1
|
Zhu QQ, Zhang Y, Cui L, Ma L, Sun KW. Downregulation of AQP9 Ameliorates NLRP3 Inflammasome-Dependent Inflammation and Pyroptosis in Crohn's Disease by Inhibiting the p38 MAPK Signaling Pathway. Mol Biotechnol 2025:10.1007/s12033-025-01382-z. [PMID: 39928266 DOI: 10.1007/s12033-025-01382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/15/2025] [Indexed: 02/11/2025]
Abstract
Crohn's disease (CD), a complex gastrointestinal disorder, can be attributed to a combination of genetic factors, immune system dysfunction, and environmental triggers. Aquaporin 9 (AQP9) has been implicated in immunoregulation and inflammation in various conditions, yet its function in CD remains unclear. Herein, we investigated the contribution of AQP9 to CD pathogenesis and its impact on inflammation and pyroptosis. Bioinformatic analysis showed a significant increase in AQP9 expression (above 2.5-fold change) in CD patients compared to controls. In vitro experiments using human colonic epithelial cells (HT-29) demonstrated that AQP9 inhibition attenuated lipopolysaccharide (LPS)-induced cell damage, inflammatory cytokine secretion, and pyroptosis. Mechanistically, AQP9 silencing suppressed NLRP3 inflammasome activation, suggesting a role in regulating pyroptosis. AQP9 silencing inhibited p38 MAPK phosphorylation, indicating a direct involvement in modulating this inflammatory pathway. Furthermore, our findings indicate that AQP9 exacerbates inflammation and pyroptosis via activating the p38 MAPK signaling pathway, known to contribute to CD pathogenesis. In vivo studies using a murine model of CD-like colitis revealed that AQP9 inhibition led to about 45% reduction in colitis severity scores and about 30% decrease in the production of inflammatory cytokine by inactivating NLRP3 inflammasome and the p38 MAPK signaling. To sum up, our study highlights the involvement of AQP9 in CD pathogenesis through modulation of inflammation and pyroptosis via the NLRP3 inflammasome and p38 MAPK signaling pathway. Targeting AQP9 may offer a promising therapeutic approach for CD by suppressing inflammatory responses and preventing tissue damage.
Collapse
Affiliation(s)
- Qin-Qin Zhu
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University (The First People's Hospital of Changzhou), No. 185 Juqian Street, Tianning District, Changzhou, 213000, Jiangsu, China
| | - Yin Zhang
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University (The First People's Hospital of Changzhou), No. 185 Juqian Street, Tianning District, Changzhou, 213000, Jiangsu, China
| | - Lu Cui
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University (The First People's Hospital of Changzhou), No. 185 Juqian Street, Tianning District, Changzhou, 213000, Jiangsu, China
| | - Liang Ma
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University (The First People's Hospital of Changzhou), No. 185 Juqian Street, Tianning District, Changzhou, 213000, Jiangsu, China.
| | - Ke-Wen Sun
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University (The First People's Hospital of Changzhou), No. 185 Juqian Street, Tianning District, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
2
|
Li Y, Wang X, Ren Y, Han BZ, Xue Y. Exploring the health benefits of food bioactive compounds from a perspective of NLRP3 inflammasome activation: an insight review. Crit Rev Food Sci Nutr 2025:1-26. [PMID: 39757837 DOI: 10.1080/10408398.2024.2448768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The food industry has been focusing on food bioactive compounds with multiple physiological and immunological properties that benefit human health. These bioactive compounds, including polyphenols, flavonoids, and terpenoids, have great potential to limit inflammatory responses especially NLRP3 inflammasome activation, which is a key innate immune platform for inflammation. Current studies have revealed numerous food bioactive compounds with promising activities for unraveling immune metabolic disorders and excessive inflammatory responses by directly and indirectly regulating the NLRP3 inflammasome activation. This review explores the food hazards, including microbial and abiotic factors, that may trigger NLRP3-mediated illnesses and inflammation. It also highlights bioactive compounds in food that can suppress NLRP3 inflammasome activation through various mechanisms, linking its activation and inhibition to different pathways. Especially, this review provided further insight into NLRP3-related targets where food bioactive compounds can interact to block the NLRP3 inflammasome activation process, as well as mechanisms on how these compounds facilitate inactivation processes.
