1
|
Wang J, Fan XY, Hu Z. Immune correlates of protection as a game changer in tuberculosis vaccine development. NPJ Vaccines 2024; 9:208. [PMID: 39478007 PMCID: PMC11526030 DOI: 10.1038/s41541-024-01004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
The absence of validated correlates of protection (CoPs) hampers the rational design and clinical development of new tuberculosis vaccines. In this review, we provide an overview of the potential CoPs in tuberculosis vaccine research. Major hindrances and potential opportunities are then discussed. Based on recent progress, it is reasonable to anticipate that success in the ongoing efforts to identify CoPs would be a game-changer in tuberculosis vaccine development.
Collapse
Affiliation(s)
- Jing Wang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
2
|
Kang A, Ye G, Afkhami S, Aleithan F, Singh K, Dvorkin-Gheva A, Berg T, Miller MS, Jeyanathan M, Xing Z. LPS-induced lung tissue-resident trained innate immunity provides differential protection against pneumococci and SARS-CoV-2. Cell Rep 2024; 43:114849. [PMID: 39383035 DOI: 10.1016/j.celrep.2024.114849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/24/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Recent evidence indicates that tissue-resident innate immune memory and trained innate immunity (TII) can be induced centrally in myeloid cells within the bone marrow and locally in tissue-resident macrophages in respiratory mucosal tissues. However, it remains unclear whether acute exposure to airborne microbial components like lipopolysaccharide (LPS) induces lasting innate immune memory in airway macrophages and TII capable of protection against heterologous pathogens. Using a murine model, we demonstrate that acute LPS exposure leads to dynamic changes in the immune phenotype of airway macrophages that persist long after the acute inflammatory response has subsided. The original airway-resident alveolar macrophage pool remains stable in size despite these changes and the earlier transient acute inflammatory responses, including monocytic recruitment in the lung. We further demonstrate that the induction of innate immune memory in airway macrophages is accompanied by TII capable of robust protection against acute pneumococcal infection, whereas it provides minimal protection against acute SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alisha Kang
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Gluke Ye
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Fatemah Aleithan
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Kanwaldeep Singh
- Department of Oncology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Tobias Berg
- Department of Oncology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Matthew S Miller
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Zhou Xing
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
3
|
Wang L, Kang J, Jiang H. Intranasal Immunization with a Recombinant Adenovirus Encoding Multi-Stage Antigens of Mycobacterium tuberculosis Preferentially Elicited CD8 + T Cell Immunity and Conferred a Superior Protection in the Lungs of Mice than Bacillus Calmette-Guerin. Vaccines (Basel) 2024; 12:1022. [PMID: 39340053 PMCID: PMC11436211 DOI: 10.3390/vaccines12091022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The development of a tuberculosis (TB) vaccine is imperative. Employing multi-stage Mycobacterium tuberculosis (Mtb) antigens as targeted antigens represents a critical strategy in establishing an effective novel TB vaccine. In this investigation, we evaluated the immunogenicity and protective efficacy of a recombinant adenovirus vaccine expressing two fusion proteins, Ag85B-ESAT6 (AE) and Rv2031c-Rv2626c (R2), derived from multi-stage antigens of Mtb via intranasal administration in mice. Intranasal delivery of Ad-AE-R2 induced both long-lasting mucosal and systemic immunities, with a preferential elicitation of CD8+ T cell immunity demonstrated by the accumulation and retention of CD8+ T cells in BALF, lung, and spleen, as well as the generation of CD8+ TRM cells in BALF and lung tissues. Compared to subcutaneous immunization with Bacillus Calmette-Guerin (BCG), Ad-AE-R2 provided superior protection against high-dose intratracheal BCG challenge, specifically within the lungs of mice. Our findings support the notion that empowering T cells within the respiratory mucosa is crucial for TB vaccine development while highlighting targeting CD8+ T cell immunity as an effective strategy for optimizing TB vaccines and emphasizing that eliciting systemic memory immunity is also vital for the successful development of a TB mucosal vaccine. Furthermore, our results demonstrate that the BCG challenge serves as a convenient and efficient method to evaluate candidate vaccine efficacy.
Collapse
Affiliation(s)
- Limei Wang
- Bacteriology Laboratory, Department of Microbiology and Pathogenic Biology, School of Basic Medicine, Air Force Medical University, Xi'an 710032, China
| | - Jian Kang
- Bacteriology Laboratory, Department of Microbiology and Pathogenic Biology, School of Basic Medicine, Air Force Medical University, Xi'an 710032, China
| | - Hong Jiang
- Center for Diagnosis and Treatment of Infectious Diseases, Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| |
Collapse
|
4
|
Yuan Y, Xu W, Li L, Guo T, Liu B, Xiao J, Yin Y, Zhang X. A Streptococcus pneumoniae endolysin mutant protein ΔA146Ply elicits rapid broad-spectrum mucosal protection in mice via upregulation of GPX4 through TLR4/IRG1/NRF2 to alleviate macrophage ferroptosis. Free Radic Biol Med 2024; 222:344-360. [PMID: 38945457 DOI: 10.1016/j.freeradbiomed.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Innovative solutions for rapid protection against broad-spectrum infections are very important in dealing with complex infection environments. We utilized a functionally inactive mutated endolysin protein of Streptococcus pneumoniae (ΔA146Ply) to immunize mice against pneumonic infections by multidrug-resistant bacteria, Candida albicans and influenza virus type A. ΔA146Ply protection relied on both immunized tissue-resident and monocyte-derived alveolar macrophages and inhibited infection induced ferroptosis that upregulated expression of GPX4 (glutathione peroxidase) in alveolar macrophages. Ferroptosis resistance endowed macrophages with enhanced phagocytosis by inhibiting lipid peroxidation during infection. Moreover, we demonstrated ΔA146Ply upregulated GPX4 through the TLR4/IRG1/NRF2 pathway. ΔA146Ply also induced ferroptosis inhibition and phagocytosis improvement in human monocytes. This mode of action is a novel and potentially prophylactic and rapid broad-spectrum anti-infection mechanism. Our study provides new insights into protective interventions that act by regulating ferroptosis to improve multiple pathogen resistance via GPX4 targeting.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Wenlong Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China; Department of Medical Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou District, Chongqing, 404100, China
| | - Lian Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Ting Guo
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Bichen Liu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Jiangming Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Yibin Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Song Y, Mehl F, Zeichner SL. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines (Basel) 2024; 12:191. [PMID: 38400174 PMCID: PMC10892965 DOI: 10.3390/vaccines12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are essential tools to prevent infection and control transmission of infectious diseases that threaten public health. Most infectious agents enter their hosts across mucosal surfaces, which make up key first lines of host defense against pathogens. Mucosal immune responses play critical roles in host immune defense to provide durable and better recall responses. Substantial attention has been focused on developing effective mucosal vaccines to elicit robust localized and systemic immune responses by administration via mucosal routes. Mucosal vaccines that elicit effective immune responses yield protection superior to parenterally delivered vaccines. Beyond their valuable immunogenicity, mucosal vaccines can be less expensive and easier to administer without a need for injection materials and more highly trained personnel. However, developing effective mucosal vaccines faces many challenges, and much effort has been directed at their development. In this article, we review the history of mucosal vaccine development and present an overview of mucosal compartment biology and the roles that mucosal immunity plays in defending against infection, knowledge that has helped inform mucosal vaccine development. We explore new progress in mucosal vaccine design and optimization and novel approaches created to improve the efficacy and safety of mucosal vaccines.
