1
|
Bouteau A, Qin Z, Zurawski S, Zurawski G, Igyártó BZ. Langerhans Cells Drive Tfh and B Cell Responses Independent of Canonical Cytokine Signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632426. [PMID: 39868337 PMCID: PMC11760737 DOI: 10.1101/2025.01.10.632426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Dendritic cells (DCs) are key regulators of adaptive immunity, guiding T helper (Th) cell differentiation through antigen presentation, co-stimulation, and cytokine production. However, in steady-state conditions, certain DC subsets, such as Langerhans cells (LCs), induce T follicular helper (Tfh) cells and B cell responses without inflammatory stimuli. Using multiple mouse models and in vitro systems, we investigated the mechanisms underlying steady-state LC-induced adaptive immune responses. We found that LCs drive germinal center Tfh and B cell differentiation and antibody production independently of interleukin-6 (IL-6), type-I interferons, and ICOS ligand (ICOS-L) signaling, which are critical in inflammatory settings. Instead, these responses relied on CD80/CD86-mediated co-stimulation. Our findings challenge the conventional three-signal paradigm by demonstrating that cytokine signaling is dispensable for LC-mediated Tfh and B cell responses in steady-state. These insights provide a framework for understanding homeostatic immunity and the immune system's role in maintaining tolerance or developing autoimmunity under non-inflammatory conditions.
Collapse
Affiliation(s)
- Aurélie Bouteau
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Zhen Qin
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Sandra Zurawski
- Baylor Scott & White Research Institute, Dallas, TX 75204, United States
- Vaccine Research Institute, INSERM, Unité U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Gerard Zurawski
- Baylor Scott & White Research Institute, Dallas, TX 75204, United States
- Vaccine Research Institute, INSERM, Unité U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Botond Z. Igyártó
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
2
|
Nguyen NT, Le XT, Lee WT, Lim YT, Oh KT, Lee ES, Choi HG, Youn YS. STING-activating dendritic cell-targeted nanovaccines that evoke potent antigen cross-presentation for cancer immunotherapy. Bioact Mater 2024; 42:345-365. [PMID: 39290338 PMCID: PMC11406000 DOI: 10.1016/j.bioactmat.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/16/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
Recently, nanovaccine-based immunotherapy has been robustly investigated due to its potential in governing the immune response and generating long-term protective immunity. However, the presentation of a tumor peptide-major histocompatibility complex to T lymphocytes is still a challenge that needs to be addressed for eliciting potent antitumor immunity. Type 1 conventional dendritic cell (cDC1) subset is of particular interest due to its pivotal contribution in the cross-presentation of exogenous antigens to CD8+ T cells. Here, the DC-derived nanovaccine (denoted as Si9GM) selectively targets cDC1s with marginal loss of premature antigen release for effective stimulator of interferon genes (STING)-mediated antigen cross-presentation. Bone marrow dendritic cell (BMDC)-derived membranes, conjugated to cDC1-specific antibody (αCLEC9A) and binding to tumor peptide (OVA257-264), are coated onto dendrimer-like polyethylenimine (PEI)-grafted silica nanoparticles. Distinct molecular weight-cargos (αCLEC9A-OVA257-264 conjugates and 2'3'-cGAMP STING agonists) are loaded in hierarchical center-radial pores that enables lysosome escape for potent antigen-cross presentation and activates interferon type I, respectively. Impressively, Si9GM vaccination leads to the upregulation of cytotoxic T cells, a reduction in tumor regulatory T cells (Tregs), M1/M2 macrophage polarization, and immune response that synergizes with αPD-1 immune checkpoint blockade. This nanovaccine fulfills a dual role for both direct T cell activation as an artificial antigen-presenting cell and DC subset maturation, indicating its utility in clinical therapy and precision medicine.
