1
|
Fahlberg MD, Forward S, Assita ER, Mazzola M, Kiem A, Handley M, Yun SH, Kwok SJJ. Overcoming fixation and permeabilization challenges in flow cytometry by optical barcoding and multi-pass acquisition. Cytometry A 2024. [PMID: 39467031 DOI: 10.1002/cyto.a.24904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
The fixation and permeabilization of cells are essential for labeling intracellular biomarkers in flow cytometry. However, these chemical treatments often alter fragile targets, such as cell surface and fluorescent proteins (FPs), and can destroy chemically-sensitive fluorescent labels. This reduces measurement accuracy and introduces compromises into sample workflows, leading to losses in data quality. Here, we demonstrate a novel multi-pass flow cytometry approach to address this long-standing problem. Our technique utilizes individual cell barcoding with laser particles, enabling sequential analysis of the same cells with single-cell resolution maintained. Chemically-fragile protein markers and their fluorochrome conjugates are measured prior to destructive sample processing and adjoined to subsequent measurements of intracellular markers after fixation and permeabilization. We demonstrate the effectiveness of our technique in accurately measuring intracellular FPs and methanol-sensitive antigens and fluorophores, along with various surface and intracellular markers. This approach significantly enhances assay flexibility, enabling accurate and comprehensive cellular analysis without the constraints of conventional one-time measurement flow cytometry. This innovation paves new avenues in flow cytometry for a wide range of applications in immuno-oncology, stem cell research, and cell biology.
Collapse
Affiliation(s)
| | | | | | - Michael Mazzola
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Anna Kiem
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Maris Handley
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Seok-Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
2
|
Fahlberg MD, Forward S, Assita ER, Mazzola M, Kiem A, Handley M, Yun SH, Kwok SJJ. Overcoming fixation and permeabilization challenges in flow cytometry by optical barcoding and multi-pass acquisition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607771. [PMID: 39185194 PMCID: PMC11343140 DOI: 10.1101/2024.08.13.607771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The fixation and permeabilization of cells are essential for labeling intracellular biomarkers in flow cytometry. However, these chemical treatments often alter fragile targets, such as cell surface and fluorescent proteins, and can destroy chemically-sensitive fluorescent labels. This reduces measurement accuracy and introduces compromises into sample workflows, leading to losses in data quality. Here, we demonstrate a novel multi-pass flow cytometry approach to address this long-standing problem. Our technique utilizes individual cell barcoding with laser particles, enabling sequential analysis of the same cells with single-cell resolution maintained. Chemically-fragile protein markers and their fluorochrome conjugates are measured prior to destructive sample processing and adjoined to subsequent measurements of intracellular markers after fixation and permeabilization. We demonstrate the effectiveness of our technique in accurately measuring intracellular fluorescent proteins and methanol-sensitive antigens and fluorophores, along with various surface and intracellular markers. This approach significantly enhances assay flexibility, enabling accurate and comprehensive cell analysis without the constraints of conventional one-time measurement flow cytometry. This innovation paves new avenues in flow cytometry for a wide range of applications in immuno-oncology, stem cell research, and cell biology.
Collapse
Affiliation(s)
| | | | | | - Michael Mazzola
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anna Kiem
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Maris Handley
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Seok-Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
| | | |
Collapse
|
3
|
Wei X, Weber S, Yin D, Allabauer I, Jobst-Schwan T, Wiesener M, Schiffer M, Dudziak D, Lehmann CHK, Woelfle J, Hoerning A. Pharmacodynamic Effect of mTOR Inhibition-based Immunosuppressive Therapy on T- and B-cell Subsets After Renal Transplantation. Transplant Direct 2024; 10:e1666. [PMID: 38911271 PMCID: PMC11191901 DOI: 10.1097/txd.0000000000001666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/12/2024] [Accepted: 03/09/2024] [Indexed: 06/25/2024] Open
Abstract
Background The mammalian target of rapamycin inhibitor (mTORi) therapy after kidney transplantation is solely monitored pharmacokinetically, not necessarily reflecting PI3K-Akt-mTOR pathway blockade efficacy leading to potential under-or overimmunosuppression. Methods In this cross-sectional study, phosphoflow cytometry was used to determine the efficacy of mTOR inhibition in peripheral T- and B-lymphocyte subsets by assessing p70S6 kinase (p70S6K) phosphorylation in renal transplant recipients upon treatment with a combination of either mTORi and calcineurin inhibitors (n = 18), or mTORi with mycophenolic acid (n = 9). Nine dialysis patients with end-stage renal disease and 17 healthy age-matched volunteers served as controls. Results mTORi treatment reduced p70S6K phosphorylation in CD4+, CD8+ T, and CD19+ B cells compared with healthy controls (HCs). Subpopulation analysis of CD4+ T cells and CD19+ B cells revealed a significant reduction of p70S6K phosphorylation in CD4+CD45RA-CD25- Th cells (P < 0.05), CD24hiCD38hi transitional B cells (P < 0.001), CD24+CD38- memory B cells (P < 0.001), and CD24intCD38int-naive B cells (P < 0.05) upon mTORi treatment, whereas CD4+CD45RA-CD25++CD127- regulatory T cells and CD24-CD38hi plasmablasts were not affected. Compared with mTORi + mycophenolic acid therapy, mTORi + calcineurin inhibitor treatment exhibited an even stronger inhibition of p70S6K phosphorylation in CD4+CD45RA-CD25- Th cells and CD8+ T cells. However, trough levels of mTORi did not correlate with p70S6K phosphorylation. Conclusions mTORi selectively inhibited p70S6K phosphorylation in select lymphocyte subtypes. Assessing p70S6K phosphorylation by phosphoflow cytometry may serve as an approach to understand cell subset specific effects of mTORi providing detailed pharmacodynamic information for individualizing immunosuppression.