Collapse
Affiliation(s)
- Yufeng Song
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Frances Mehl
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Steven L. Zeichner
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
6
|
Wang T, Wang Y, Zhang J, Yao Y. Role of trained innate immunity against mucosal cancer. Curr Opin Virol 2024; 64:101387. [PMID: 38364654 DOI: 10.1016/j.coviro.2024.101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Mucosal tissues are frequent targets of both primary and metastatic cancers. This has highlighted the significance of both innate and adaptive anti-cancer immunity at mucosal sites. Trained innate immunity (TII) is an emerging concept defined as enhanced reactivity of innate leukocytes long after a previous stimulation that induces prolonged epigenetic, transcriptional, and metabolic changes. Trained innate leukocytes can respond to heterologous targets due to their lacking of antigen-specificity in most cases. Emerging experimental and clinical data suggest that certain microbes or their products induce TII in mucosal-associated innate leukocytes which endows heterologous anti-tumor innate immunity, in both prophylactic and therapeutic scenarios. In this mini-review, we summarize updated findings on the significance of TII in mucosal cancers. We also attempt to raise a few key questions critical to our further understanding on the roles of TII in mucosal cancers, and to the potential application of TII as anti-cancer strategy.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yanling Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jinjing Zhang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yushi Yao
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Liangzhu Laboratory, Hangzhou, Zhejiang 310023, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
7
|
Mai D, Jahn A, Murray T, Morikubo M, Lim PN, Cervantes MM, Pham LK, Nemeth J, Urdahl K, Diercks AH, Aderem A, Rothchild AC. Exposure to Mycobacterium remodels alveolar macrophages and the early innate response to Mycobacterium tuberculosis infection. PLoS Pathog 2024; 20:e1011871. [PMID: 38236787 PMCID: PMC10796046 DOI: 10.1371/journal.ppat.1011871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Alveolar macrophages (AMs) play a critical role during Mycobacterium tuberculosis (Mtb) infection as the first cells in the lung to encounter bacteria. We previously showed that AMs initially respond to Mtb in vivo by mounting a cell-protective, rather than pro-inflammatory response. However, the plasticity of the initial AM response was unknown. Here, we characterize how previous exposure to Mycobacterium, either through subcutaneous vaccination with Mycobacterium bovis (scBCG) or through a contained Mtb infection (coMtb) that mimics aspects of concomitant immunity, impacts the initial response by AMs. We find that both scBCG and coMtb accelerate early innate cell activation and recruitment and generate a stronger pro-inflammatory response to Mtb in vivo by AMs. Within the lung environment, AMs from scBCG vaccinated mice mount a robust interferon-associated response, while AMs from coMtb mice produce a broader inflammatory response that is not dominated by Interferon Stimulated Genes. Using scRNAseq, we identify changes to the frequency and phenotype of airway-resident macrophages following Mycobacterium exposure, with enrichment for both interferon-associated and pro-inflammatory populations of AMs. In contrast, minimal changes were found for airway-resident T cells and dendritic cells after exposures. Ex vivo stimulation of AMs with Pam3Cys, LPS and Mtb reveal that scBCG and coMtb exposures generate stronger interferon-associated responses to LPS and Mtb that are cell-intrinsic changes. However, AM profiles that were unique to each exposure modality following Mtb infection in vivo are dependent on the lung environment and do not emerge following ex vivo stimulation. Overall, our studies reveal significant and durable remodeling of AMs following exposure to Mycobacterium, with evidence for both AM-intrinsic changes and contributions from the altered lung microenvironments. Comparisons between the scBCG and coMtb models highlight the plasticity of AMs in the airway and opportunities to target their function through vaccination or host-directed therapies.
Collapse
Affiliation(s)
- Dat Mai
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Ana Jahn
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Tara Murray
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Michael Morikubo
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Pamelia N. Lim
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Maritza M. Cervantes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Linh K. Pham
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Animal Biotechnology and Biomedical Sciences Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Johannes Nemeth
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Kevin Urdahl
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Alan H. Diercks
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Alissa C. Rothchild
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
8
|
Chen Z, Liu Y, Huang W. Alveolar macrophage modulation via the gut-lung axis in lung diseases. Front Immunol 2023; 14:1279677. [PMID: 38077401 PMCID: PMC10702770 DOI: 10.3389/fimmu.2023.1279677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Several studies have demonstrated great potential implications for the gut-lung axis in lung disease etiology and treatment. The gut environment can be influenced by diet, metabolites, microbiotal composition, primary diseases, and medical interventions. These changes modulate the functions of alveolar macrophages (AMs) to shape the pulmonary immune response, which greatly impacts lung health. The immune modulation of AMs is implicated in the pathogenesis of various lung diseases. However, the mechanism of the gut-lung axis in lung diseases has not yet been determined. This mini-review aimed to shed light on the critical nature of communication between the gut and AMs during the development of pulmonary infection, injury, allergy, and malignancy. A better understanding of their crosstalk may provide new insights into future therapeutic strategies targeting the gut-AM interaction.