Collapse
Affiliation(s)
- Nguyen Thi Nguyen
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Xuan Thien Le
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Woo Tak Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong Taik Lim
- Department of Nano Engineering and School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Eun Seong Lee
- Department of Biotechnology and Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
3
|
Ascic E, Åkerström F, Nair MS, Rosa A, Kurochkin I, Zimmermannova O, Catena X, Rotankova N, Veser C, Rudnik M, Ballocci T, Schärer T, Huang X, de Rosa Torres M, Renaud E, Santiago MV, Met Ö, Askmyr D, Lindstedt M, Greiff L, Ligeon LA, Agarkova I, Svane IM, Pires CF, Rosa FF, Pereira CF. In vivo dendritic cell reprogramming for cancer immunotherapy. Science 2024; 386:eadn9083. [PMID: 39236156 PMCID: PMC7616765 DOI: 10.1126/science.adn9083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Immunotherapy can lead to long-term survival for some cancer patients, yet generalized success has been hampered by insufficient antigen presentation and exclusion of immunogenic cells from the tumor microenvironment. Here, we developed an approach to reprogram tumor cells in vivo by adenoviral delivery of the transcription factors PU.1, IRF8, and BATF3, which enabled them to present antigens as type 1 conventional dendritic cells. Reprogrammed tumor cells remodeled their tumor microenvironment, recruited, and expanded polyclonal cytotoxic T cells; induced tumor regressions; and established long-term systemic immunity in multiple mouse melanoma models. In human tumor spheroids and xenografts, reprogramming to immunogenic dendritic-like cells progressed independently of immunosuppression, which usually limits immunotherapy. Our study paves the way for human clinical trials of in vivo immune cell reprogramming for cancer immunotherapy.
Collapse
Affiliation(s)
- Ervin Ascic
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, 221 84Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, 221 84Lund, Sweden
| | | | - Malavika Sreekumar Nair
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, 221 84Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, 221 84Lund, Sweden
| | - André Rosa
- Asgard Therapeutics AB, Medicon Village, 223 81Lund, Sweden
| | - Ilia Kurochkin
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, 221 84Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, 221 84Lund, Sweden
| | - Olga Zimmermannova
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, 221 84Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, 221 84Lund, Sweden
| | - Xavier Catena
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, 221 84Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, 221 84Lund, Sweden
- Asgard Therapeutics AB, Medicon Village, 223 81Lund, Sweden
| | | | | | | | - Tommaso Ballocci
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, 221 84Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, 221 84Lund, Sweden
| | | | - Xiaoli Huang
- Asgard Therapeutics AB, Medicon Village, 223 81Lund, Sweden
| | - Maria de Rosa Torres
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, 221 84Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, 221 84Lund, Sweden
| | - Emilie Renaud
- Asgard Therapeutics AB, Medicon Village, 223 81Lund, Sweden
| | - Marta Velasco Santiago
- National Center of Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730Herlev, Denmark
| | - Özcan Met
- National Center of Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730Herlev, Denmark
- Department of Health Technology, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - David Askmyr
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, 221 85Lund, Sweden
- Department of Clinical Sciences, Lund University, 221 84Lund, Sweden
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Medicon Village, 223 81Lund, Sweden
| | - Lennart Greiff
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, 221 85Lund, Sweden
- Department of Clinical Sciences, Lund University, 221 84Lund, Sweden
| | | | | | - Inge Marie Svane
- National Center of Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730Herlev, Denmark
| | | | - Fábio F. Rosa
- Asgard Therapeutics AB, Medicon Village, 223 81Lund, Sweden
| | - Carlos-Filipe Pereira
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, 221 84Lund, Sweden
- Wallenberg Center for Molecular Medicine at Lund University, 221 84Lund, Sweden
- Asgard Therapeutics AB, Medicon Village, 223 81Lund, Sweden
- Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal, 3004-517Coimbra, Portugal
| |
Collapse
|
4
|
Cheang NYZ, Tan KS, Tan PS, Purushotorma K, Yap WC, Tullett KM, Chua BYL, Yeoh AYY, Tan CQH, Qian X, Chen H, Tay DJW, Caminschi I, Tan YJ, Macary PA, Tan CW, Lahoud MH, Alonso S. Single-shot dendritic cell targeting SARS-CoV-2 vaccine candidate induces broad, durable and protective systemic and mucosal immunity in mice. Mol Ther 2024; 32:2299-2315. [PMID: 38715364 PMCID: PMC11286822 DOI: 10.1016/j.ymthe.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/06/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