Collapse
Affiliation(s)
- Xinyi Wei
- Pediatric Gastroenterology and Hepatology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- Department for Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sabine Weber
- Pediatric Gastroenterology and Hepatology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Decheng Yin
- Pediatric Gastroenterology and Hepatology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ida Allabauer
- Pediatric Gastroenterology and Hepatology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Tilman Jobst-Schwan
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Wiesener
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Diana Dudziak
- Institute of Immunology, Friedrich-Schiller University Jena, Jena, Germany
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Christian H. K. Lehmann
- Pediatric Gastroenterology and Hepatology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- FAU Profile Center Immunomedicine, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Joachim Woelfle
- Pediatric Gastroenterology and Hepatology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andre Hoerning
- Pediatric Gastroenterology and Hepatology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- FAU Profile Center Immunomedicine, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
4
|
Huang N, Winans T, Wyman B, Oaks Z, Faludi T, Choudhary G, Lai ZW, Lewis J, Beckford M, Duarte M, Krakko D, Patel A, Park J, Caza T, Sadeghzadeh M, Morel L, Haas M, Middleton F, Banki K, Perl A. Rab4A-directed endosome traffic shapes pro-inflammatory mitochondrial metabolism in T cells via mitophagy, CD98 expression, and kynurenine-sensitive mTOR activation. Nat Commun 2024; 15:2598. [PMID: 38519468 PMCID: PMC10960037 DOI: 10.1038/s41467-024-46441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
Activation of the mechanistic target of rapamycin (mTOR) is a key metabolic checkpoint of pro-inflammatory T-cell development that contributes to the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE), however, the underlying mechanisms remain poorly understood. Here, we identify a functional role for Rab4A-directed endosome traffic in CD98 receptor recycling, mTOR activation, and accumulation of mitochondria that connect metabolic pathways with immune cell lineage development and lupus pathogenesis. Based on integrated analyses of gene expression, receptor traffic, and stable isotope tracing of metabolic pathways, constitutively active Rab4AQ72L exerts cell type-specific control over metabolic networks, dominantly impacting CD98-dependent kynurenine production, mTOR activation, mitochondrial electron transport and flux through the tricarboxylic acid cycle and thus expands CD4+ and CD3+CD4-CD8- double-negative T cells over CD8+ T cells, enhancing B cell activation, plasma cell development, antinuclear and antiphospholipid autoantibody production, and glomerulonephritis in lupus-prone mice. Rab4A deletion in T cells and pharmacological mTOR blockade restrain CD98 expression, mitochondrial metabolism and lineage skewing and attenuate glomerulonephritis. This study identifies Rab4A-directed endosome traffic as a multilevel regulator of T cell lineage specification during lupus pathogenesis.
Collapse
Affiliation(s)
- Nick Huang
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Thomas Winans
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Brandon Wyman
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Zachary Oaks
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Tamas Faludi
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Gourav Choudhary
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Zhi-Wei Lai
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Joshua Lewis
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Miguel Beckford
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Manuel Duarte
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Daniel Krakko
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Akshay Patel
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Joy Park
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Tiffany Caza
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Mahsa Sadeghzadeh
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Frank Middleton
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Katalin Banki
- Department of Pathology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Andras Perl
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA.
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA.
| |
Collapse
|
5
|
Neys SFH, Heutz JW, van Hulst JAC, Vink M, Bergen IM, de Jong PHP, Lubberts E, Hendriks RW, Corneth OBJ. Aberrant B cell receptor signaling in circulating naïve and IgA + memory B cells from newly-diagnosed autoantibody-positive rheumatoid arthritis patients. J Autoimmun 2024; 143:103168. [PMID: 38350168 DOI: 10.1016/j.jaut.2024.103168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
OBJECTIVE Altered B cell receptor (BCR) signaling has been implicated in the pathogenesis of rheumatoid arthritis (RA). Here we aimed to identify signaling aberrations in autoantibody-positive and autoantibody-negative RA patients by performing a comprehensive analysis of the BCR signaling cascade in different B cell subsets. METHODS We first optimized phosphoflow cytometry for an in-depth analysis of BCR signaling across immunoglobulin isotypes in healthy donors. Subsequently, we compared BCR signaling in circulating B cell subsets from treatment-naïve, newly-diagnosed autoantibody-positive RA and autoantibody-negative RA patients and healthy controls (HCs). RESULTS We observed subset-specific phosphorylation patterns of the BCR signalosome in circulating B cells from healthy donors. Compared with HCs, autoantibody-positive RA patients displayed enhanced responses to BCR stimulation for multiple signaling proteins, specifically in naïve and IgA+ memory B cells. Whereas in unstimulated healthy donor B cells, the phosphorylation status of individual signaling proteins showed only limited correlation, BCR stimulation enhanced the interconnectivity in phosphorylation within the BCR signalosome. However, this strong interconnectivity within the BCR signalosome in stimulated B cells from HCs was lost in RA, especially in autoantibody-positive RA patients. Finally, we observed strong correlations between SYK and BTK protein expression, and IgA and IgG anti-citrullinated protein antibody concentrations in serum from autoantibody-positive RA patients. CONCLUSION Collectively, the isotype-specific analysis of multiple key components of the BCR signalosome identified aberrant BCR signaling responses in treatment-naïve autoantibody-positive RA patients, particularly in naïve B cells and IgA+ memory B cells. Our findings support differential involvement of dysregulated BCR signaling in the pathogenesis of autoantibody-positive and autoantibody-negative RA.