Collapse
Affiliation(s)
| | | | - Weizhe Huang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
9
|
Jeyanathan M, Afkhami S, Kang A, Xing Z. Viral-vectored respiratory mucosal vaccine strategies. Curr Opin Immunol 2023; 84:102370. [PMID: 37499279 DOI: 10.1016/j.coi.2023.102370] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
Increasing global concerns of pandemic respiratory viruses highlight the importance of developing optimal vaccination strategies that encompass vaccine platform, delivery route, and regimens. The decades-long effort to develop vaccines to combat respiratory infections such as influenza, respiratory syncytial virus, and tuberculosis has met with challenges, including the inability of systemically administered vaccines to induce respiratory mucosal (RM) immunity. In this regard, ample preclinical and available clinical studies have demonstrated the superiority of RM vaccination to induce RM immunity over parenteral route of vaccination. A great stride has been made in developing vaccines for RM delivery against respiratory pathogens, including M. tuberculosis and SARS-CoV-2. In particular, inhaled aerosol delivery of adenoviral-vectored vaccines has shown significant promise.
Collapse
Affiliation(s)
- Mangalakumari Jeyanathan
- McMaster Immunology Research Centre and Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre and Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alisha Kang
- McMaster Immunology Research Centre and Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre and Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
10
|
Afkhami S, Kang A, Jeyanathan V, Xing Z, Jeyanathan M. Adenoviral-vectored next-generation respiratory mucosal vaccines against COVID-19. Curr Opin Virol 2023; 61:101334. [PMID: 37276833 PMCID: PMC10172971 DOI: 10.1016/j.coviro.2023.101334] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023]
Abstract
The world is in need of next-generation COVID-19 vaccines. Although first-generation injectable COVID-19 vaccines continue to be critical tools in controlling the current global health crisis, continuous emergence of SARS-CoV-2 variants of concern has eroded the efficacy of these vaccines, leading to staggering breakthrough infections and posing threats to poor vaccine responders. This is partly because the humoral and T-cell responses generated following intramuscular injection of spike-centric monovalent vaccines are mostly confined to the periphery, failing to either access or be maintained at the portal of infection, the respiratory mucosa (RM). In contrast, respiratory mucosal-delivered vaccine can induce immunity encompassing humoral, cellular, and trained innate immunity positioned at the respiratory mucosa that may act quickly to prevent the establishment of an infection. Viral vectors, especially adenoviruses, represent the most promising platform for RM delivery that can be designed to express both structural and nonstructural antigens of SARS-CoV-2. Boosting RM immunity via the respiratory route using multivalent adenoviral-vectored vaccines would be a viable next-generation vaccine strategy.
Collapse
Affiliation(s)
- Sam Afkhami
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research & Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alisha Kang
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research & Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Vidthiya Jeyanathan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research & Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research & Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research & Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
11
|
Intranasal multivalent adenoviral-vectored vaccine protects against replicating and dormant M.tb in conventional and humanized mice. NPJ Vaccines 2023; 8:25. [PMID: 36823425 PMCID: PMC9948798 DOI: 10.1038/s41541-023-00623-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Viral-vectored vaccines are highly amenable for respiratory mucosal delivery as a means of inducing much-needed mucosal immunity at the point of pathogen entry. Unfortunately, current monovalent viral-vectored tuberculosis (TB) vaccine candidates have failed to demonstrate satisfactory clinical protective efficacy. As such, there is a need to develop next-generation viral-vectored TB vaccine strategies which incorporate both vaccine antigen design and delivery route. In this study, we have developed a trivalent chimpanzee adenoviral-vectored vaccine to provide protective immunity against pulmonary TB through targeting antigens linked to the three different growth phases (acute/chronic/dormancy) of Mycobacterium tuberculosis (M.tb) by expressing an acute replication-associated antigen, Ag85A, a chronically expressed virulence-associated antigen, TB10.4, and a dormancy/resuscitation-associated antigen, RpfB. Single-dose respiratory mucosal immunization with our trivalent vaccine induced robust, sustained tissue-resident multifunctional CD4+ and CD8+ T-cell responses within the lung tissues and airways, which were further quantitatively and qualitatively improved following boosting of subcutaneously BCG-primed hosts. Prophylactic and therapeutic immunization with this multivalent trivalent vaccine in conventional BALB/c mice provided significant protection against not only actively replicating M.tb bacilli but also dormant, non-replicating persisters. Importantly, when used as a booster, it also provided marked protection in the highly susceptible C3HeB/FeJ mice, and a single respiratory mucosal inoculation was capable of significant protection in a humanized mouse model. Our findings indicate the great potential of this next-generation TB vaccine strategy and support its further clinical development for both prophylactic and therapeutic applications.
Collapse
|
12
|
Murphy DM, Cox DJ, Connolly SA, Breen EP, Brugman AA, Phelan JJ, Keane J, Basdeo SA. Trained immunity is induced in humans after immunization with an adenoviral vector COVID-19 vaccine. J Clin Invest 2023; 133:e162581. [PMID: 36282571 PMCID: PMC9843058 DOI: 10.1172/jci162581] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/21/2022] [Indexed: 01/22/2023] Open
Abstract
BackgroundHeterologous effects of vaccines are mediated by "trained immunity," whereby myeloid cells are metabolically and epigenetically reprogrammed, resulting in heightened responses to subsequent insults. Adenovirus vaccine vector has been reported to induce trained immunity in mice. Therefore, we sought to determine whether the ChAdOx1 nCoV-19 vaccine (AZD1222), which uses an adenoviral vector, could induce trained immunity in vivo in humans.MethodsTen healthy volunteers donated blood on the day before receiving the ChAdOx1 nCoV-19 vaccine and on days 14, 56, and 83 after vaccination. Monocytes were purified from PBMCs, cell phenotype was determined by flow cytometry, expression of metabolic enzymes was quantified by RT-qPCR, and production of cytokines and chemokines in response to stimulation ex vivo was analyzed by multiplex ELISA.ResultsMonocyte frequency and count were increased in peripheral blood up to 3 months after vaccination compared with their own prevaccine controls. Expression of HLA-DR, CD40, and CD80 was enhanced on monocytes for up to 3 months following vaccination. Moreover, monocytes had increased expression of glycolysis-associated enzymes 2 months after vaccination. Upon stimulation ex vivo with unrelated antigens, monocytes produced increased IL-1β, IL-6, IL-10, CXCL1, and MIP-1α and decreased TNF, compared with prevaccine controls. Resting monocytes produced more IFN-γ, IL-18, and MCP-1 up to 3 months after vaccination compared with prevaccine controls.ConclusionThese data provide evidence for the induction of trained immunity following a single dose of the ChAdOx1 nCoV-19 vaccine.FundingThis work was funded by the Health Research Board (EIA-2019-010) and Science Foundation Ireland Strategic Partnership Programme (proposal ID 20/SPP/3685).