Current coronavirus disease 2019 vaccines face limitations including waning immunity, immune escape by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, limited cellular response, and poor mucosal immunity. We engineered a Clec9A-receptor binding domain (RBD) antibody construct that delivers the SARS-CoV-2 RBD to conventional type 1 dendritic cells. Compared with non-targeting approaches, single dose immunization in mice with Clec9A-RBD induced far higher RBD-specific antibody titers that were sustained for up to 21 months after vaccination. Uniquely, increasing neutralizing and antibody-dependent cytotoxicity activities across the sarbecovirus family was observed, suggesting antibody affinity maturation over time. Consistently and remarkably, RBD-specific follicular T helper cells and germinal center B cells persisted up to 12 months after immunization. Furthermore, Clec9A-RBD immunization induced a durable mono- and poly-functional T-helper 1-biased cellular response that was strongly cross-reactive against SARS-CoV-2 variants of concern, including Omicron subvariants, and with a robust CD8+ T cell signature. Uniquely, Clec9A-RBD single-shot systemic immunization effectively primed RBD-specific cellular and humoral immunity in lung and resulted in significant protection against homologous SARS-CoV-2 challenge as evidenced by limited body weight loss and approximately 2 log10 decrease in lung viral loads compared with non-immunized controls. Therefore, Clec9A-RBD immunization has the potential to trigger robust and sustained, systemic and mucosal protective immunity against rapidly evolving SARS-CoV2 variants.
Collapse
Affiliation(s)
- Nicholas You Zhi Cheang
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peck Szee Tan
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Kiren Purushotorma
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee Chee Yap
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Kirsteen McInnes Tullett
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Benson Yen Leong Chua
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Aileen Ying-Yan Yeoh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Caris Qi Hui Tan
- Histology Core Facility, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Xinlei Qian
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huixin Chen
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Douglas Jie Wen Tay
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Irina Caminschi
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Department of Microbiology and Immunology, Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Yee Joo Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Paul Anthony Macary
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chee Wah Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mireille Hanna Lahoud
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Dabbaghipour R, Ahmadi E, Entezam M, Farzam OR, Sohrabi S, Jamali S, Sichani AS, Paydar H, Baradaran B. Concise review: The heterogenous roles of BATF3 in cancer oncogenesis and dendritic cells and T cells differentiation and function considering the importance of BATF3-dependent dendritic cells. Immunogenetics 2024; 76:75-91. [PMID: 38358555 DOI: 10.1007/s00251-024-01335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/23/2023] [Indexed: 02/16/2024]
Abstract
The transcription factor, known as basic leucine zipper ATF-like 3 (BATF3), is a crucial contributor to the development of conventional type 1 dendritic cells (cDC1), which is definitely required for priming CD8 + T cell-mediated immunity against intracellular pathogens and malignancies. In this respect, BATF3-dependent cDC1 can bring about immunological tolerance, an autoimmune response, graft immunity, and defense against infectious agents such as viruses, microbes, parasites, and fungi. Moreover, the important function of cDC1 in stimulating CD8 + T cells creates an excellent opportunity to develop a highly effective target for vaccination against intracellular pathogens and diseases. BATF3 has been clarified to control the development of CD8α+ and CD103+ DCs. The presence of BATF3-dependent cDC1 in the tumor microenvironment (TME) reinforces immunosurveillance and improves immunotherapy approaches, which can be beneficial for cancer immunotherapy. Additionally, BATF3 acts as a transcriptional inhibitor of Treg development by decreasing the expression of the transcription factor FOXP3. However, when overexpressed in CD8 + T cells, it can enhance their survival and facilitate their transition to a memory state. BATF3 induces Th9 cell differentiation by binding to the IL-9 promoter through a BATF3/IRF4 complex. One of the latest research findings is the oncogenic function of BATF3, which has been approved and illustrated in several biological processes of proliferation and invasion.