Collapse
Affiliation(s)
- Stefan F H Neys
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Judith W Heutz
- Department of Rheumatology, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | | | - Madelief Vink
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Ingrid M Bergen
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Pascal H P de Jong
- Department of Rheumatology, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Simpson A, Jones SA, Fairfax KA. Intracellular Flow Cytometry ("Phosphoflow") to Assess Signal Transduction in Rare Populations Such As Memory B Cell Subsets and Plasma Cells. Methods Mol Biol 2024; 2826:151-163. [PMID: 39017892 DOI: 10.1007/978-1-0716-3950-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Intracellular flow cytometry is a powerful technique that can be used to interrogate signalling in rare cellular populations. The strengths of the technique are that massively parallel readouts can be gained from thousands of single cells simultaneously, and the assay is fast and relatively straightforward. This plate-based protocol enables different doses and different timepoints of stimulation to be assessed and has been optimized for rare B cell populations. Combining this technique with high-dimensional flow cytometry enables multiple signalling proteins to be measured with high confidence.
Collapse
|
7
|
Gill RF, Mathieu PA, Lash LH, Rosenspire AJ. Naturally occurring autoimmune disease in (NZB X NZW) F1 mice is correlated with suppression of MZ B cell development due to aberrant B Cell Receptor (BCR) signaling, which is exacerbated by exposure to inorganic mercury. Toxicol Sci 2023; 197:kfad120. [PMID: 37952249 PMCID: PMC10823778 DOI: 10.1093/toxsci/kfad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Abstract
Autoimmune diseases are multifactorial and include environmental as well as genetic drivers. Although much progress has been made in understanding the nature of genetic underpinnings of autoimmune disease, by comparison much less is understood regarding how environmental factors interact with genetics in the development of autoimmunity and autoimmune disease. In this report, we utilize the (NZB X NZW) F1 mouse model of Systemic Lupus Erythematosus (SLE). Mercury is a xenobiotic that is environmentally ubiquitous and is epidemiologically linked with the development of autoimmunity. Among other attributes of human SLE, (NZB X NZW) F1 mice spontaneously develop autoimmune-mediated kidney disease. It has been previously shown that if (NZB X NZW) F1 mice are exposed to inorganic mercury (Hg2+), the development of autoimmunity, including autoimmune kidney pathology, is accelerated. We now show that in these mice the development of kidney disease is correlated with a decreased percentage of marginal zone (MZ) B cells in the spleen. In Hg2+-intoxicated mice, kidney disease is significantly augmented, and matched by a greater decrease in MZ B cell splenic percentages than found in control mice. In Hg2+- intoxicated mice, the decrease in MZ B cells appears to be linked to aberrant B Cell Receptor (BCR) signal strength in transitory 2 (T2) B cells, developmental precursors of MZ B cells.
Collapse
Affiliation(s)
- Randall F Gill
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, Michigan 48201, USA
| | - Patricia A Mathieu
- Department of Pharmacology, Wayne State University, Detroit, Michigan 48201, USA
| | - Lawrence H Lash
- Department of Pharmacology, Wayne State University, Detroit, Michigan 48201, USA
| | - Allen J Rosenspire
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
8
|
Toney NJ, Schlom J, Donahue RN. Phosphoflow cytometry to assess cytokine signaling pathways in peripheral immune cells: potential for inferring immune cell function and treatment response in patients with solid tumors. J Exp Clin Cancer Res 2023; 42:247. [PMID: 37741983 PMCID: PMC10517546 DOI: 10.1186/s13046-023-02802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/17/2023] [Indexed: 09/25/2023] Open
Abstract
Tumor biopsy is often not available or difficult to obtain in patients with solid tumors. Investigation of the peripheral immune system allows for in-depth and dynamic profiling of patient immune response prior to and over the course of treatment and disease. Phosphoflow cytometry is a flow cytometry‒based method to detect levels of phosphorylated proteins in single cells. This method can be applied to peripheral immune cells to determine responsiveness of signaling pathways in specific immune subsets to cytokine stimulation, improving on simply defining numbers of populations of cells based on cell surface markers. Here, we review studies using phosphoflow cytometry to (a) investigate signaling pathways in cancer patients' peripheral immune cells compared with healthy donors, (b) compare immune cell function in peripheral immune cells with the tumor microenvironment, (c) determine the effects of agents on the immune system, and (d) predict cancer patient response to treatment and outcome. In addition, we explore the use and potential of phosphoflow cytometry in preclinical cancer models. We believe this review is the first to provide a comprehensive summary of how phosphoflow cytometry can be applied in the field of cancer immunology, and demonstrates that this approach holds promise in exploring the mechanisms of response or resistance to immunotherapy both prior to and during the course of treatment. Additionally, it can help identify potential therapeutic avenues that can restore normal immune cell function and improve cancer patient outcome.
Collapse
Affiliation(s)
- Nicole J Toney
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Khan S, Chakraborty M, Wu F, Chen N, Wang T, Chan YT, Sayad A, Vásquez JDS, Kotlyar M, Nguyen K, Huang Y, Alibhai FJ, Woo M, Li RK, Husain M, Jurisica I, Gehring AJ, Ohashi PS, Furman D, Tsai S, Winer S, Winer DA. B Cells Promote T Cell Immunosenescence and Mammalian Aging Parameters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.556363. [PMID: 38529494 PMCID: PMC10962733 DOI: 10.1101/2023.09.12.556363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
A dysregulated adaptive immune system is a key feature of aging, and is associated with age-related chronic diseases and mortality. Most notably, aging is linked to a loss in the diversity of the T cell repertoire and expansion of activated inflammatory age-related T cell subsets, though the main drivers of these processes are largely unknown. Here, we find that T cell aging is directly influenced by B cells. Using multiple models of B cell manipulation and single-cell omics, we find B cells to be a major cell type that is largely responsible for the age-related reduction of naive T cells, their associated differentiation towards pathogenic immunosenescent T cell subsets, and for the clonal restriction of their T cell receptor (TCR). Accordingly, we find that these pathogenic shifts can be therapeutically targeted via CD20 monoclonal antibody treatment. Mechanistically, we uncover a new role for insulin receptor signaling in influencing age-related B cell pathogenicity that in turn induces T cell dysfunction and a decline in healthspan parameters. These results establish B cells as a pivotal force contributing to age-associated adaptive immune dysfunction and healthspan outcomes, and suggest new modalities to manage aging and related multi-morbidity.