Collapse
Affiliation(s)
| | - Donal J Cox
- Tuberculosis Immunology Group, Department of Clinical Medicine, and
| | | | - Eamon P Breen
- Core Facilities, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Aenea Ai Brugman
- Tuberculosis Immunology Group, Department of Clinical Medicine, and
| | - James J Phelan
- Tuberculosis Immunology Group, Department of Clinical Medicine, and
| | - Joseph Keane
- Tuberculosis Immunology Group, Department of Clinical Medicine, and
| | - Sharee A Basdeo
- Human and Translational Immunology Group, School of Medicine
| |
Collapse
|
13
|
Netea MG, Joosten LA. Beyond adaptive immunity: induction of trained immunity by COVID-19 adenoviral vaccines. J Clin Invest 2023; 133:e166467. [PMID: 36647822 PMCID: PMC9843054 DOI: 10.1172/jci166467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 coronavirus, has resulted in much human suffering and societal disruption. The ChAdOx1 nCoV-19 vaccine against COVID-19 has had a crucial role in the fight against the pandemic. While ChAdOx1 nCoV-19 has been shown to induce adaptive B and T cell responses, which protect against COVID-19, in this issue of the JCI, Murphy et al. show that this vaccine also induces trained innate immunity. This finding contributes to a better understanding of the complex immunological effects of adenoviral-based vaccines, provides the possibility of clinically relevant heterologous effects of these vaccines, and suggests that other adenoviral-based vaccines may induce trained immunity.
Collapse
Affiliation(s)
- Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Leo A.B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
14
|
Tsai CJY, Loh JMS, Fujihashi K, Kiyono H. Mucosal vaccination: onward and upward. Expert Rev Vaccines 2023; 22:885-899. [PMID: 37817433 DOI: 10.1080/14760584.2023.2268724] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION The unique mucosal immune system allows the generation of robust protective immune responses at the front line of pathogen encounters. The needle-free delivery route and cold chain-free logistic requirements also provide additional advantages in ease and economy. However, the development of mucosal vaccines faces several challenges, and only a handful of mucosal vaccines are currently licensed. These vaccines are all in the form of live attenuated or inactivated whole organisms, whereas no subunit-based mucosal vaccine is available. AREAS COVERED The selection of antigen, delivery vehicle, route and adjuvants for mucosal vaccination are highly important. This is particularly crucial for subunit vaccines, as they often fail to elicit strong immune responses. Emerging research is providing new insights into the biological and immunological uniqueness of mucosal tissues. However, many aspects of the mucosal immunology still await to be investigated. EXPERT OPINION This article provides an overview of the current understanding of mucosal vaccination and discusses the remaining knowledge gaps. We emphasize that because of the potential benefits mucosal vaccines can bring from the biomedical, social and economic standpoints, the unmet goal to achieve mucosal vaccine success is worth the effort.
Collapse
Affiliation(s)
- Catherine J Y Tsai
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand, Auckland
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
| | - Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand, Auckland
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hiroshi Kiyono
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
- Future Medicine Education and Research Organization, Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
| |
Collapse
|
15
|
Jeyanathan M, Vaseghi-Shanjani M, Afkhami S, Grondin JA, Kang A, D'Agostino MR, Yao Y, Jain S, Zganiacz A, Kroezen Z, Shanmuganathan M, Singh R, Dvorkin-Gheva A, Britz-McKibbin P, Khan WI, Xing Z. Parenteral BCG vaccine induces lung-resident memory macrophages and trained immunity via the gut-lung axis. Nat Immunol 2022; 23:1687-1702. [PMID: 36456739 PMCID: PMC9747617 DOI: 10.1038/s41590-022-01354-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 10/05/2022] [Indexed: 12/03/2022]
Abstract
Aside from centrally induced trained immunity in the bone marrow (BM) and peripheral blood by parenteral vaccination or infection, evidence indicates that mucosal-resident innate immune memory can develop via a local inflammatory pathway following mucosal exposure. However, whether mucosal-resident innate memory results from integrating distally generated immunological signals following parenteral vaccination/infection is unclear. Here we show that subcutaneous Bacillus Calmette-Guérin (BCG) vaccination can induce memory alveolar macrophages (AMs) and trained immunity in the lung. Although parenteral BCG vaccination trains BM progenitors and circulating monocytes, induction of memory AMs is independent of circulating monocytes. Rather, parenteral BCG vaccination, via mycobacterial dissemination, causes a time-dependent alteration in the intestinal microbiome, barrier function and microbial metabolites, and subsequent changes in circulating and lung metabolites, leading to the induction of memory macrophages and trained immunity in the lung. These data identify an intestinal microbiota-mediated pathway for innate immune memory development at distal mucosal tissues and have implications for the development of next-generation vaccine strategies against respiratory pathogens.