Collapse
Affiliation(s)
- Reza Dabbaghipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mona Entezam
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Jamali
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Saber Sichani
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Hadi Paydar
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Ung T, Rutledge NS, Weiss AM, Esser-Kahn AP, Deak P. Cell-targeted vaccines: implications for adaptive immunity. Front Immunol 2023; 14:1221008. [PMID: 37662903 PMCID: PMC10468591 DOI: 10.3389/fimmu.2023.1221008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Recent advancements in immunology and chemistry have facilitated advancements in targeted vaccine technology. Targeting specific cell types, tissue locations, or receptors can allow for modulation of the adaptive immune response to vaccines. This review provides an overview of cellular targets of vaccines, suggests methods of targeting and downstream effects on immune responses, and summarizes general trends in the literature. Understanding the relationships between vaccine targets and subsequent adaptive immune responses is critical for effective vaccine design. This knowledge could facilitate design of more effective, disease-specialized vaccines.
Collapse
Affiliation(s)
- Trevor Ung
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Nakisha S. Rutledge
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Peter Deak
- Chemical and Biological Engineering Department, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Macri C, Jenika D, Ouslinis C, Mintern JD. Targeting dendritic cells to advance cross-presentation and vaccination outcomes. Semin Immunol 2023; 68:101762. [PMID: 37167898 DOI: 10.1016/j.smim.2023.101762] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
Dendritic cells (DCs) are a complex network of specialised antigen-presenting cells that are critical initiators of adaptive immunity. Targeting antigen directly to DCs in situ is a vaccination strategy that selectively delivers antigen to receptors expressed by DC subtypes. This approach exploits specific DC subset functions of antigen uptake and presentation. Here, we review DC-targeted vaccination strategies that are designed to elicit effective cross-presentation for CD8+ T cell immunity. In particular, we focus on approaches that exploit receptors highly expressed by mouse and human cDCs equipped with superior cross-presentation capacity. These receptors include DEC205, Clec9A and XCR1. Targeting DC receptors Clec12A, Clec4A4 and mannose receptor is also reviewed. Outcomes of DC-targeted vaccination in mouse models through to human clinical trials is discussed. This is a promising new vaccination approach capable of directly targeting the cross-presentation pathway for prevention and treatment of tumours and infectious diseases.
Collapse
Affiliation(s)
- Christophe Macri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Devi Jenika
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Cassandra Ouslinis
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia.
| |
Collapse
|
8
|
Vu MN, Pilkington EH, Lee WS, Tan H, Davis TP, Truong NP, Kent SJ, Wheatley AK. Engineered Ferritin Nanoparticle Vaccines Enable Rapid Screening of Antibody Functionalization to Boost Immune Responses. Adv Healthc Mater 2023; 12:e2202595. [PMID: 36786027 PMCID: PMC11469303 DOI: 10.1002/adhm.202202595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/16/2023] [Indexed: 02/15/2023]
Abstract
Employing monoclonal antibodies to target vaccine antigens to different immune cells within lymph nodes where adaptive immunity is initiated can provide a mechanism to fine-tune the magnitude or the quality of immune responses. However, studying the effects of different targeting antibodies head-to-head is challenging due to the lack of a feasible method that allows rapid screening of multiple antibodies for their impact on immunogenicity. Here self-assembling ferritin nanoparticles are prepared that co-display vaccine antigens and the Fc-binding domain of Staphylococcal protein A, allowing rapid attachment of soluble antibodies to the nanoparticle surface. Using this tunable system, ten antibodies targeting different immune cell subsets are screened, with targeting to Clec9a associated with higher serum antibody titers after immunization. Immune cell targeting using ferritin nanoparticles with anti-Clec9a antibodies drives concentrated deposition of antigens within germinal centers, boosting germinal center formation and robust antibody responses. However, the capacity to augment humoral immunity is antigen-dependent, with significant boosting observed for prototypic ovalbumin immunogens but reduced effectiveness with the SARS-CoV-2 RBD. This work provides a rapid platform for screening targeting antibodies, which will accelerate mechanistic insights into optimal delivery strategies for nanoparticle-based vaccines to maximize protective immunity.