Collapse
Affiliation(s)
- Yabo Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xinyi Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ying Ren
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bei-Zhong Han
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yansong Xue
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Vervaeke A, Lamkanfi M. MAP Kinase Signaling at the Crossroads of Inflammasome Activation. Immunol Rev 2025; 329:e13436. [PMID: 39754394 DOI: 10.1111/imr.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/14/2024] [Indexed: 01/06/2025]
Abstract
Inflammasomes are crucial mediators of both antimicrobial host defense and inflammatory pathology, requiring stringent regulation at multiple levels. This review explores the pivotal role of mitogen-activated protein kinase (MAPK) signaling in modulating inflammasome activation through various regulatory mechanisms. We detail recent advances in understanding MAPK-mediated regulation of NLRP3 inflammasome priming, licensing and activation, with emphasis on MAPK-induced activator protein-1 (AP-1) signaling in NLRP3 priming, ERK1 and JNK in NLRP3 licensing, and TAK1 in connecting death receptor signaling to NLRP3 inflammasome activation. Furthermore, we discuss novel insights into MAPK signaling in human NLRP1 inflammasome activation, focusing on the MAP3K member ZAKα as a key kinase linking ribosomal stress to inflammasome activation. Lastly, we review recent work elucidating how Bacillus anthracis lethal toxin (LeTx) manipulates host MAPK signaling to induce macrophage apoptosis as an immune evasion strategy, and the counteraction of this effect through genotype-specific Nlrp1b inflammasome activation in certain rodent strains.
Collapse
Affiliation(s)
- Alex Vervaeke
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Mohamed Lamkanfi
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Lv JM, Gao YL, Wang LY, Li BD, Shan YL, Wu ZQ, Lu QM, Peng HY, Zhou TT, Li XM, Zhang LM. Inhibition of the P38 MAPK/NLRP3 pathway mitigates cognitive dysfunction and mood alterations in aged mice after abdominal surgery plus sevoflurane. Brain Res Bull 2024; 217:111059. [PMID: 39216556 DOI: 10.1016/j.brainresbull.2024.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cognitive dysfunction, encompassing perioperative psychological distress and cognitive impairment, is a prevalent postoperative complication within the elderly population, and in severe cases, it may lead to dementia. Building upon our prior research that unveiled a connection between postoperative mood fluctuations and cognitive dysfunction with the phosphorylation of P38, this present investigation aims to delve deeper into the involvement of the P38 MAPK/NLRP3 pathway in perioperative neurocognitive disorders (PND) in an abdominal exploratory laparotomy (AEL) aged mice model. METHODS C57BL/6 mice (male, 18-month-old) underwent AEL with 3 % anesthesia. Then, inhibitors targeting P38 MAPK (SB202190, 1 mg/kg) and GSK3β (TWS119, 10 mg/kg) were administered multiple times daily for 7 days post-surgery. The NLRP3-cKO AEL and WT AEL groups only underwent the AEL procedure. Behavioral assessments, including the open field test (OFT), novel object recognition (NOR), force swimming test (FST), and fear conditioning (FC), were initiated on postoperative day 14. Additionally, mice designated for neuroelectrophysiological monitoring had electrodes implanted on day 14 before surgery and underwent novel object recognition while their local field potential (LFP) was concurrently recorded on postoperative day 14. Lastly, after they were euthanasized, pathological analysis and western blot were performed. RESULTS SB202190, TWS119, and astrocyte-conditional knockout NLRP3 all ameliorated the cognitive impairment behaviors induced by AEL in mice and increased mean theta power during novel location exploration. However, it is worth noting that SB202190 may exacerbate postoperative depressive and anxiety-like behaviors in mice, while TWS119 may induce impulsive behaviors. CONCLUSIONS Our study suggests that anesthesia and surgical procedures induce alterations in mood and cognition, which may be intricately linked to the P38 MAPK/NLRP3 pathway.