Collapse
Affiliation(s)
- Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Maryam Vaseghi-Shanjani
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alisha Kang
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael R D'Agostino
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yushi Yao
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Immunology, Zhejiang University, Zhejiang, China
| | - Shreya Jain
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zachary Kroezen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Meera Shanmuganathan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ramandeep Singh
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
16
|
Protocol for isolation and characterization of lung tissue resident memory T cells and airway trained innate immunity after intranasal vaccination in mice. STAR Protoc 2022; 3:101652. [PMID: 36065292 PMCID: PMC9423002 DOI: 10.1016/j.xpro.2022.101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vaccination route dictates the quality and localization of immune responses within tissues. Intranasal vaccination seeds tissue-resident adaptive immunity, alongside trained innate responses within the lung/airways, critical for superior protection against SARS-CoV-2. This protocol encompasses intranasal vaccination in mice, step-by-step bronchoalveolar lavage for both cellular and acellular airway components, lung mononuclear cell isolation, and detailed flow cytometric characterization of lung tissue-resident memory T cell responses, and airway macrophage-trained innate immunity. For complete details on the use and execution of this protocol, please refer to Afkhami et al. (2022). Step-by-step procedure for intranasal vaccination in mice Protocol for bronchoalveolar lavage and isolating airway cellular/acellular components Detailed protocol for processing and isolation of lung mononuclear cells Flow cytometry protocol for lung tissue-resident innate/adaptive memory responses
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
17
|
“The Good, the Bad and the Ugly”: Interplay of Innate Immunity and Inflammation. Cell Microbiol 2022. [DOI: 10.1155/2022/2759513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Innate immunity recognizes microorganisms through certain invariant receptors named pattern recognition receptors (PRRs) by sensing conserved pathogen-associated molecular patterns (PAMPs). Their recognition activates several signaling pathways that lead the transcription of inflammatory mediators, contributing to trigger a very rapid inflammatory cascade aiming to contain the local infection as well as activating and instructing the adaptive immunity in a specific and synchronized immune response according to the microorganism. Inflammation is a coordinated process involving the secretion of cytokines and chemokines by macrophages and neutrophils leading to the migration of other leukocytes along the endothelium into the injured tissue. Sustained inflammatory responses can cause deleterious effects by promoting the development of autoimmune disorders, allergies, cancer, and other immune pathologies, while weak signals could exacerbate the severity of the disease. Therefore, PRR-mediated signal transduction must be tightly regulated to maintain host immune homeostasis. Innate immunity deficiencies and strategies deployed by microbes to avoid inflammatory responses lead to an altered immune response that allows the pathogen to proliferate causing death or uncontrolled inflammation. This review analyzes the complexity of the immune response at the beginning of the disease focusing on COVID-19 disease and the importance of unraveling its mechanisms to be considered when treating diseases and designing vaccines.
Collapse
|
18
|
Hu Z, Lu SH, Lowrie DB, Fan XY. Research Advances for Virus-vectored Tuberculosis Vaccines and Latest Findings on Tuberculosis Vaccine Development. Front Immunol 2022; 13:895020. [PMID: 35812383 PMCID: PMC9259874 DOI: 10.3389/fimmu.2022.895020] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by respiratory infection with Mycobacterium tuberculosis, remains a major global health threat. The only licensed TB vaccine, the one-hundred-year-old Bacille Calmette-Guérin has variable efficacy and often provides poor protection against adult pulmonary TB, the transmissible form of the disease. Thus, the lack of an optimal TB vaccine is one of the key barriers to TB control. Recently, the development of highly efficacious COVID-19 vaccines within one year accelerated the vaccine development process in human use, with the notable example of mRNA vaccines and adenovirus-vectored vaccines, and increased the public acceptance of the concept of the controlled human challenge model. In the TB vaccine field, recent progress also facilitated the deployment of an effective TB vaccine. In this review, we provide an update on the current virus-vectored TB vaccine pipeline and summarize the latest findings that might facilitate TB vaccine development. In detail, on the one hand, we provide a systematic literature review of the virus-vectored TB vaccines are in clinical trials, and other promising candidate vaccines at an earlier stage of development are being evaluated in preclinical animal models. These research sharply increase the likelihood of finding a more effective TB vaccine in the near future. On the other hand, we provide an update on the latest tools and concept that facilitating TB vaccine research development. We propose that a pre-requisite for successful development may be a better understanding of both the lung-resident memory T cell-mediated mucosal immunity and the trained immunity of phagocytic cells. Such knowledge could reveal novel targets and result in the innovative vaccine designs that may be needed for a quantum leap forward in vaccine efficacy. We also summarized the research on controlled human infection and ultra-low-dose aerosol infection murine models, which may provide more realistic assessments of vaccine utility at earlier stages. In addition, we believe that the success in the ongoing efforts to identify correlates of protection would be a game-changer for streamlining the triage of multiple next-generation TB vaccine candidates. Thus, with more advanced knowledge of TB vaccine research, we remain hopeful that a more effective TB vaccine will eventually be developed in the near future.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Douglas B. Lowrie
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| |
Collapse
|
19
|
Jeyanathan V, Afkhami S, D’Agostino MR, Zganiacz A, Feng X, Miller MS, Jeyanathan M, Thompson MR, Xing Z. Differential Biodistribution of Adenoviral-Vectored Vaccine Following Intranasal and Endotracheal Deliveries Leads to Different Immune Outcomes. Front Immunol 2022; 13:860399. [PMID: 35757753 PMCID: PMC9231681 DOI: 10.3389/fimmu.2022.860399] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Infectious diseases of the respiratory tract are one of the top causes of global morbidity and mortality with lower respiratory tract infections being the fourth leading cause of death. The respiratory mucosal (RM) route of vaccine delivery represents a promising strategy against respiratory infections. Although both intranasal and inhaled aerosol methods have been established for human application, there is a considerable knowledge gap in the relationship of vaccine biodistribution to immune efficacy in the lung. Here, by using a murine model and an adenovirus-vectored model vaccine, we have compared the intranasal and endotracheal delivery methods in their biodistribution, immunogenicity and protective efficacy. We find that compared to intranasal delivery, the deepened and widened biodistribution in the lung following endotracheal delivery is associated with much improved vaccine-mediated immunogenicity and protection against the target pathogen. Our findings thus support further development of inhaled aerosol delivery of vaccines over intranasal delivery for human application.
Collapse
Affiliation(s)
- Vidthiya Jeyanathan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Michael R. D’Agostino
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Xueya Feng
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew S. Miller
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Michael R. Thompson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,Department of Medicine, McMaster University, Hamilton, ON, Canada,*Correspondence: Zhou Xing,
| |
Collapse
|
20
|
Abstract
Tuberculosis (TB) remains the leading cause of bacterial disease-related death and is among the top 10 overall causes of death worldwide. The complex nature of this infectious lung disease has proven difficult to treat, and significant research efforts are now evaluating the feasibility of host-directed, adjunctive therapies. An attractive approach in host-directed therapy targets host epigenetics, or gene regulation, to redirect the immune response in a host-beneficial manner. Substantial evidence exists demonstrating that host epigenetics are dysregulated during TB and that epigenetic-based therapies may be highly effective to treat TB. However, the caveat is that much of the knowledge that exists on the modulation of the host epigenome during TB has been gained using in vitro, small-animal, or blood-derived cell models, which do not accurately reflect the pulmonary nature of the disease. In humans, the first and major target cells of Mycobacterium tuberculosis are alveolar macrophages (AM). As such, their response to infection and treatment is clinically relevant and ultimately drives the outcome of disease. In this review, we compare the fundamental differences between AM and circulating monocyte-derived macrophages in the context of TB and summarize the recent advances in elucidating the epigenomes of these cells, including changes to the transcriptome, DNA methylome, and chromatin architecture. We will also discuss trained immunity in AM as a new and emerging field in TB research and provide some perspectives for the translational potential of targeting host epigenetics as an alternative TB therapy.