Collapse
Affiliation(s)
- Mai N. Vu
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyThe University of MelbourneMelbourneVIC3010Australia
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Faculty of Pharmaceutics and Pharmaceutical TechnologyHanoi University of Pharmacy10000HanoiVietnam
| | - Emily H. Pilkington
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyThe University of MelbourneMelbourneVIC3010Australia
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | - Wen Shi Lee
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyThe University of MelbourneMelbourneVIC3010Australia
| | - Hyon‐Xhi Tan
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyThe University of MelbourneMelbourneVIC3010Australia
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
| | - Thomas P. Davis
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Australia Institute of Bioengineering & NanotechnologyUniversity of QueenslandBrisbaneQLD4072Australia
| | - Nghia P. Truong
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | - Stephen J. Kent
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyThe University of MelbourneMelbourneVIC3010Australia
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
- Melbourne Sexual Health Centre and Department of Infectious DiseasesAlfred Hospital and Central Clinical SchoolMonash UniversityMelbourneVIC3004Australia
| | - Adam K. Wheatley
- Peter Doherty Institute for Infection and ImmunityDepartment of Microbiology and ImmunologyThe University of MelbourneMelbourneVIC3010Australia
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyParkvilleVIC3052Australia
| |
Collapse
|
9
|
Henry CM, Castellanos CA, Reis E Sousa C. DNGR-1-mediated cross-presentation of dead cell-associated antigens. Semin Immunol 2023; 66:101726. [PMID: 36758378 DOI: 10.1016/j.smim.2023.101726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
Conventional dendritic cells type 1 (cDC1) are critical for inducing protective CD8+ T cell responses to tumour and viral antigens. In many instances, cDC1 access those antigens in the form of material internalised from dying tumour or virally-infected cells. How cDC1 extract dead cell-associated antigens and cross-present them in the form of peptides bound to MHC class I molecules to CD8+ T cells remains unclear. Here we review the biology of dendritic cell natural killer group receptor-1 (DNGR-1; also known as CLEC9A), a C-type lectin receptor highly expressed on cDC1 that plays a key role in this process. We highlight recent advances that support a function for DNGR-1 signalling in promoting inducible rupture of phagocytic or endocytic compartments containing dead cell debris, thereby making dead cell-associated antigens accessible to the endogenous MHC class I processing and presentation machinery of cDC1. We further review how DNGR-1 detects dead cells, as well as the functions of the receptor in anti-viral and anti-tumour immunity. Finally, we highlight how the study of DNGR-1 has opened new perspectives into cross-presentation, some of which may have applications in immunotherapy of cancer and vaccination against viral diseases.
Collapse
Affiliation(s)
- Conor M Henry
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Carlos A Castellanos
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
10
|
Sulczewski FB, Martino LA, Salles D, Yamamoto MM, Rosa DS, Boscardin SB. STAT3 signaling modulates the immune response induced after antigen targeting to conventional type 1 dendritic cells through the DEC205 receptor. Front Immunol 2022; 13:1006996. [PMID: 36330518 PMCID: PMC9624190 DOI: 10.3389/fimmu.2022.1006996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Conventional dendritic cells (cDC) are a group of antigen-presenting cells specialized in priming T cell responses. In mice, splenic cDC are divided into conventional type 1 DC (cDC1) and conventional type 2 (cDC2). cDC1 are specialized to prime the Th1 CD4+ T cell response, while cDC2 are mainly associated with the induction of follicular helper T cell responses to support germinal center formation. However, the mechanisms that control the functions of cDC1 and cDC2 are not fully understood, especially the signaling pathways that can modulate their ability to promote different CD4+ T cell responses. Here, we targeted a model antigen for cDC1 and cDC2, through DEC205 and DCIR2 receptors, respectively, to study the role of the STAT3 signaling pathway in the ability of these cells to prime CD4+ T cells. Our results show that, in the absence of the STAT3 signaling pathway, antigen targeting to cDC2 induced similar frequencies of Tfh cells between STAT3-deficient mice compared to fully competent mice. On the other hand, Th1 and Th1-like Tfh cell responses were significantly reduced in STAT3-deficient mice after antigen targeting to cDC1 via the DEC205 receptor. In summary, our results indicate that STAT3 signaling does not control the ability of cDC2 to promote Tfh cell responses after antigen targeting via the DCIR2 receptor, but modulates the function of cDC1 to promote Th1 and Th1-like Tfh T cell responses after antigen targeting via the DEC205 receptor.