Collapse
Affiliation(s)
- Jin-Meng Lv
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China.
| | - Yi-Long Gao
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lu-Ying Wang
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Bao-Dong Li
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Yong-Lin Shan
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Zi-Qiang Wu
- Hebei Province Dongguang Traditional Chinese Medicine Hospital, Cangzhou, China.
| | - Qing-Meng Lu
- Hebei Province Cangxian Hospital, Cangzhou, China.
| | - Heng-Yue Peng
- Affiliated Stomatology Hospital of China Medical University, Shenyang, China.
| | - Ting-Ting Zhou
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China.
| | - Xiao-Ming Li
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China.
| | - Li-Min Zhang
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China; Department of Anesthesia and Trauma Research, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| |
Collapse
|
5
|
Delinois LJ, Sharma A, Ramesh AK, Boatright LD, Li Q, Xu R, Luo HR, Mishra BB, Sharma J. Poly(ADP-Ribose) Polymerase-1 Regulates Pyroptosis Independent Function of NLRP3 Inflammasome in Neutrophil Extracellular Trap Formation. Immunohorizons 2024; 8:586-597. [PMID: 39186692 PMCID: PMC11374751 DOI: 10.4049/immunohorizons.2400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) function to control infectious agents as well as to propagate inflammatory response in a variety of disease conditions. DNA damage associated with chromatin decondensation and NACHT domain-leucine-rich repeat-and pyrin domain-containing protein 3 (NLRP3) inflammasome activation have emerged as crucial events in NET formation, but the link between the two processes is unknown. In this study, we demonstrate that poly(ADP-ribose) polymerase-1 (PARP-1), a key DNA repair enzyme, regulates NET formation triggered by NLRP3 inflammasome activation in neutrophils. Activation of mouse neutrophils with canonical NLRP3 stimulants LPS and nigericin induced NET formation, which was significantly abrogated by pharmacological inhibition of PARP-1. We found that PARP-1 is required for NLRP3 inflammasome assembly by regulating post-transcriptional levels of NLRP3 and ASC dimerization. Importantly, this PARP-1-regulated NLRP3 activation for NET formation was independent of inflammasome-mediated pyroptosis, because caspase-1 and gasdermin D processing as well as IL-1β transcription and secretion remained intact upon PARP-1 inhibition in neutrophils. Accordingly, pharmacological inhibition or genetic ablation of caspase-1 and gasdermin D had no effect on NLRP3-mediated NET formation. Mechanistically, PARP-1 inhibition increased p38 MAPK activity, which was required for downmodulation of NLRP3 and NETs, because concomitant inhibition of p38 MAPK with PARP-1 restored NLRP3 activation and NET formation. Finally, mice undergoing bacterial peritonitis exhibited increased survival upon treatment with PARP-1 inhibitor, which correlated with increased leukocyte influx and improved intracellular bacterial clearance. Our findings reveal a noncanonical pyroptosis-independent role of NLRP3 in NET formation regulated by PARP-1 via p38 MAPK, which can be targeted to control NETosis in inflammatory diseases.
