1
|
Mallick S, Duttaroy AK, Bose B. A Snapshot of Cytokine Dynamics: A Fine Balance Between Health and Disease. J Cell Biochem 2024:e30680. [PMID: 39668456 DOI: 10.1002/jcb.30680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
Health and disease are intricately intertwined and often determined by the delicate balance of biological processes. Cytokines, a family of small signalling molecules, are pivotal in maintaining this balance, ensuring the body's immune system functions optimally. In a healthy condition, cytokines act as potent mediators of immune responses. They orchestrate the activities of immune cells, coordinating their proliferation, differentiation, and migration. This intricate role of cytokine signalling enables the body to effectively combat infections, repair damaged tissues, and regulate inflammation. However, the delicate equilibrium of cytokine production is susceptible to disruption. Excessive or abnormal cytokine levels can lead to a cascade of pathological conditions, including autoimmune diseases, chronic inflammation, infections, allergies, and even cancer. Interestingly, from the bunch of cytokines, few cytokines play an essential role in maintaining the balance between normal physiological status and diseases. In this review, we have appraised key cytokines' potential role and feedback loops in augmenting the imbalances in the body's biological functions, presenting a critical link between inflammation and disease pathology. Moreover, we have also highlighted the significance of cytokines and their molecular interplay, particularly in the recent viral pandemic COVID-19 disease. Hence, understandings regarding the interplay between viral infection and cytokine responses are essential and fascinating for developing effective therapeutic strategies.
Collapse
Affiliation(s)
- Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| |
Collapse
|
2
|
Chmiel J, Stasiak M, Skrzypkowska M, Samson L, Łuczkiewicz P, Trzonkowski P. Regulatory T lymphocytes as a treatment method for rheumatoid arthritis - Superiority of allogeneic to autologous cells. Heliyon 2024; 10:e36512. [PMID: 39319132 PMCID: PMC11419861 DOI: 10.1016/j.heliyon.2024.e36512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Cellular therapies utilizing regulatory T cells (Tregs) have flourished in the autoimmunity space as a new pillar of medicine. These cells have shown a great promise in the treatment of such devastating conditions as type 1 diabetes mellitus (T1DM), systemic lupus erythematosus (SLE) and graft versus host disease (GVHD). Novel treatment protocols, which utilize Tregs-mediated suppressive mechanisms, are based on the two main strategies: administration of immunomodulatory factors affecting Tregs or adoptive cell transfer (ACT). ACT involves extraction, in vitro expansion and subsequent administration of Tregs that could be either of autologous or allogeneic origin. Rheumatoid arthritis (RA) is another autoimmune candidate where this treatment approach is being considered. RA remains an especially challenging adversary since it is one of the most frequent and debilitating conditions among all autoaggressive disorders. Noteworthy, Tregs circulating in RA patients' blood have been proven defective and unable to suppress inflammation and joint destruction. With this knowledge, adoptive transfer of compromised autologous Tregs in the fledgling clinical trials involving RA patients should be reconsidered. In this article we hypothesize that incorporation of healthy donor allogeneic Tregs may provide more lucid and beneficial results.