Collapse
Affiliation(s)
| | - Larissa Alves Martino
- Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Davi Salles
- Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Márcio Massao Yamamoto
- Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniela Santoro Rosa
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
- Instituto de Investigação em Imunologia (iii), INCT, Sao Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
- Instituto de Investigação em Imunologia (iii), INCT, Sao Paulo, Brazil
- *Correspondence: Silvia Beatriz Boscardin,
| |
Collapse
|
11
|
This S, Paidassi H. New perspectives on the regulation of germinal center reaction via αvβ8- mediated activation of TGFβ. Front Immunol 2022; 13:942468. [PMID: 36072589 PMCID: PMC9441935 DOI: 10.3389/fimmu.2022.942468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor-β (TGFβ) is a long-known modulator of immune responses but has seemingly contradictory effects on B cells. Among cytokines, TGFβ has the particularity of being produced and secreted in a latent form and must be activated before it can bind to its receptor and induce signaling. While the concept of controlled delivery of TGFβ signaling via αvβ8 integrin-mediated activation has gained some interest in the field of mucosal immunity, the role of this molecular mechanism in regulating T-dependent B cell responses is just emerging. We review here the role of TGFβ and its activation, in particular by αvβ8 integrin, in the regulation of mucosal IgA responses and its demonstrated and putative involvement in regulating germinal center (GC) B cell responses. We examine both the direct effect of TGFβ on GC B cells and its ability to modulate the functions of helper cells, namely follicular T cells (Tfh and Tfr) and follicular dendritic cells. Synthetizing recently published works, we reconcile apparently conflicting data and propose an innovative and unified view on the regulation of the GC reaction by TGFβ, highlighting the role of its activation by αvβ8 integrin.
Collapse
Affiliation(s)
- Sébastien This
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de microbiologie, immunologie et infectiologie, Université de Montréal, Montréal, QC, Canada
| | - Helena Paidassi
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
12
|
McNamara HA, Lahoud MH, Cai Y, Durrant-Whyte J, O'Connor JH, Caminschi I, Cockburn IA. Splenic Dendritic Cells and Macrophages Drive B Cells to Adopt a Plasmablast Cell Fate. Front Immunol 2022; 13:825207. [PMID: 35493521 PMCID: PMC9039241 DOI: 10.3389/fimmu.2022.825207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Upon encountering cognate antigen, B cells can differentiate into short-lived plasmablasts, early memory B cells or germinal center B cells. The factors that determine this fate decision are unclear. Past studies have addressed the role of B cell receptor affinity in this process, but the interplay with other cellular compartments for fate determination is less well understood. Moreover, B cell fate decisions have primarily been studied using model antigens rather than complex pathogen systems, which potentially ignore multifaceted interactions from other cells subsets during infection. Here we address this question using a Plasmodium infection model, examining the response of B cells specific for the immunodominant circumsporozoite protein (CSP). We show that B cell fate is determined in part by the organ environment in which priming occurs, with the majority of the CSP-specific B cell response being derived from splenic plasmablasts. This plasmablast response could occur independent of T cell help, though gamma-delta T cells were required to help with the early isotype switching from IgM to IgG. Interestingly, selective ablation of CD11c+ dendritic cells and macrophages significantly reduced the splenic plasmablast response in a manner independent of the presence of CD4 T cell help. Conversely, immunization approaches that targeted CSP-antigen to dendritic cells enhanced the magnitude of the plasmablast response. Altogether, these data indicate that the early CSP-specific response is predominately primed within the spleen and the plasmablast fate of CSP-specific B cells is driven by macrophages and CD11c+ dendritic cells.