Collapse
Affiliation(s)
- Louis J. Delinois
- Division of Anesthesiology, Critical Care & Pain Medicine, Department of Critical Care, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Atul Sharma
- Division of Anesthesiology, Critical Care & Pain Medicine, Department of Critical Care, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ashwin K. Ramesh
- Division of Anesthesiology, Critical Care & Pain Medicine, Department of Critical Care, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Laurel D. Boatright
- Division of Anesthesiology, Critical Care & Pain Medicine, Department of Critical Care, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Qun Li
- Developmental Dentistry, UT Health Science Center at San Antonio, San Antonio, TX
| | - Rong Xu
- Pathology and Lab Medicine, Boston Children’s Hospital, Boston, MA
| | - Hongbo R. Luo
- Pathology and Lab Medicine, Boston Children’s Hospital, Boston, MA
| | - Bibhuti B. Mishra
- Developmental Dentistry, UT Health Science Center at San Antonio, San Antonio, TX
| | - Jyotika Sharma
- Division of Anesthesiology, Critical Care & Pain Medicine, Department of Critical Care, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
6
|
Zhang L, Duan M, Pu X, Zheng H, Ning X, Tu Y, Xu C, Zhang D, Liu C, Xie J. GroEL triggers NLRP3 inflammasome activation through the TLR/NF-κB p-p65 axis in human periodontal ligament stem cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1340-1351. [PMID: 38596842 PMCID: PMC11532219 DOI: 10.3724/abbs.2024050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024] Open
Abstract
The interaction between bacteria and the host plays a vital role in the initiation and progression of systemic diseases, including gastrointestinal and oral diseases, due to the secretion of various virulence factors from these pathogens. GroEL, a potent virulence factor secreted by multiple oral pathogenic bacteria, is implicated in the damage of gingival epithelium, periodontal ligament, alveolar bone and other peripheral tissues. However, the underlying biomechanism is still largely unknown. In the present study, we verify that GroEL can trigger the activation of NLRP3 inflammasome and its downstream effector molecules, IL-1β and IL-18, in human periodontal ligament stem cells (hPDLSCs) and resultantly induce high activation of gelatinases (MMP-2 and MMP-9) to promote the degradation of extracellular matrix (ECM). GroEL-mediated activation of the NLRP3 inflammasome requires the participation of Toll-like receptors (TLR2 and TLR4). High upregulation of TLR2 and TLR4 induces the enhancement of NF-κB (p-p65) signaling and promotes its nuclear accumulation, thus activating the NLRP3 inflammasome. These results are verified in a rat model with direct injection of GroEL. Collectively, this study provides insight into the role of virulence factors in bacteria-induced host immune response and may also provide a new clue for the prevention of periodontitis.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Huiling Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Xinjie Ning
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Ying Tu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Chunming Xu
- School of Basic MedicineGannan Medical UniversityGanzhou341000China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
7
|
Flis W, Socha MW. The Role of the NLRP3 Inflammasome in the Molecular and Biochemical Mechanisms of Cervical Ripening: A Comprehensive Review. Cells 2024; 13:600. [PMID: 38607039 PMCID: PMC11012148 DOI: 10.3390/cells13070600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
The uterine cervix is one of the key factors involved in ensuring a proper track of gestation and labor. At the end of the gestational period, the cervix undergoes extensive changes, which can be summarized as a transformation from a non-favorable cervix to one that is soft and prone to dilation. During a process called cervical ripening, fundamental remodeling of the cervical extracellular matrix (ECM) occurs. The cervical ripening process is a derivative of many interlocking and mutually driving biochemical and molecular pathways under the strict control of mediators such as inflammatory cytokines, nitric oxide, prostaglandins, and reactive oxygen species. A thorough understanding of all these pathways and learning about possible triggering factors will allow us to develop new, better treatment algorithms and therapeutic goals that could protect women from both dysfunctional childbirth and premature birth. This review aims to present the possible role of the NLRP3 inflammasome in the cervical ripening process, emphasizing possible mechanisms of action and regulatory factors.
Collapse
Affiliation(s)
- Wojciech Flis
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| |
Collapse
|
8
|