Collapse
Affiliation(s)
- Saad Khan
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Mainak Chakraborty
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Fei Wu
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Nan Chen
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Tao Wang
- Department of Physiology, University of Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1X8, Canada
| | - Yi Tao Chan
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Azin Sayad
- Princess Margaret Cancer Centre, University Health Network, ON M5G 2C1, Canada
| | - Juan Diego Sánchez Vásquez
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto, ON M5T 0S8, Canada
| | - Khiem Nguyen
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Yingxiang Huang
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Faisal J. Alibhai
- Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
| | - Minna Woo
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University Health Network, University of Toronto, ON M5G 1L7, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Division of Cardiac Surgery, University Health Network, University of Toronto, ON M5G IL7, Canada
| | - Mansoor Husain
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
- Department of Physiology, University of Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1X8, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto, ON M5T 0S8, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, ON M5S 2E4, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Adam J. Gehring
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto Center for Liver Disease & Schwartz Reisman Liver Research Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Pamela S. Ohashi
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, ON M5G 2C1, Canada
| | - David Furman
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2RS, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Daniel A. Winer
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| |
Collapse
|
10
|
Adori M, Khoenkhoen S, Zhang J, Dopico XC, Karlsson Hedestam GB. Enhanced B Cell Receptor Signaling Partially Compensates for Impaired Toll-like Receptor 4 Responses in LPS-Stimulated IκBNS-Deficient B Cells. Cells 2023; 12:cells12091229. [PMID: 37174629 PMCID: PMC10177494 DOI: 10.3390/cells12091229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Lipopolysaccharide (LPS) stimulates dual receptor signaling by bridging the B cell receptor and Toll-like receptor 4 (BCR/TLR4). B cells from IκBNS-deficient bumble mice treated with LPS display reduced proliferative capacity and impaired plasma cell differentiation. To improve our understanding of the regulatory role of IκBNS in B cell activation and differentiation, we investigated the BCR and TLR4 signaling pathways separately by using dimeric anti-IgM Fab (F(ab')2) or lipid A, respectively. IκBNS-deficient B cells exhibited reduced survival and defective proliferative capacity in response to lipid A compared to B cells from wildtype (wt) control mice. In contrast, anti-IgM stimulation of bumble B cells resulted in enhanced viability and increased differentiation into CD138+ cells compared to control B cells. Anti-IgM-stimulated IκBNS-deficient B cells also showed enhanced cycle progression with increased levels of c-Myc and cyclin D2, and augmented levels of pCD79a, pSyk, and pERK compared to control B cells. These results suggest that IκBNS acts as a negative regulator of BCR signaling and a positive regulator of TLR4 signaling in mouse B cells.
Collapse
Affiliation(s)
- Monika Adori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jingdian Zhang
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism and Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | |
Collapse
|
11
|
del Pino-Molina L, Bravo Gallego LY, Soto Serrano Y, Reche Yebra K, Marty Lobo J, González Martínez B, Bravo García-Morato M, Rodríguez Pena R, van der Burg M, López Granados E. Research-based flow cytometry assays for pathogenic assessment in the human B-cell biology of gene variants revealed in the diagnosis of inborn errors of immunity: a Bruton's tyrosine kinase case-study. Front Immunol 2023; 14:1095123. [PMID: 37197664 PMCID: PMC10183671 DOI: 10.3389/fimmu.2023.1095123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023] Open
Abstract
Introduction Inborn errors of immunity (IEI) are an expanding group of rare diseases whose field has been boosted by next-generation sequencing (NGS), revealing several new entities, accelerating routine diagnoses, expanding the number of atypical presentations and generating uncertainties regarding the pathogenic relevance of several novel variants. Methods Research laboratories that diagnose and provide support for IEI require accurate, reproducible and sustainable phenotypic, cellular and molecular functional assays to explore the pathogenic consequences of human leukocyte gene variants and contribute to their assessment. We have implemented a set of advanced flow cytometry-based assays to better dissect human B-cell biology in a translational research laboratory. We illustrate the utility of these techniques for the in-depth characterization of a novel (c.1685G>A, p.R562Q) de novo gene variant predicted as probably pathogenic but with no previous insights into the protein and cellular effects, located in the tyrosine kinase domain of the Bruton's tyrosine kinase (BTK) gene, in an apparently healthy 14-year-old male patient referred to our clinic for an incidental finding of low immunoglobulin (Ig) M levels with no history of recurrent infections. Results and discussion A phenotypic analysis of bone marrow (BM) revealed a slightly high percentage of pre-B-I subset in BM, with no blockage at this stage, as typically observed in classical X-linked agammaglobulinemia (XLA) patients. The phenotypic analysis in peripheral blood also revealed reduced absolute numbers of B cells, all pre-germinal center maturation stages, together with reduced but detectable numbers of different memory and plasma cell isotypes. The R562Q variant allows Btk expression and normal activation of anti-IgM-induced phosphorylation of Y551 but diminished autophosphorylation at Y223 after anti IgM and CXCL12 stimulation. Lastly, we explored the potential impact of the variant protein for downstream Btk signaling in B cells. Within the canonical nuclear factor kappa B (NF-κB) activation pathway, normal IκBα degradation occurs after CD40L stimulation in patient and control cells. In contrast, disturbed IκBα degradation and reduced calcium ion (Ca2+) influx occurs on anti-IgM stimulation in the patient's B cells, suggesting an enzymatic impairment of the mutated tyrosine kinase domain.