Collapse
Affiliation(s)
- Joanna Chmiel
- University Clinical Centre in Gdańsk, Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Poland
- Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Mariusz Stasiak
- University Clinical Centre in Gdańsk, Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Poland
- Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Maria Skrzypkowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Lucjan Samson
- University Clinical Centre in Gdańsk, Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Poland
- Faculty of Medicine, Medical University of Gdańsk, Poland
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Poland
| |
Collapse
|
3
|
Yamada Z, Muraoka S, Kawazoe M, Hirose W, Kono H, Yasuda S, Sugihara T, Nanki T. Long-term effects of abatacept on atherosclerosis and arthritis in older vs. younger patients with rheumatoid arthritis: 3-year results of a prospective, multicenter, observational study. Arthritis Res Ther 2024; 26:87. [PMID: 38627782 PMCID: PMC11022315 DOI: 10.1186/s13075-024-03323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/14/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND We aimed to reveal the effect of abatacept (ABT) on atherosclerosis in rheumatoid arthritis (RA) patients, 3-year efficacy for arthritis, and safety in a population of older vs. younger patients. METHODS In this open-label, prospective, observational study, patients were stratified into four groups: younger (20-64 years old) and older (≥ 65 years) patients taking ABT (AY and AO) and conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) (CY and CO). Primary endpoints were change from baseline in mean intima-media thickness (IMT) of the common carotid artery, IMT max (bulbus, bifurcation, and internal and common carotid artery), and plaque score at Week 156. Disease activity, retention rate, and adverse effects were also evaluated. RESULTS The ABT group (AY + AO) tended to have smaller increases in mean IMT, max IMT, and plaque score than the csDMARD group (CY + CO) at Week 156, although the differences between groups were not statistically significant. Multivariate analysis showed significantly lower increases in plaque score with ABT than with csDMARDs, only when considering disease activity at 156 weeks (p = 0.0303). Proportions of patients with good or good/moderate European League Against Rheumatism response were higher in the ABT group, without significant difference between older and younger patients. No significant differences were observed in ABT retention rates between older and younger patients. Serious adverse effects, especially infection, tended to be more frequent with ABT than with csDMARDs, although no significant differences were found. CONCLUSIONS ABT may decelerate atherosclerosis progression and may be useful for patients with high risk of cardiovascular disease, such as older patients. TRIAL REGISTRATION NUMBER UMIN000014913.
Collapse
Affiliation(s)
- Zento Yamada
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Sei Muraoka
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Mai Kawazoe
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Wataru Hirose
- Hirose Clinic of Rheumatology, 2-14-7 Midoricho, Tokorozawa, 359-1111, Saitama, Japan
| | - Hajime Kono
- Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabshi- ku, Tokyo, 173-8606, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Endocrinology and Nephrology, Graduate School of Medicine, Faculty of Medicine, Hokkaido University, Kita 14, Nishi 5, Kita-ku, Sapporo, 060-8648, Japan
| | - Takahiko Sugihara
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
- Department of Medicine and Rheumatology, Tokyo Metropolitan Geriatric Hospital, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Toshihiro Nanki
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan.
| |
Collapse
|
4
|
Zhu J, Fan J, Xia Y, Wang H, Li Y, Feng Z, Fu C. Potential therapeutic targets of macrophages in inhibiting immune damage and fibrotic processes in musculoskeletal diseases. Front Immunol 2023; 14:1219487. [PMID: 37545490 PMCID: PMC10400722 DOI: 10.3389/fimmu.2023.1219487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Macrophages are a heterogeneous cell type with high plasticity, exhibiting unique activation characteristics that modulate the progression and resolution of diseases, serving as a key mediator in maintaining tissue homeostasis. Macrophages display a variety of activation states in response to stimuli in the local environment, with their subpopulations and biological functions being dependent on the local microenvironment. Resident tissue macrophages exhibit distinct transcriptional profiles and functions, all of which are essential for maintaining internal homeostasis. Dysfunctional macrophage subpopulations, or an imbalance in the M1/M2 subpopulation ratio, contribute to the pathogenesis of diseases. In skeletal muscle disorders, immune and inflammatory damage, as well as fibrosis induced by macrophages, are prominent pathological features. Therefore, targeting macrophages is of great significance for maintaining tissue homeostasis and treating skeletal muscle disorders. In this review, we discuss the receptor-ligand interactions regulating macrophages and identify potential targets for inhibiting collateral damage and fibrosis in skeletal muscle disorders. Furthermore, we explore strategies for modulating macrophages to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zijia Feng
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Ni R, Jiang L, Zhang C, Liu M, Luo Y, Hu Z, Mou X, Zhu Y. Biologic Mechanisms of Macrophage Phenotypes Responding to Infection and the Novel Therapies to Moderate Inflammation. Int J Mol Sci 2023; 24:ijms24098358. [PMID: 37176064 PMCID: PMC10179618 DOI: 10.3390/ijms24098358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Pro-inflammatory and anti-inflammatory types are the main phenotypes of the macrophage, which are commonly notified as M1 and M2, respectively. The alteration of macrophage phenotypes and the progression of inflammation are intimately associated; both phenotypes usually coexist throughout the whole inflammation stage, involving the transduction of intracellular signals and the secretion of extracellular cytokines. This paper aims to address the interaction of macrophages and surrounding cells and tissues with inflammation-related diseases and clarify the crosstalk of signal pathways relevant to the phenotypic metamorphosis of macrophages. On these bases, some novel therapeutic methods are proposed for regulating inflammation through monitoring the transition of macrophage phenotypes so as to prevent the negative effects of antibiotic drugs utilized in the long term in the clinic. This information will be quite beneficial for the diagnosis and treatment of inflammation-related diseases like pneumonia and other disorders involving macrophages.