Collapse
Affiliation(s)
- Hayley A McNamara
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mireille H Lahoud
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yeping Cai
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Jessica Durrant-Whyte
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - James H O'Connor
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Irina Caminschi
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ian A Cockburn
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
13
|
Abstract
Although the need for a universal influenza vaccine has long been recognized, only a handful of candidates have been identified so far, with even fewer advancing in the clinical pipeline. The 24–amino acid ectodomain of M2 protein (M2e) has been developed over the past two decades. However, M2e-based vaccine candidates have shortcomings, including the need for several administrations and the lack of sustained antibody titers over time. We report here a vaccine targeting strategy that has the potential to confer sustained and strong protection upon a single shot of a small amount of M2e antigen. The current COVID-19 pandemic has highlighted the importance of developing versatile, powerful platforms for the rapid deployment of vaccines against any incoming threat. Influenza, commonly referred to as “flu,” is a major global public health concern and a huge economic burden to societies. Current influenza vaccines need to be updated annually to match circulating strains, resulting in low take-up rates and poor coverage due to inaccurate prediction. Broadly protective universal flu vaccines that do not need to be updated annually have therefore been pursued. The highly conserved 24–amino acid ectodomain of M2 protein (M2e) is a leading candidate, but its poor immunogenicity has been a major roadblock in its clinical development. Here, we report a targeting strategy that shuttles M2e to a specific dendritic cell subset (cDC1) by engineering a recombinant anti-Clec9A monoclonal antibody fused at each of its heavy chains with three copies of M2e. Single administration in mice of 2 µg of the Clec9A–M2e construct triggered an exceptionally sustained anti-M2e antibody response and resulted in a strong anamnestic protective response upon influenza challenge. Furthermore, and importantly, Clec9A–M2e immunization significantly boosted preexisting anti-M2e titers from prior flu exposure. Thus, the Clec9A-targeting strategy allows antigen and dose sparing, addressing the shortcomings of current M2e vaccine candidates. As the cDC1 subset exists in humans, translation to humans is an exciting and realistic avenue.
Collapse
|
14
|
Schriek P, Ching AC, Moily NS, Moffat J, Beattie L, Steiner TM, Hosking LM, Thurman JM, Holers VM, Ishido S, Lahoud MH, Caminschi I, Heath WR, Mintern JD, Villadangos JA. Marginal zone B cells acquire dendritic cell functions by trogocytosis. Science 2022; 375:eabf7470. [PMID: 35143312 DOI: 10.1126/science.abf7470] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Marginal zone (MZ) B cells produce broad-spectrum antibodies that protect against infection early in life. In some instances, antibody production requires MZ B cells to display pathogen antigens bound to major histocompatibility complex class II (MHC II) molecules to T cells. We describe the trogocytic acquisition of these molecules from conventional dendritic cells (cDCs). Complement component 3 (C3) binds to murine and human MHC II on cDCs. MZ B cells recognize C3 with complement receptor 2 (CR2) and trogocytose the MHC II-C3 complexes, which become exposed on their cell surface. The ubiquitin ligase MARCH1 limits the number of MHC II-C3 complexes displayed on cDCs to prevent their elimination through excessive trogocytosis. Capture of C3 by MHC II thus enables the transfer of cDC-like properties to MZ B cells.
Collapse
Affiliation(s)
- Patrick Schriek
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alan C Ching
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nagaraj S Moily
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jessica Moffat
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| | - Thiago M Steiner
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| | - Laine M Hosking
- Department of Allergy and Immunology, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Joshua M Thurman
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan
| | - Mireille H Lahoud
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Irina Caminschi
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - William R Heath
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
15
|
Roquilly A, Mintern JD, Villadangos JA. Spatiotemporal Adaptations of Macrophage and Dendritic Cell Development and Function. Annu Rev Immunol 2022; 40:525-557. [PMID: 35130030 DOI: 10.1146/annurev-immunol-101320-031931] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages and conventional dendritic cells (cDCs) are distributed throughout the body, maintaining tissue homeostasis and tolerance to self and orchestrating innate and adaptive immunity against infection and cancer. As they complement each other, it is important to understand how they cooperate and the mechanisms that integrate their functions. Both are exposed to commensal microbes, pathogens, and other environmental challenges that differ widely among anatomical locations and over time. To adjust to these varying conditions, macrophages and cDCs acquire spatiotemporal