Collapse
|
21
|
Afkhami S, D'Agostino MR, Zhang A, Stacey HD, Marzok A, Kang A, Singh R, Bavananthasivam J, Ye G, Luo X, Wang F, Ang JC, Zganiacz A, Sankar U, Kazhdan N, Koenig JFE, Phelps A, Gameiro SF, Tang S, Jordana M, Wan Y, Mossman KL, Jeyanathan M, Gillgrass A, Medina MFC, Smaill F, Lichty BD, Miller MS, Xing Z. Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell 2022; 185:896-915.e19. [PMID: 35180381 PMCID: PMC8825346 DOI: 10.1016/j.cell.2022.02.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 12/28/2022]
Abstract
The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.
Collapse
Affiliation(s)
- Sam Afkhami
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Michael R D'Agostino
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ali Zhang
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Hannah D Stacey
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Art Marzok
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alisha Kang
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ramandeep Singh
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jegarubee Bavananthasivam
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Gluke Ye
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Xiangqian Luo
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Fuan Wang
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jann C Ang
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Uma Sankar
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Natallia Kazhdan
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Joshua F E Koenig
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Allyssa Phelps
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Steven F Gameiro
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Shangguo Tang
- Department of Pathology and Molecular Medicine, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Manel Jordana
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Yonghong Wan
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Karen L Mossman
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Amy Gillgrass
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Maria Fe C Medina
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Fiona Smaill
- Department of Pathology and Molecular Medicine, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Brian D Lichty
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Matthew S Miller
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Zhou Xing
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
22
|
Jeyanathan M, Fritz DK, Afkhami S, Aguirre E, Howie KJ, Zganiacz A, Dvorkin-Gheva A, Thompson MR, Silver R, Cusack RP, Lichty BD, O'Byrne PM, Kolb M, Medina MFC, Dolovich MB, Satia I, Gauvreau GM, Xing Z, Smaill F. Aerosol delivery, but not intramuscular injection, of adenovirus-vectored tuberculosis vaccine induces respiratory-mucosal immunity in humans. JCI Insight 2022; 7:155655. [PMID: 34990408 PMCID: PMC8855837 DOI: 10.1172/jci.insight.155655] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Adenoviral (Ad)-vectored vaccines are typically administered via intramuscular injection to humans, incapable of inducing respiratory mucosal immunity. However, aerosol delivery of Ad-vectored vaccines remains poorly characterized and its ability to induce mucosal immunity in humans is unknown. This phase 1b trial was to evaluate the safety and immunogenicity of human serotype-5 Ad-vectored tuberculosis (TB) vaccine (AdHu5Ag85A) delivered to humans via inhaled aerosol or intramuscular injection. METHODS 31 healthy, previously BCG-vaccinated adults were enrolled. AdHu5Ag85A was administered by single-dose aerosol using Aeroneb® Solo Nebulizer or by intramuscular (IM) injection. The study consisted of the low dose (LD) aerosol, high dose (HD) aerosol and IM groups. The adverse events were assessed at various times post-vaccination. Immunogenicity data were collected from the peripheral blood and bronchoalveolar lavage samples at baseline and select timepoints post-vaccination. RESULTS The nebulized aerosol droplets were <5.39µm in size. Both LD and HD of AdHu5Ag85A administered by aerosol inhalation and IM injection were safe and well-tolerated. Both aerosol doses, particularly LD, but not IM, vaccination markedly induced airway tissue-resident memory CD4 and CD8 T cells of polyfunctionality. While as expected, IM vaccination induced Ag85A-specific T cell responses in the blood, the LD aerosol vaccination also elicited such T cells in the blood. Furthermore, the LD aerosol vaccination induced persisting transcriptional changes in alveolar macrophages. CONCLUSIONS Inhaled aerosol delivery of Ad-vectored vaccine is a safe and superior way to elicit respiratory mucosal immunity. This study warrants further development of aerosol vaccine strategies against respiratory pathogens including TB and COVID-19. TRIAL REGISTRATION This trial is registered with ClinicalTrial.gov, NCT# 02337270. FUNDING The Canadian Institutes for Health Research and the Natural Sciences and Engineering Research Council of Canada.