Collapse
Affiliation(s)
- Renhao Ni
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Lingjing Jiang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Chaohai Zhang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Mujie Liu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yang Luo
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zeming Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xianbo Mou
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
6
|
Barra JM, Kozlovskaya V, Burnette KS, Banerjee RR, Fraker CA, Kharlampieva E, Tse HM. Localized cytotoxic T cell-associated antigen 4 and antioxidant islet encapsulation alters macrophage signaling and induces regulatory and anergic T cells to enhance allograft survival. Am J Transplant 2023; 23:498-511. [PMID: 36731781 PMCID: PMC10291560 DOI: 10.1016/j.ajt.2023.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 01/31/2023]
Abstract
The loss of functional β-cell mass is a hallmark of type 1 diabetes. Islet transplantation represents a promising alternative approach, but immune-mediated graft destruction remains a major challenge. We sought to use islet encapsulation technologies to improve graft survival and function without systemic immunosuppression. We hypothesized islet encapsulation with nanothin coatings consisting of tannic acid (TA), an antioxidant; poly(N-vinylpyrrolidone) (PVPON), a biocompatible polymer; and cytotoxic T cell-associated antigen 4 immunoglobulin (CTLA-4-Ig), an inhibitory immune receptor, will elicit localized immunosuppression to prolong islet allograft function and suppress effector T cell responses. In the absence of systemic immunosuppression, we demonstrated (PVPON/TA/CTLA-4-Ig)-encapsulated NOD.Rag islet grafts maintain function significantly longer than control IgG-containing (PVPON/TA/IgG) and nonencapsulated controls after transplantation into diabetic C57BL/6 mice. This protection coincided with diminished proinflammatory macrophage responses mediated by signal transducer and activator of transcription 1 signaling, decreased proinflammatory T cell effector responses, and CTLA-4-Ig-specific concomitant increases in anergic CD4+ T cells and regulatory T cells. Our results provide evidence that conjugation of CTLA-4-Ig to (PVPON/TA) coatings can suppress T cell activation, enhance regulatory T cell populations, prolong islet allograft survival, and induce localized immunosuppression after transplantation.
Collapse
Affiliation(s)
- Jessie M Barra
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - KaLia S Burnette
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ronadip R Banerjee
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Christopher A Fraker
- Department of Surgery, Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, Florida, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA; Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
7
|
Mechanism of Emodin in the Treatment of Rheumatoid Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9482570. [PMID: 36225183 PMCID: PMC9550445 DOI: 10.1155/2022/9482570] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, and autoimmune disease, and its main pathological changes are inflammatory cell infiltration accompanied by the secretion and accumulation of a variety of related cytokines, which induce the destruction of cartilage and bone tissue. Therefore, the modulation of inflammatory cells and cytokines is a key therapeutic target for controlling inflammation in RA. This review details the effects of emodin on the differentiation and maturation of T lymphocytes, dendritic cells, and regulatory T cells. In addition, the systematic introduction of emodin directly or indirectly affects proinflammatory cytokines (TNF-α, IL-6, IL-1, IL-1β, IL-17, IL-19, and M-CSF) and anti-inflammatory cytokines (the secretion of IL-4, IL-10, IL-13, and TGF-β) through the coregulation of a variety of inflammatory cytokines to inhibit inflammation in RA and promote recovery. Understanding the potential mechanism of emodin in the treatment of RA in detail provides a systematic theoretical basis for the clinical application of emodin in the future.