Collapse
Affiliation(s)
- L. del Pino-Molina
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III (ISCII)I (CIBERER), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- *Correspondence: L. del Pino-Molina, ; E. López Granados,
| | - L. Y. Bravo Gallego
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III (ISCII)I (CIBERER), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Y. Soto Serrano
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - K. Reche Yebra
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - J. Marty Lobo
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - B. González Martínez
- Pediatric Hemato-Oncology Unit, La Paz University Hospital Madrid, Madrid, Spain
| | - M. Bravo García-Morato
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III (ISCII)I (CIBERER), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital Madrid, Madrid, Spain
| | - R. Rodríguez Pena
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III (ISCII)I (CIBERER), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital Madrid, Madrid, Spain
| | - M. van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Centre, Leiden, Netherlands
| | - E. López Granados
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III (ISCII)I (CIBERER), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital Madrid, Madrid, Spain
- *Correspondence: L. del Pino-Molina, ; E. López Granados,
| |
Collapse
|
12
|
Corneth OBJ, Neys SFH, Hendriks RW. Aberrant B Cell Signaling in Autoimmune Diseases. Cells 2022; 11:cells11213391. [PMID: 36359789 PMCID: PMC9654300 DOI: 10.3390/cells11213391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Aberrant B cell signaling plays a critical in role in various systemic and organ-specific autoimmune diseases. This is supported by genetic evidence by many functional studies in B cells from patients or specific animal models and by the observed efficacy of small-molecule inhibitors. In this review, we first discuss key signal transduction pathways downstream of the B cell receptor (BCR) that ensure that autoreactive B cells are removed from the repertoire or functionally silenced. We provide an overview of aberrant BCR signaling that is associated with inappropriate B cell repertoire selection and activation or survival of peripheral B cell populations and plasma cells, finally leading to autoantibody formation. Next to BCR signaling, abnormalities in other signal transduction pathways have been implicated in autoimmune disease. These include reduced activity of several phosphates that are downstream of co-inhibitory receptors on B cells and increased levels of BAFF and APRIL, which support survival of B cells and plasma cells. Importantly, pathogenic synergy of the BCR and Toll-like receptors (TLR), which can be activated by endogenous ligands, such as self-nucleic acids, has been shown to enhance autoimmunity. Finally, we will briefly discuss therapeutic strategies for autoimmune disease based on interfering with signal transduction in B cells.
Collapse
|
13
|
Rijvers L, van Langelaar J, Bogers L, Melief MJ, Koetzier SC, Blok KM, Wierenga-Wolf AF, de Vries HE, Rip J, Corneth OB, Hendriks RW, Grenningloh R, Boschert U, Smolders J, van Luijn MM. Human T-bet+ B cell development is associated with BTK activity and suppressed by evobrutinib. JCI Insight 2022; 7:160909. [PMID: 35852869 PMCID: PMC9462504 DOI: 10.1172/jci.insight.160909] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Recent clinical trials have shown promising results for the next-generation Bruton’s tyrosine kinase (BTK) inhibitor evobrutinib in the treatment of multiple sclerosis (MS). BTK has a central role in signaling pathways that govern the development of B cells. Whether and how BTK activity shapes B cells as key drivers of MS is currently unclear. Compared with levels of BTK protein, we found higher levels of phospho-BTK in ex vivo blood memory B cells from patients with relapsing-remitting MS and secondary progressive MS compared with controls. In these MS groups, BTK activity was induced to a lesser extent after anti-IgM stimulation. BTK positively correlated with CXCR3 expression, both of which were increased in blood B cells from clinical responders to natalizumab (anti–VLA-4 antibody) treatment. Under in vitro T follicular helper–like conditions, BTK phosphorylation was enhanced by T-bet–inducing stimuli, IFN-γ and CpG-ODN, while the expression of T-bet and T-bet–associated molecules CXCR3, CD21, and CD11c was affected by evobrutinib. Furthermore, evobrutinib interfered with in vitro class switching, as well as memory recall responses, and disturbed CXCL10-mediated migration of CXCR3+ switched B cells through human brain endothelial monolayers. These findings demonstrate a functional link between BTK activity and disease-relevant B cells and offer valuable insights into how next-generation BTK inhibitors could modulate the clinical course of patients with MS.
Collapse
Affiliation(s)
| | | | | | | | | | - Katelijn M. Blok
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | | | - Odilia B.J. Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Ursula Boschert
- Ares Trading SA, Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)
| | - Joost Smolders
- Department of Immunology and
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | |
Collapse
|
14
|
Tetraspanin CD53 controls T cell immunity through regulation of CD45RO stability, mobility, and function. Cell Rep 2022; 39:111006. [PMID: 35767951 DOI: 10.1016/j.celrep.2022.111006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 05/02/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022] Open
Abstract
T cells depend on the phosphatase CD45 to initiate T cell receptor signaling. Although the critical role of CD45 in T cells is established, the mechanisms controlling function and localization in the membrane are not well understood. Moreover, the regulation of specific CD45 isoforms in T cell signaling remains unresolved. By using unbiased mass spectrometry, we identify the tetraspanin CD53 as a partner of CD45 and show that CD53 controls CD45 function and T cell activation. CD53-negative T cells (Cd53-/-) exhibit substantial proliferation defects, and Cd53-/- mice show impaired tumor rejection and reduced IFNγ-producing T cells compared with wild-type mice. Investigation into the mechanism reveals that CD53 is required for CD45RO expression and mobility. In addition, CD53 is shown to stabilize CD45 on the membrane and is required for optimal phosphatase activity and subsequent Lck activation. Together, our findings reveal CD53 as a regulator of CD45 activity required for T cell immunity.