Wang J, Liu Y, Guo Y, Liu C, Yang Y, Fan X, Yang H, Liu Y, Ma T. Function and inhibition of P38 MAP kinase signaling: Targeting multiple inflammation diseases. Biochem Pharmacol 2024; 220:115973. [PMID: 38103797 DOI: 10.1016/j.bcp.2023.115973] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Inflammation is a natural host defense mechanism that protects the body from pathogenic microorganisms. A growing body of research suggests that inflammation is a key factor in triggering other diseases (lung injury, rheumatoid arthritis, etc.). However, there is no consensus on the complex mechanism of inflammatory response, which may include enzyme activation, mediator release, and tissue repair. In recent years, p38 MAPK, a member of the MAPKs family, has attracted much attention as a central target for the treatment of inflammatory diseases. However, many p38 MAPK inhibitors attempting to obtain marketing approval have failed at the clinical trial stage due to selectivity and/or toxicity issues. In this paper, we discuss the mechanism of p38 MAPK in regulating inflammatory response and its key role in major inflammatory diseases and summarize the synthetic or natural products targeting p38 MAPK to improve the inflammatory response in the last five years, which will provide ideas for the development of novel clinical anti-inflammatory drugs based on p38 MAPK inhibitors.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongjian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yushi Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cen Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuping Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxiao Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongliu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Tao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
9
|
Cao M, Shi M, Zhou B, Jiang H. An overview of the mechanisms and potential roles of extracellular vesicles in septic shock. Front Immunol 2024; 14:1324253. [PMID: 38343439 PMCID: PMC10853337 DOI: 10.3389/fimmu.2023.1324253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/29/2023] [Indexed: 02/15/2024] Open
Abstract
Septic shock, a subset of sepsis, is a fatal condition associated with high morbidity and mortality. However, the pathophysiology of septic shock is not fully understood. Moreover, the diagnostic markers employed for identifying septic shock lack optimal sensitivity and specificity. Current treatment protocols for septic shock have not been effective in lowering the mortality rate of patients. Most cells exhibit the capability to release extracellular vesicles (EVs), nanoscale vesicles that play a vital role in intercellular communication. In recent years, researchers have investigated the potential role of EVs in the pathogenesis, diagnosis, and treatment of different diseases, such as oncological, neurological, and cardiovascular diseases, as well as diabetes and septic shock. In this article, we present an overview of the inhibitory and facilitative roles that EVs play in the process of septic shock, the potential role of EVs in the diagnosis of septic shock, and the potential therapeutic applications of both native and engineered EVs in the management of septic shock.
Collapse
Affiliation(s)
- Meiling Cao
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mingyue Shi
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Boru Zhou
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongkun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Gayatri V, Krishna Prasad M, Mohandas S, Nagarajan S, Kumaran K, Ramkumar KM. Crosstalk between inflammasomes, inflammation, and Nrf2: Implications for gestational diabetes mellitus pathogenesis and therapeutics. Eur J Pharmacol 2024; 963:176241. [PMID: 38043778 DOI: 10.1016/j.ejphar.2023.176241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The role of inflammasomes in gestational diabetes mellitus (GDM) has emerged as a critical area of research in recent years. Inflammasomes, key components of the innate immune system, are now recognized for their involvement in the pathogenesis of GDM. Activation of inflammasomes in response to various triggers during pregnancy can produce pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-18 (IL-18), contributing to systemic inflammation and insulin resistance. This dysregulation not only impacts maternal health but also poses significant risks to fetal development and long-term health outcomes. Understanding the intricate interplay between inflammasomes and GDM holds promise for developing novel therapeutic strategies and interventions to mitigate the adverse effects of this condition on both mothers and their offspring. Researchers have elucidated that targeting inflammasomes using anti-inflammatory drugs and compounds can effectively reduce inflammation in GDM. Furthermore, the addition of nuclear factor erythroid 2-related factor 2 (Nrf2) to this complex mechanism opens novel avenues for therapeutics. The antioxidant properties of Nrf2 may potentially suppress inflammasome activation in GDM. This comprehensive review investigates the intricate relationship between inflammasomes and GDM, emphasizing the pivotal role of inflammation in its pathogenesis. It also sheds light on potential therapeutic strategies targeting inflammasome activation and explores the role of Nrf2 in mitigating inflammation in GDM.
