and systemic immunity. It has been reported that the proportion of CD4+CD25highFOXP3+ Treg cells may be significantly increased in the peritoneal fluid of patients with endometriosis. Therefore, the aim of our study was to investigate whether the proportions of Treg cells in the peritoneal cavity of patients with endometriosis are related to the chemotactic and stimulatory activity of the local peritoneal milieu. The peritoneal fluid was collected from 13 women with ovarian endometriosis and 12 control women without the disease. T cell populations were analyzed by flow cytometry, cytokines and chemokines were evaluated using the cytometric bead kit, and cell chemotaxis was studied by cell migration assay. We confirmed that the proportions of Treg cells are increased in the peritoneal fluid of women with endometriosis as compared to the control women. Endometriosis was also associated with elevated concentrations of IL-6, IL-10, and TGF-β1/2 as well as CCL20, CXCL8, CXCL9, and CXCL10. We did not reveal any changes in the proportion of peritoneal Th17 cells and concentrations of IL-17A. Peritoneal Treg cells positively correlated with concentrations of TGF-β, IL-10, and CCL20. Endometriotic peritoneal fluid stimulated chemotaxis of both CD4+ and Treg cells. This chemotactic activity positively correlated with concentrations of CCL20. CCL20 stimulated the migration of Treg cells, and the chemotactic activity of the endometriotic peritoneal fluid was inhibited by neutralizing anti-CCL20 antibodies. These results imply that increased proportions of the peritoneal Treg cells in women with endometriosis may result from attraction and activation by local chemokines and cytokines, especially CCL20 and TGF-β. Since Treg cells contribute to the immunopathogenesis of endometriosis, their chemotaxis and activation may be considered as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Joanna Olkowska-Truchanowicz
- Department of Transplantology and Central Tissue Bank, Center of Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland;
| | - Alicja Sztokfisz-Ignasiak
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.S.-I.); (I.J.)
| | - Aneta Zwierzchowska
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland; (A.Z.); (F.D.); (E.B.)
- Department of Obstetrics and Gynecology, Multidisciplinary Hospital Warsaw-Miedzylesie, 04-749 Warsaw, Poland
| | - Izabela Janiuk
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.S.-I.); (I.J.)
| | - Filip Dąbrowski
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland; (A.Z.); (F.D.); (E.B.)
- Department of Gynecology and Obstetrics, Medical University of Silesia, 40-055 Katowice, Poland
| | | | - Ewa Barcz
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland; (A.Z.); (F.D.); (E.B.)
- Department of Obstetrics and Gynecology, Multidisciplinary Hospital Warsaw-Miedzylesie, 04-749 Warsaw, Poland
| | - Katarzyna Bocian
- Department of Immunology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
- Correspondence: (K.B.); (J.M.)
| | - Jacek Malejczyk
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.S.-I.); (I.J.)
- Laboratory of Experimental Immunology, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Correspondence: (K.B.); (J.M.)
| |
Collapse
|
9
|
Norman MU, Chow Z, Snelgrove SL, Prakongtham P, Hickey MJ. Dynamic Regulation of the Molecular Mechanisms of Regulatory T Cell Migration in Inflamed Skin. Front Immunol 2021; 12:655499. [PMID: 34040606 PMCID: PMC8143438 DOI: 10.3389/fimmu.2021.655499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
The presence of regulatory T cells (Tregs) in skin is important in controlling inflammatory responses in this peripheral tissue. Uninflamed skin contains a population of relatively immotile Tregs often located in clusters around hair follicles. Inflammation induces a significant increase both in the abundance of Tregs within the dermis, and in the proportion of Tregs that are highly migratory. The molecular mechanisms underpinning Treg migration in the dermis are unclear. In this study we used multiphoton intravital microscopy to examine the role of RGD-binding integrins and signalling through phosphoinositide 3-kinase P110δ (PI3K p110δ) in intradermal Treg migration in resting and inflamed skin. We found that inflammation induced Treg migration was dependent on RGD-binding integrins in a context-dependent manner. αv integrin was important for Treg migration 24 hours after induction of inflammation, but contributed to Treg retention at 48 hours, while β1 integrin played a role in Treg retention at the later time point but not during the peak of inflammation. In contrast, inhibition of signalling through PI3K p110δ reduced Treg migration throughout the entire inflammatory response, and also in the absence of inflammation. Together these observations demonstrate that the molecular mechanisms controlling intradermal Treg migration vary markedly according to the phase of the inflammatory response.
Collapse
Affiliation(s)
- M Ursula Norman
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Zachary Chow
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Sarah L Snelgrove
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Peemapat Prakongtham
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| |
Collapse
|
10
|
Waldmann H, Graca L. Infectious tolerance. What are we missing? Cell Immunol 2020; 354:104152. [PMID: 32585469 DOI: 10.1016/j.cellimm.2020.104152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Herman Waldmann
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX13RE, UK.
| | - Luis Graca
- Instituto de Medecina Molecular, Faculdade de medicina da Universidade de Lisboa, Avenida professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
11
|
Abstract
HCC (hepatocellular carcinoma) is the second leading cause of cancer deaths worldwide, with several etiologic causes, mostly inflammation-associated. Different inflammatory responses in the liver can be triggered by different etiological agents. The inflammatory process can be resolved or be persistent, depending on the etiology and multiple other factors. Chronic inflammation, tissue remodeling, genetic alterations, and modifications in cellular signaling are considered to be key processes promoting immunosuppression. The progressive immunosuppression leads to the inactivation of anti-tumor immunity involved in HCC carcinogenesis and progression. Tumor cellular processes including DNA damage, necrosis, and ER (endoplasmic reticulum) stress can affect both immune-surveillance and cancer-promoting inflammation, supporting a mutual interdependence. Here, we review the current understanding of how chronic liver injury and inflammation is triggered and sustained, and how inflammation is linked to HCC. The identification of many hepatic microenvironmental inflammatory processes and their effector molecules, has resulted in extensive translational work and promising clinical trials of new immunomodulatory agents.
Collapse
|