Collapse
|
15
|
Hinke DM, Andersen TK, Gopalakrishnan RP, Skullerud LM, Werninghaus IC, Grødeland G, Fossum E, Braathen R, Bogen B. Antigen bivalency of antigen-presenting cell-targeted vaccines increases B cell responses. Cell Rep 2022; 39:110901. [PMID: 35649357 DOI: 10.1016/j.celrep.2022.110901] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 04/09/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
Antibodies are important for vaccine efficacy. Targeting antigens to antigen-presenting cells (APCs) increases antibody levels. Here, we explore the role of antigen valency in MHC class II (MHCII)-targeted vaccines delivered as DNA. We design heterodimeric proteins that carry either two identical (bivalent vaccines), or two different antigens (monovalent vaccines). Bivalent vaccines with two identical influenza hemagglutinins (HA) elicit higher amounts of anti-HA antibodies in mice than monovalent versions with two different HAs. Bivalent vaccines increase the levels of germinal center (GC) B cells and long-lived plasma cells. Only HA-bivalent vaccines completely protect mice against challenge with homologous influenza virus. Similar results are obtained with other antigens by targeting CD11c and Xcr1 on dendritic cells (DCs) or when administering the vaccine as protein with adjuvant. Bivalency probably increases B cell responses by cross-linking BCRs in readily observable DC-B cell synapses. These results are important for generating potent APC-targeted vaccines.
Collapse
Affiliation(s)
- Daniëla Maria Hinke
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | - Tor Kristian Andersen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | | | - Lise Madelene Skullerud
- Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | | | - Gunnveig Grødeland
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | - Even Fossum
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | - Ranveig Braathen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway.
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway.
| |
Collapse
|
16
|
Neys SFH, Verstappen GM, Bootsma H, Kroese FGM, Hendriks RW, Corneth OBJ. Decreased BAFF Receptor Expression and Unaltered B Cell Receptor Signaling in Circulating B Cells from Primary Sjögren's Syndrome Patients at Diagnosis. Int J Mol Sci 2022; 23:ijms23095101. [PMID: 35563492 PMCID: PMC9103204 DOI: 10.3390/ijms23095101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023] Open
Abstract
Animal models of autoimmunity and human genetic association studies indicate that the dysregulation of B-cell receptor (BCR) signaling is an important driver of autoimmunity. We previously showed that in circulating B cells from primary Sjögren’s syndrome (pSS) patients with high systemic disease activity, protein expression of the BCR signaling molecule Bruton’s tyrosine kinase (BTK) was increased and correlated with T-cell infiltration in the target organ. We hypothesized that these alterations could be driven by increased B-cell activating factor (BAFF) levels in pSS. Here, we investigated whether altered BCR signaling was already present at diagnosis and distinguished pSS from non-SS sicca patients. Using (phospho-)flow cytometry, we quantified the phosphorylation of BCR signaling molecules, and investigated BTK and BAFF receptor (BAFFR) expression in circulating B cell subsets in an inception cohort of non-SS sicca and pSS patients, as well as healthy controls (HCs). We found that both BTK protein levels and BCR signaling activity were comparable among groups. Interestingly, BAFFR expression was significantly downregulated in pSS, but not in non-SS sicca patients, compared with HCs, and correlated with pSS-associated alterations in B cell subsets. These data indicate reduced BAFFR expression as a possible sign of early B cell involvement and a diagnostic marker for pSS.
Collapse
Affiliation(s)
- Stefan F. H. Neys
- Department of Pulmonary Medicine, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Gwenny M. Verstappen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (G.M.V.); (H.B.); (F.G.M.K.)
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (G.M.V.); (H.B.); (F.G.M.K.)
| | - Frans G. M. Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (G.M.V.); (H.B.); (F.G.M.K.)
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Correspondence: (R.W.H.); (O.B.J.C.)
| | - Odilia B. J. Corneth
- Department of Pulmonary Medicine, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Correspondence: (R.W.H.); (O.B.J.C.)
| |
Collapse
|
17
|
Lee MSJ, Inoue T, Ise W, Matsuo-Dapaah J, Wing JB, Temizoz B, Kobiyama K, Hayashi T, Patil A, Sakaguchi S, Simon AK, Bezbradica JS, Nagatoishi S, Tsumoto K, Inoue JI, Akira S, Kurosaki T, Ishii KJ, Coban C. B cell-intrinsic TBK1 is essential for germinal center formation during infection and vaccination in mice. J Exp Med 2022; 219:212912. [PMID: 34910106 PMCID: PMC8679780 DOI: 10.1084/jem.20211336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023] Open
Abstract
The germinal center (GC) is a site where somatic hypermutation and clonal selection are coupled for antibody affinity maturation against infections. However, how GCs are formed and regulated is incompletely understood. Here, we identified an unexpected role of Tank-binding kinase-1 (TBK1) as a crucial B cell–intrinsic factor for GC formation. Using immunization and malaria infection models, we show that TBK1-deficient B cells failed to form GC despite normal Tfh cell differentiation, although some malaria-infected B cell–specific TBK1-deficient mice could survive by GC-independent mechanisms. Mechanistically, TBK1 phosphorylation elevates in B cells during GC differentiation and regulates the balance of IRF4/BCL6 expression by limiting CD40 and BCR activation through noncanonical NF-κB and AKTT308 signaling. In the absence of TBK1, CD40 and BCR signaling synergistically enhanced IRF4 expression in Pre-GC, leading to BCL6 suppression, and therefore failed to form GCs. As a result, memory B cells generated from TBK1-deficient B cells fail to confer sterile immunity upon reinfection, suggesting that TBK1 determines B cell fate to promote long-lasting humoral immunity.