Collapse
Affiliation(s)
| | - Dominik K Fritz
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Sam Afkhami
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Emilio Aguirre
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Karen J Howie
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Anna Zganiacz
- Department of Medicine, McMaster University, Hamilton, Canada
| | | | - Michael R Thompson
- Department of Chemical Engineering, McMaster University, Hamilton, Canada
| | - Richard Silver
- Department of Critical Care Medicine and Sleep Medicine, Case Western Researve University, Cleveland, United States of America
| | - Ruth P Cusack
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Brian D Lichty
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Paul M O'Byrne
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, Canada
| | | | | | - Imran Satia
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Gail M Gauvreau
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Zhou Xing
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Fiona Smaill
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
23
|
Liu H, Wang Y, Li Y, Tao L, Zhang Y, He X, Zhou Y, Liu X, Wang Y, Li L. Clinical and genetic analysis of 2 rare cases of Wiskott-Aldrich syndrome from Chinese minorities: Two case reports. Medicine (Baltimore) 2021; 100:e25527. [PMID: 33879693 PMCID: PMC8078428 DOI: 10.1097/md.0000000000025527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/25/2021] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Wiskott-Aldrich syndrome (WAS) is a rare X-linked recessive disease characterized by thrombocytopenia, small platelets, eczema, immunodeficiency, and an increased risk of autoimmunity and malignancies. X-linked thrombocytopenia (XLT), the milder phenotype of WAS, is always limited to thrombocytopenia with absent or slight infections and eczema. Here, we illustrated the clinical and molecular characteristics of 2 unrelated patients with WAS from Chinese minorities. PATIENT CONCERNS Patient 1, a 13-day-old male newborn of the Chinese Lahu minority, showed a classic WAS phenotype, including thrombocytopenia, small platelets, buttock eczema, and recurrent infections. Patient 2, an 8-year-and 8-month-old boy of the Chinese Zhuang minority, presented an XLT phenotype without eczema and repeated infections. DIAGNOSIS Next-generation sequencing was performed to investigate the genetic variations. Flow cytometry was used to quantify the expression of WAS protein and analyze the lymphocyte subsets. A novel frameshift WAS mutation (c.927delC, p.Q310Rfs∗135) and a known nonsense WAS mutation (c.1090C>T, p.R364X) were identified in Patient 1 and Patient 2, respectively. Both patients were confirmed to have WAS protein deficiency, which was more severe in Patient 1. Meanwhile, the analysis of lymphocyte subsets revealed an abnormality in Patient 1, but not in Patient 2. Combined with the above clinical data and genetic characteristics, Patient 1 and Patient 2 were diagnosed as classic WAS and XLT, respectively. In addition, many miliary nodules were accidentally found in abdominal cavity of Patient 2 during appendectomy. Subsequently, Patient 2 was confirmed with pulmonary and abdominal tuberculosis through further laboratory and imaging examinations. To our knowledge, there have been only a few reports about WAS/XLT with tuberculosis. INTERVENTIONS Both patients received anti-infection therapy, platelet transfusions, and intravenous immunoglobulins. Moreover, Patient 2 also received antituberculosis treatment with ethambutol and amoxicillin-clavulanate. OUTCOMES The clinical symptoms and hematological parameters of these 2 patients were significantly improved. Regrettably, both patients discontinued the treatment for financial reasons. LESSONS Our report expands the pathogenic mutation spectrum of WAS gene and emphasizes the importance of molecular genetic testing in diagnosing WAS. Furthermore, researching and reporting rare cases of WAS from different populations will facilitate diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Haifeng Liu
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics
| | | | | | - Lvyan Tao
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics
| | - Yu Zhang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics
| | - Xiaoli He
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics
| | - Yuantao Zhou
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics
| | - Xiaoning Liu
- Department of Pharmacy, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Yan Wang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics
| |
Collapse
|
24
|
Palgen JL, Feraoun Y, Dzangué-Tchoupou G, Joly C, Martinon F, Le Grand R, Beignon AS. Optimize Prime/Boost Vaccine Strategies: Trained Immunity as a New Player in the Game. Front Immunol 2021; 12:612747. [PMID: 33763063 PMCID: PMC7982481 DOI: 10.3389/fimmu.2021.612747] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Most vaccines require multiple doses to induce long-lasting protective immunity in a high frequency of vaccines, and to ensure strong both individual and herd immunity. Repetitive immunogenic stimulations not only increase the intensity and durability of adaptive immunity, but also influence its quality. Several vaccine parameters are known to influence adaptive immune responses, including notably the number of immunizations, the delay between them, and the delivery sequence of different recombinant vaccine vectors. Furthermore, the initial effector innate immune response is key to activate and modulate B and T cell responses. Optimization of homologous and heterologous prime/boost vaccination strategies requires a thorough understanding of how vaccination history affects memory B and T cell characteristics. This requires deeper knowledge of how innate cells respond to multiple vaccine encounters. Here, we review how innate cells, more particularly those of the myeloid lineage, sense and respond differently to a 1st and a 2nd vaccine dose, both in an extrinsic and intrinsic manner. On one hand, the presence of primary specific antibodies and memory T cells, whose critical properties change with time after priming, provides a distinct environment for innate cells at the time of re-vaccination. On the other hand, innate cells themselves can exert enhanced intrinsic antimicrobial functions, long after initial stimulation, which is referred to as trained immunity. We discuss the potential of trained innate cells to be game-changers in prime/boost vaccine strategies. Their increased functionality in antigen uptake, antigen presentation, migration, and as cytokine producers, could indeed improve the restimulation of primary memory B and T cells and their differentiation into potent secondary memory cells in response to the boost. A better understanding of trained immunity mechanisms will be highly valuable for harnessing the full potential of trained innate cells, to optimize immunization strategies.
Collapse
Affiliation(s)
- Jean-Louis Palgen
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France.,School of Medical Sciences, Kirby Institute for Infection and Immunity, Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW, Australia
| | - Yanis Feraoun
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Gaëlle Dzangué-Tchoupou
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Candie Joly
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Frédéric Martinon
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| |
Collapse
|
25
|
Morrison H, McShane H. Local Pulmonary Immunological Biomarkers in Tuberculosis. Front Immunol 2021; 12:640916. [PMID: 33746984 PMCID: PMC7973084 DOI: 10.3389/fimmu.2021.640916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Regardless of the eventual site of disease, the point of entry for Mycobacterium tuberculosis (M.tb) is via the respiratory tract and tuberculosis (TB) remains primarily a disease of the lungs. Immunological biomarkers detected from the respiratory compartment may be of particular interest in understanding the complex immune response to M.tb infection and may more accurately reflect disease activity than those seen in peripheral samples. Studies in humans and a variety of animal models have shown that biomarkers detected in response to mycobacterial challenge are highly localized, with signals seen in respiratory samples that are absent from the peripheral blood. Increased understanding of the role of pulmonary specific biomarkers may prove particularly valuable in the field of TB vaccines. Here, development of vaccine candidates is hampered by the lack of defined correlates of protection (COPs). Assessing vaccine immunogenicity in humans has primarily focussed on detecting these potential markers of protection in peripheral blood. However, further understanding of the importance of local pulmonary immune responses suggests alternative approaches may be necessary. For example, non-circulating tissue resident memory T cells (TRM) play a key role in host mycobacterial defenses and detecting their associated biomarkers can only be achieved by interrogating respiratory samples such as bronchoalveolar lavage fluid or tissue biopsies. Here, we review what is known about pulmonary specific immunological biomarkers and discuss potential applications and further research needs.