Collapse
Affiliation(s)
- Vijaya Gayatri
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Murali Krishna Prasad
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sanjushree Nagarajan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kriya Kumaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
11
|
Ding S, Wang Y, Liu Z, Du Y, Zhou Y, Liu Y, Sun J, Li Y, Zeng L. Clodronate liposomes may biases MSC differentiation toward adipogenesis through activation of NLRP3. Regen Ther 2023; 24:54-63. [PMID: 37868719 PMCID: PMC10584668 DOI: 10.1016/j.reth.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/26/2023] [Accepted: 05/20/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Clodronate-Liposomes (Clod-Lipo) injection after hematopoietic stem cell transplantation (HSCT) has been shown to be detrimental to hematopoietic reconstitution after transplantation, and our previous study showed that Clod-Lipo injection after HSCT increased adipocytes in the bone marrow cavity of mice after HSCT, but the reason for the large increase in adipocytes has not been clearly explained. The aim of this study was to investigate the source and mechanism of bone marrow cavity adipocytes after HSCT injection of Clod-Lipo. Methods BALB/c mice received 7.5 Gy of total body irradiation followed by infusion of 5x106 bone marrow mononuclear cells from C57BL/6 via the tail vein. Clod-Lipo were injected through the tail vein on the first day after HSCT and every 5 days for the rest of the day. BALB/c mice were then divided into three groups: BMT, BMT + Clodronate-Liposomes (BMT + Clod-Lipo), and BMT + PBS-Liposomes (BMT + PBS-Lipo). Bone marrow pathological changes were detected by H&E staining, Western blot was used to detect the expression of NLRP3 and Caspase-1 in mouse bone marrow cells, and RT-qPCR was used to detect the expression levels of the key transcription factors peroxisome proliferator-activated receptor γ (PPAR-γ) and CCAAT/enhancer binding protein (C/EBPα) mRNA in bone marrow cells. Mouse mesenchymal stem cells (MSC) cultured in vitro were identified by flow cytometry, and adipocyte induction assays were performed using Clod-Lipo action for 24 h, Oil red staining was used to identify adipogenesis. Western blot was performed to detect NLRP3 and caspase-1 expression in MSC after Clod-Lipo action. Caspase-1 was blocked with Ac-YVAD-cmk (Ac-YV), followed by adipogenesis assay after 24 h of Clod-Lipo action to observe the change in the amount of adipogenesis. Results Compared with the other two groups, a significant increase in adipocytes was found in the Clod-Lipo group by HE staining, and increased expression of NLRP3 and Caspase-1 in mouse bone marrow cells was found by western Blot. By culturing MSC in vitro and performing adipogenesis assay after 24 h of Clod-Lipo action, it was found that adipogenesis was increased in the Clod-Lipo group, while the expression of NLRP3 and Caspase-1 was increased in MSCs, and adipogenesis assay was performed after 2 h of action using Caspase-1 inhibitor, and it was found that adipocytes was reduced. Conclusions The results of this study suggest that MSC are biased towards adipocyte generation in response to Clod-Lipo, a process that may be associated with activation of the NLRP3/caspase-1 pathway.
Collapse
Affiliation(s)
- Shuang Ding
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yuhan Wang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Xuzhou Medical University, China
| | - Zhiting Liu
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Xuzhou Medical University, China
| | - Yuwei Du
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Xuzhou Medical University, China
| | - Yi Zhou
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Xuzhou Medical University, China
| | - Yahui Liu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Xuzhou Medical University, China
| | - Jingfang Sun
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yue Li
- Xuzhou Medical University, China
| | - Lingyu Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Xuzhou Medical University, China
| |
Collapse
|
12
|
Kim DK, Huh JW, Yu H, Lee Y, Jin Y, Ha UH. Pseudomonas aeruginosa-Derived DnaJ Induces the Expression of IL-1β by Engaging the Interplay of p38 and ERK Signaling Pathways in Macrophages. Int J Mol Sci 2023; 24:15957. [PMID: 37958940 PMCID: PMC10648868 DOI: 10.3390/ijms242115957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
As members of pathogen-associated molecular patterns, bacterial heat shock proteins (HSPs) are widely recognized for their role in initiating innate immune responses. This study aimed to examine the impact of DnaJ, a homolog of HSP40 derived from Pseudomonas aeruginosa (P. aeruginosa), on the regulation of IL-1β expression in macrophages. We demonstrated that DnaJ modulates macrophages to secrete IL-1β by activating NF-κB and MAPK signaling pathways. Specifically, ERK was identified as a positive mediator for IL-1β expression, while p38 acted as a negative mediator. These results suggest that the reciprocal actions of these two crucial MAPKs play a vital role in controlling IL-1β expression. Additionally, the reciprocal actions of MAPKs were found to regulate the activation of inflammasome-related molecules, including vimentin, NLRP3, caspase-1, and GSDMD. Furthermore, our investigation explored the involvement of CD91/CD40 in ERK signaling-mediated IL-1β production from DnaJ-treated macrophages. These findings emphasize the importance of understanding the signaling mechanisms underlying IL-1β induction and suggest the potential utility of DnaJ as an adjuvant for stimulating inflammasome activation.