Collapse
Affiliation(s)
- Michelle S J Lee
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Wataru Ise
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Julia Matsuo-Dapaah
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - James B Wing
- Laboratory of Human Immunology (Single Cell Immunology), Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Human Single Cell Immunology Team, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Burcu Temizoz
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kouji Kobiyama
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoya Hayashi
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - A Katharina Simon
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jelena S Bezbradica
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Satoru Nagatoishi
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Jun-Ichiro Inoue
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shizuo Akira
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Immunology Frontier Research Center, Osaka University, Osaka, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Immunology Frontier Research Center, Osaka University, Osaka, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Puech PH, Bongrand P. Mechanotransduction as a major driver of cell behaviour: mechanisms, and relevance to cell organization and future research. Open Biol 2021; 11:210256. [PMID: 34753321 PMCID: PMC8586914 DOI: 10.1098/rsob.210256] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
How do cells process environmental cues to make decisions? This simple question is still generating much experimental and theoretical work, at the border of physics, chemistry and biology, with strong implications in medicine. The purpose of mechanobiology is to understand how biochemical and physical cues are turned into signals through mechanotransduction. Here, we review recent evidence showing that (i) mechanotransduction plays a major role in triggering signalling cascades following cell-neighbourhood interaction; (ii) the cell capacity to continually generate forces, and biomolecule properties to undergo conformational changes in response to piconewton forces, provide a molecular basis for understanding mechanotransduction; and (iii) mechanotransduction shapes the guidance cues retrieved by living cells and the information flow they generate. This includes the temporal and spatial properties of intracellular signalling cascades. In conclusion, it is suggested that the described concepts may provide guidelines to define experimentally accessible parameters to describe cell structure and dynamics, as a prerequisite to take advantage of recent progress in high-throughput data gathering, computer simulation and artificial intelligence, in order to build a workable, hopefully predictive, account of cell signalling networks.
Collapse
Affiliation(s)
- Pierre-Henri Puech
- Lab Adhesion and Inflammation (LAI), Inserm UMR 1067, CNRS UMR 7333, Aix-Marseille Université UM61, Marseille, France
| | - Pierre Bongrand
- Lab Adhesion and Inflammation (LAI), Inserm UMR 1067, CNRS UMR 7333, Aix-Marseille Université UM61, Marseille, France
| |
Collapse
|
19
|
Rip J, de Bruijn MJW, Neys SFH, Singh SP, Willar J, van Hulst JAC, Hendriks RW, Corneth OBJ. Bruton's tyrosine kinase inhibition induces rewiring of proximal and distal B-cell receptor signaling in mice. Eur J Immunol 2021; 51:2251-2265. [PMID: 34323286 PMCID: PMC9291019 DOI: 10.1002/eji.202048968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/31/2021] [Accepted: 07/22/2021] [Indexed: 12/04/2022]
Abstract
Bruton′s tyrosine kinase (Btk) is a crucial signaling molecule in BCR signaling and a key regulator of B‐ cell differentiation and function. Btk inhibition has shown impressive clinical efficacy in various B‐cell malignancies. However, it remains unknown whether inhibition additionally induces changes in BCR signaling due to feedback mechanisms, a phenomenon referred to as BCR rewiring. In this report, we studied the impact of Btk activity on major components of the BCR signaling pathway in mice. As expected, NF‐κB and Akt/S6 signaling was decreased in Btk‐deficient B cells. Unexpectedly, phosphorylation of several proximal signaling molecules, including CD79a, Syk, and PI3K, as well as the key Btk‐effector PLCγ2 and the more downstream kinase Erk, were significantly increased. This pattern of BCR rewiring was essentially opposite in B cells from transgenic mice overexpressing Btk. Importantly, prolonged Btk inhibitor treatment of WT mice or mice engrafted with leukemic B cells also resulted in increased phosho‐CD79a and phospho‐PLCγ2 in B cells. Our findings show that Btk enzymatic function determines phosphorylation of proximal and distal BCR signaling molecules in B cells. We conclude that Btk inhibitor treatment results in rewiring of BCR signaling, which may affect both malignant and healthy B cells.
Collapse
Affiliation(s)
- Jasper Rip
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marjolein J W de Bruijn
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Stefan F H Neys
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Simar Pal Singh
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jonas Willar
- Department of Biology, Institute of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jennifer A C van Hulst
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Neys SFH, Heukels P, van Hulst JAC, Rip J, Wijsenbeek MS, Hendriks RW, Corneth OBJ. Aberrant B Cell Receptor Signaling in Naïve B Cells from Patients with Idiopathic Pulmonary Fibrosis. Cells 2021; 10:cells10061321. [PMID: 34073225 PMCID: PMC8226954 DOI: 10.3390/cells10061321] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/02/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and ultimately fatal disease in which an impaired healing response to recurrent micro-injuries is thought to lead to fibrosis. Recent findings hint at a role for B cells and autoimmunity in IPF pathogenesis. We previously reported that circulating B cells from a fraction of patients, compared with healthy controls, express increased levels of the signaling molecule Bruton’s tyrosine kinase (BTK). However, it remains unclear whether B cell receptor (BCR) signaling is altered in IPF. Here, we show that the response to BCR stimulation is enhanced in peripheral blood B cells from treatment-naïve IPF patients. We observed increased anti-immunoglobulin-induced phosphorylation of BTK and its substrate phospholipase Cγ2 (PLCγ2) in naïve but not in memory B cells of patients with IPF. In naïve B cells of IPF patients enhanced BCR signaling correlated with surface expression of transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI) but not B cell activating factor receptor (BAFFR), both of which provide pro-survival signals. Interestingly, treatment of IPF patients with nintedanib, a tyrosine kinase inhibitor with anti-fibrotic and anti-inflammatory activity, induced substantial changes in BCR signaling. These findings support the involvement of B cells in IPF pathogenesis and suggest that targeting BCR signaling has potential value as a treatment option.