Collapse
Affiliation(s)
- Hazel Morrison
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Martínez-Pérez A, Igea A, Estévez O, Ferreira CM, Torrado E, Castro AG, Fernández C, Spetz AL, Adam L, López González M, Singh M, Reljic R, González-Fernández Á. Changes in the Immune Phenotype and Gene Expression Profile Driven by a Novel Tuberculosis Nanovaccine: Short and Long-Term Post-immunization. Front Immunol 2021; 11:589863. [PMID: 33584654 PMCID: PMC7876410 DOI: 10.3389/fimmu.2020.589863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Deciphering protection mechanisms against Mycobacterium tuberculosis (Mtb) remains a critical challenge for the development of new vaccines and therapies. We analyze the phenotypic and transcriptomic profile in lung of a novel tuberculosis (TB) nanoparticle-based boosting mucosal vaccine Nano-FP1, which combined to BCG priming conferred enhanced protection in mice challenged with low-dose Mtb. We analyzed the vaccine profile and efficacy at short (2 weeks), medium (7 weeks) and long term (11 weeks) post-vaccination, and compared it to ineffective Nano-FP2 vaccine. We observed several changes in the mouse lung environment by both nanovaccines, which are lost shortly after boosting. Additional boosting at long-term (14 weeks) recovered partially cell populations and transcriptomic profile, but not enough to enhance protection to infection. An increase in both total and resident memory CD4 and CD8 T cells, but no pro-inflammatory cytokine levels, were correlated with better protection. A unique gene expression pattern with differentially expressed genes revealed potential pathways associated to the immune defense against Mtb. Our findings provide an insight into the critical immune responses that need to be considered when assessing the effectiveness of a novel TB vaccine.
Collapse
Affiliation(s)
- Amparo Martínez-Pérez
- Immunology Group, CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS-GS), Hospital Alvaro Cunqueiro, Vigo, Spain
| | - Ana Igea
- Immunology Group, CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS-GS), Hospital Alvaro Cunqueiro, Vigo, Spain
| | - Olivia Estévez
- Immunology Group, CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS-GS), Hospital Alvaro Cunqueiro, Vigo, Spain
| | - Catarina M Ferreira
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António Gil Castro
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carmen Fernández
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW) Stockholm University, Stockholm, Sweden
| | - Anna-Lena Spetz
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW) Stockholm University, Stockholm, Sweden
| | - Lucille Adam
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW) Stockholm University, Stockholm, Sweden
| | - Moisés López González
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW) Stockholm University, Stockholm, Sweden
| | | | - Rajko Reljic
- Infection and Immunity Research Institute, St George's, University of London, London, United Kingdom
| | - África González-Fernández
- Immunology Group, CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS-GS), Hospital Alvaro Cunqueiro, Vigo, Spain
| |
Collapse
|
27
|
Zhang H, He F, Li P, Hardwidge PR, Li N, Peng Y. The Role of Innate Immunity in Pulmonary Infections. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6646071. [PMID: 33553427 PMCID: PMC7847335 DOI: 10.1155/2021/6646071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Innate immunity forms a protective line of defense in the early stages of pulmonary infection. The primary cellular players of the innate immunity against respiratory infections are alveolar macrophages (AMs), dendritic cells (DCs), neutrophils, natural killer (NK) cells, and innate lymphoid cells (ILCs). They recognize conserved structures of microorganisms through membrane-bound and intracellular receptors to initiate appropriate responses. In this review, we focus on the prominent roles of innate immune cells and summarize transmembrane and cytosolic pattern recognition receptor (PRR) signaling recognition mechanisms during pulmonary microbial infections. Understanding the mechanisms of PRR signal recognition during pulmonary pathogen infections will help us to understand pulmonary immunopathology and lay a foundation for the development of effective therapies to treat and/or prevent pulmonary infections.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Animal Medicine, Southwest University, Chongqing, China
| | - Fang He
- College of Animal Medicine, Southwest University, Chongqing, China
| | - Pan Li
- College of Animal Medicine, Southwest University, Chongqing, China
| | | | - Nengzhang Li
- College of Animal Medicine, Southwest University, Chongqing, China
| | - Yuanyi Peng
- College of Animal Medicine, Southwest University, Chongqing, China
| |
Collapse
|
28
|
Vierboom MP, Dijkman K, Sombroek CC, Hofman SO, Boot C, Vervenne RA, Haanstra KG, van der Sande M, van Emst L, Domínguez-Andrés J, Moorlag SJ, Kocken CH, Thole J, Rodríguez E, Puentes E, Martens JH, van Crevel R, Netea MG, Aguilo N, Martin C, Verreck FA. Stronger induction of trained immunity by mucosal BCG or MTBVAC vaccination compared to standard intradermal vaccination. Cell Rep Med 2021; 2:100185. [PMID: 33521699 PMCID: PMC7817864 DOI: 10.1016/j.xcrm.2020.100185] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/22/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
BCG vaccination can strengthen protection against pathogens through the induction of epigenetic and metabolic reprogramming of innate immune cells, a process called trained immunity. We and others recently demonstrated that mucosal or intravenous BCG better protects rhesus macaques from Mycobacterium tuberculosis infection and TB disease than standard intradermal vaccination, correlating with local adaptive immune signatures. In line with prior mouse data, here, we show in rhesus macaques that intravenous BCG enhances innate cytokine production associated with changes in H3K27 acetylation typical of trained immunity. Alternative delivery of BCG does not alter the cytokine production of unfractionated bronchial lavage cells. However, mucosal but not intradermal vaccination, either with BCG or the M. tuberculosis-derived candidate MTBVAC, enhances innate cytokine production by blood- and bone marrow-derived monocytes associated with metabolic rewiring, typical of trained immunity. These results provide support to strategies for improving TB vaccination and, more broadly, modulating innate immunity via mucosal surfaces.
Collapse
Affiliation(s)
| | - Karin Dijkman
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | | | - Sam O. Hofman
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Charelle Boot
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | | | | | - Maarten van der Sande
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | | | | | | | | | - Jelle Thole
- TuBerculosis Vaccine Initiative, Lelystad, the Netherlands
| | | | | | - Joost H.A. Martens
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | | | - Mihai G. Netea
- Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Nacho Aguilo
- Department of Microbiology, Faculty of Medicine, IIS Aragón, University of Zaragoza, Zaragoza, Spain
- CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martin
- Department of Microbiology, Faculty of Medicine, IIS Aragón, University of Zaragoza, Zaragoza, Spain
- CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|