Collapse
Affiliation(s)
- Dae-Kyum Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.-K.K.); (J.-W.H.); (H.Y.); (Y.L.)
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| | - Jin-Won Huh
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.-K.K.); (J.-W.H.); (H.Y.); (Y.L.)
| | - Hyeonseung Yu
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.-K.K.); (J.-W.H.); (H.Y.); (Y.L.)
| | - Yeji Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.-K.K.); (J.-W.H.); (H.Y.); (Y.L.)
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Nankai University, Tianjin 300071, China;
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.-K.K.); (J.-W.H.); (H.Y.); (Y.L.)
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
13
|
Yang S, Bi Y, Wei Y, Li W, Liu J, Mao T, Tang Y. Muscone attenuates susceptibility to ventricular arrhythmia by inhibiting NLRP3 inflammasome activation in rats after myocardial infarction. J Biochem Mol Toxicol 2023; 37:e23458. [PMID: 37455625 DOI: 10.1002/jbt.23458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/14/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Fibrosis and abnormal expression of connexin 43 (Cx43) in the ventricle play vital roles in ventricular arrhythmias (VAs) after myocardial infarction (MI). Muscone, an active monomer of heart-protecting musk pill, has various biological activities, but its effect on susceptibility to VAs in rats with MI has not been determined. In the present study, we investigated the effects of muscone on ventricular inflammation, fibrosis, Cx43 expression, and the occurrence of VAs after MI. An MI model was established by ligating the proximal left anterior descending coronary artery. Then, the MI model rats were administered muscone (2 mg/kg/day) or vehicle (saline)via intragastric injection for 14 days. Cardiac function was evaluated by echocardiography, and an in vivo electrophysiological study was performed on Day 14. Cardiac inflammation, fibrosis, and Cx43 expression were determined by histochemical analysis and western blot analysis. Our results indicated that muscone treatment significantly improved cardiac function and inhibited ventricular inflammation, fibrosis, and nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3) inflammasome activation. Electrocardiogrphy and electrophysiology studies showed that muscone shortened the QRS interval, QT interval, QTc interval, and action potential duration; prolonged the effective refractory period; and reduced susceptibility to VAs in rats after MI. Furthermore, Cx43 expression in the BZ was increased by muscone treatment, and this change was coupled by inhibition of the NLRP3/IL-1β/p38 MAPK pathway. Taken together, our results demonstrated that muscone reduces susceptibility to VA, mainly by decreasing ventricular inflammation and fibrosis, and attenuates abnormal Cx43 expression by inhibiting NLRP3 inflammasome activation after myocardial infarction in rats.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, People's Republic of China
| | - Yingying Bi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, People's Republic of China
| | - Yanzhao Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, People's Republic of China
| | - Wei Li
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, People's Republic of China
| | - Jiangwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, People's Republic of China
| | - Tuohua Mao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
14
|
Daucosterol Alleviates Alcohol-Induced Hepatic Injury and Inflammation through P38/NF-κB/NLRP3 Inflammasome Pathway. Nutrients 2023; 15:nu15010223. [PMID: 36615880 PMCID: PMC9823995 DOI: 10.3390/nu15010223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Alcoholic liver disease (ALD) is caused by chronic excessive alcohol consumption, which leads to inflammation, oxidative stress, lipid accumulation, liver fibrosis/cirrhosis, and even liver cancer. However, there are currently no effective drugs for ALD. Herein, we report that a natural phytosterol Daucosterol (DAU) can effectively protect against liver injury caused by alcohol, which plays anti-inflammatory and antioxidative roles in many chronic inflammatory diseases. Our results demonstrate that DAU ameliorates liver inflammation induced by alcohol through p38/nuclear factor kappa B (NF-κB)/NOD-like receptor protein-3 (NLRP3) inflammasome pathway. Briefly, DAU decreases NF-κB nuclear translocation and inhibits NLRP3 activation by decreasing p38 phosphorylation. At the same time, DAU also protects against hepatic oxidative stress and lipid accumulation. In conclusion, our research provides a new clue about the protective effects of naturally active substances on ALD.
Collapse
|