Collapse
|
21
|
Koenig A, Charmetant X, Barba T, Sicard A, Espi M, Dussurgey S, Thaunat O. Improved cell signaling analysis by biofunctionalized nanospheres and imaging flow cytometry. Cytometry A 2021; 99:1079-1090. [PMID: 33866668 DOI: 10.1002/cyto.a.24354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 11/11/2022]
Abstract
The analysis of immune cell signaling is critical for the understanding of the biology and pathology of the immune system, and thus a mandatory step for the development of efficient biomarkers and targeted therapies. Phosflow, which has progressively replaced the traditional western blot approach, relies on flow cytometry to analyze various signaling pathways at a single-cell level. This technique however suffers a lack of sensitivity largely due to the low signal/noise ratio that characterizes cell signaling analysis. In this study, we describe a new technique, which combines the use of biofunctionalized nanospheres (i.e., synthetic particulate antigens, SPAg) to stimulate the immune cells in suspension and imaging flow cytometry to identify homogenously-stimulated cells and quantify the activity of the chosen signaling pathway in selected subcellular regions of interest. Using BCR signaling as model, we demonstrate that SIBERIAN (SPAg-assIsted suB-cEllulaR sIgnaling ANalysis) allows assessing immune cell signaling with unprecedented sensitivity and specificity.
Collapse
Affiliation(s)
- Alice Koenig
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Xavier Charmetant
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Thomas Barba
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Antoine Sicard
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Maxime Espi
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Sébastien Dussurgey
- University of Lyon, ENS de Lyon, Inserm, CNRS SFR Biosciences US8 UMS3444, UCBL, Lyon, France
| | - Olivier Thaunat
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| |
Collapse
|
22
|
Rip J, Hendriks RW, Corneth OBJ. A Versatile Protocol to Quantify BCR-mediated Phosphorylation in Human and Murine B Cell Subpopulations. Bio Protoc 2021; 11:e3902. [PMID: 33732789 DOI: 10.21769/bioprotoc.3902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022] Open
Abstract
Signal transduction is the process by which molecular signals are transmitted from the cell surface to its interior, resulting in functional changes inside the cell. B cell receptor (BCR) signaling is of crucial importance for B cells, as it regulates their differentiation, selection, survival, cellular activation and proliferation. Upon BCR engagement by antigen several protein kinases, lipases and linker molecules become phosphorylated. Phosphoflow cytometry (phosphoflow) is a flow cytometry-based method allowing for analysis of protein phosphorylation in single cells. Due to recent advances in methodology and antibody availability - together with the relatively easy quantification of phosphorylation - phosphoflow is increasingly and more commonly used, compared to classical western blot analysis. It can however be challenging to set-up a method that works for all targets of interest. Here, we present a step-by-step phosphoflow protocol allowing the evaluation of the phosphorylation status of signaling molecules in conjunction with extensive staining to identify various human and murine B cell subpopulations, as was previously published in the original paper by Rip et al. (2020). Next to a description of phosphoflow targets from the original paper, we provide directions on additional targets that play a pivotal role in BCR signaling. The step-by-step phosphoflow protocol is user-friendly and provides sensitive detection of phosphorylation of various BCR signaling molecules in human and murine B cell subpopulations.
Collapse
Affiliation(s)
- Jasper Rip
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, The Netherlands
| | | |
Collapse
|
23
|
Flow Cytometric Methods for the Detection of Intracellular Signaling Proteins and Transcription Factors Reveal Heterogeneity in Differentiating Human B Cell Subsets. Cells 2020; 9:cells9122633. [PMID: 33302385 PMCID: PMC7762542 DOI: 10.3390/cells9122633] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/28/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
The flow cytometric detection of intracellular (IC) signaling proteins and transcription factors (TFs) will help to elucidate the regulation of B cell survival, proliferation and differentiation. However, the simultaneous detection of signaling proteins or TFs with membrane markers (MMs) can be challenging, as the required fixation and permeabilization procedures can affect the functionality of conjugated antibodies. Here, a phosphoflow method is presented for the detection of activated NF-κB p65 and phosphorylated STAT1, STAT3, STAT5 and STAT6, together with the B cell differentiation MMs CD19, CD27 and CD38. Additionally, a TF-flow method is presented that allows the detection of the B cell TFs PAX5, c-MYC, BCL6 and AID and antibody-secreting cell (ASC) TFs BLIMP1 and XBP-1s, together with MMs. Applying these methods on in vitro-induced human B cell differentiation cultures showed significantly different steady-state levels, and responses to stimulation, of phosphorylated signaling proteins in CD27-expressing B cell and ASC populations. The TF-flow protocol and Uniform Manifold Approximation and Projection (UMAP) analysis revealed heterogeneity in TF expression within stimulated CD27- or CD38-expressing B cell subsets. The methods presented here allow for the sensitive analysis of STAT, NF-κB p65 signaling and TFs, together with B cell differentiation MMs, at single-cell resolution. This will aid the further investigation of B cell responses in both health and disease.
Collapse
|