Collapse
|
8
|
Adipose-Derived Stem Cell Exosomes as a Novel Anti-Inflammatory Agent and the Current Therapeutic Targets for Rheumatoid Arthritis. Biomedicines 2022; 10:biomedicines10071725. [PMID: 35885030 PMCID: PMC9312519 DOI: 10.3390/biomedicines10071725] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Patients with rheumatoid arthritis (RA), a chronic inflammatory joint disorder, may not respond adequately to current RA treatments. Mesenchymal stem cells (MSCs) elicit several immunomodulatory and anti-inflammatory effects and, thus, have therapeutic potential. Specifically, adipose-derived stem cell (ADSC)-based RA therapy may have considerable potency in modulating the immune response, and human adipose tissue is abundant and easy to obtain. Paracrine factors, such as exosomes (Exos), contribute to ADSCs’ immunomodulatory function. ADSC-Exo-based treatment can reproduce ADSCs’ immunomodulatory function and overcome the limitations of traditional cell therapy. ADSC-Exos combined with current drug therapies may provide improved therapeutic effects. Using ADSC-Exos, instead of ADSCs, to treat RA may be a promising cell-free treatment strategy. This review summarizes the current knowledge of medical therapies, ADSC-based therapy, and ADSC-Exos for RA and discusses the anti-inflammatory properties of ADSCs and ADSC-Exos. Finally, this review highlights the expanding role and potential immunomodulatory activity of ADSC-Exos in patients with RA.
Collapse
|
9
|
Yousefi Z, Mirsanei Z, Bitaraf FS, Mahdavi S, Mirzaii M, Jafari R. Dose-dependent effects of oleuropein administration on regulatory T-cells in patients with rheumatoid arthritis: An in vitro approach. Int J Immunopathol Pharmacol 2022; 36:3946320221086084. [PMID: 35410513 PMCID: PMC9008820 DOI: 10.1177/03946320221086084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction: Rheumatoid arthritis (RA) is an autoimmune disease that is identified with
chronic inflammation and progressive destruction of the joints. The
defective activity of regulatory T cells (Tregs) plays a crucial role in RA
development. Oleuropein (OLEU) is the most common polyphenolic compound in
olive leaf extracts with numerous pharmacological activities. In this study,
the potential effects of OLEU in shifting CD4+ T cells toward
Tregs are evaluated in patients with RA. Methods 32 healthy controls (HC) and 45 RA patients were included in two groups. The
immunoturbidometric technique was used to measure serum levels of c-reactive
protein (CRP) and rheumatoid factor (RF). Isolated CD4+ T cells
from peripheral blood mononuclear cells (PBMCs) of HC and RA patients were
cultured with appropriate concentrations of OLEU. The cytotoxicity effects
of OLEU were determined using the MTT assay at 24, 48, and 72 h. The
percentage of CD4+CD25 + FoxP3 regulatory T lymphocytes (Tregs)
and the expressions of IL-10 and TGF-β were evaluated by flow cytometry and
immunoassay techniques after treatment of cells with different
concentrations of OLEU for 24 h. The serum levels of RF and CRP in patients
with RA were 11.8 ± 5.32 IU/ml and 6.36 ± 5.82 mg/l, respectively. Results OLEU had a dose-dependent effect on the CD4+ T cells via
increasing the frequency of CD4+CD25 + FoxP3 Tregs
(p = 0.0001). Moreover, it induced the production of
IL-10 (p = 0.0001) and TGF-β (p < 0.01)
in both HC and RA patients. Conclusion The findings of this study suggest that OLEU may have immunomodulatory
effects by inducing Tregs, and it might help in developing a novel nutrition
strategy for management of autoimmune diseases such as RA.
Collapse
Affiliation(s)
- Zahra Yousefi
- School of Allied Medical Sciences, 154204Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, 154204Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh S Bitaraf
- Department of Medical Biotechnology, School of Medicine, 154204Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sepideh Mahdavi
- Department of Epidemiology, School of Public Health, 154204Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehdi Mirzaii
- School of Allied Medical Sciences, 154204Shahroud University of Medical Sciences, Shahroud, Iran
| | - Reza Jafari
- School of Allied Medical Sciences, 154204Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|