adaptations (STAs) at different stages of their life cycle that determine how they respond to infection. The STAs acquired in response to previous infections can result in increased responsiveness to infection, termed training, or in reduced responses, termed paralysis, which in extreme cases can cause immunosuppression. Understanding the developmental stage and location where macrophages and cDCs acquire their STAs, and the molecular and cellular players involved in their induction, may afford opportunities to harness their beneficial outcomes and avoid or reverse their deleterious effects. Here we review our current understanding of macrophage and cDC development, life cycle, function, and STA acquisition before, during, and after infection. We propose a unified framework to explain how these two cell types adjust their activities to changing conditions over space and time to coordinate their immunosurveillance functions. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Antoine Roquilly
- Center for Research in Transplantation and Translational Immunology, INSERM, UMR 1064, CHU Nantes, University of Nantes, Nantes, France
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
16
|
Ndeupen S, Qin Z, Jacobsen S, Bouteau A, Estanbouli H, Igyártó BZ. The mRNA-LNP platform's lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience 2021; 24:103479. [PMID: 34841223 PMCID: PMC8604799 DOI: 10.1016/j.isci.2021.103479] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/03/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022] Open
Abstract
Vaccines based on mRNA-containing lipid nanoparticles (LNPs) are a promising new platform used by two leading vaccines against COVID-19. Clinical trials and ongoing vaccinations present with varying degrees of protection levels and side effects. However, the drivers of the reported side effects remain poorly defined. Here we present evidence that Acuitas' LNPs used in preclinical nucleoside-modified mRNA vaccine studies are highly inflammatory in mice. Intradermal and intramuscular injection of these LNPs led to rapid and robust inflammatory responses, characterized by massive neutrophil infiltration, activation of diverse inflammatory pathways, and production of various inflammatory cytokines and chemokines. The same dose of LNP delivered intranasally led to similar inflammatory responses in the lung and resulted in a high mortality rate, with mechanism unresolved. Thus, the mRNA-LNP platforms' potency in supporting the induction of adaptive immune responses and the observed side effects may stem from the LNPs' highly inflammatory nature.
Collapse
Affiliation(s)
- Sonia Ndeupen
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia 19107 PA, USA
| | - Zhen Qin
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia 19107 PA, USA
| | - Sonya Jacobsen
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia 19107 PA, USA
| | - Aurélie Bouteau
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia 19107 PA, USA
| | - Henri Estanbouli
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia 19107 PA, USA
| | - Botond Z. Igyártó
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia 19107 PA, USA
| |
Collapse
|
17
|
Steiner TM, Heath WR, Caminschi I. The unexpected contribution of conventional type 1 dendritic cells in driving antibody responses. Eur J Immunol 2021; 52:189-196. [PMID: 34897660 DOI: 10.1002/eji.202149658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Antibodies are hallmarks of most effective vaccines. For successful T-dependent antibody responses, conventional dendritic cells (cDC) have been largely attributed the role of priming T cells. By contrast, follicular dendritic cells and macrophages have been seen as responsible for B cell activation, due to their strategic location within secondary lymphoid tissues and capacity to present native antigen to B cells. This review summarizes the mounting evidence that cDC can also present native antigen to B cells. cDC2 have been the main subset linked to humoral responses, based largely on their favorable location, capacity to prime CD4+ T cells, and ability to present native antigen to B cells. However, studies using strategies to deliver antigen to receptors on cDC1, reveal this subset can also contribute to naïve B cell activation, as well as T cell priming. cDC1 location within lymphoid tissues reveals their juxtaposition to B cell follicles, with ready access to B cells for presentation of native antigen. These findings support the view that both cDC1 and cDC2 are capable of initiating humoral responses provided antigen is captured by relevant surface receptors attuned to this process. Such understanding is fundamental for the development of innovative humoral vaccination approaches.
Collapse
Affiliation(s)
- Thiago M Steiner
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria, Australia
| | - William R Heath
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria, Australia
| | - Irina Caminschi
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Giza HM, Bozzacco L. Unboxing dendritic cells: Tales of multi-faceted biology and function. Immunology 2021; 164:433-449. [PMID: 34309853 PMCID: PMC8517577 DOI: 10.1111/imm.13394] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Often referred to as the bridge between innate and adaptive immunity, dendritic cells (DCs) are professional antigen-presenting cells (APCs) that constitute a unique, yet complex cell system. Among other APCs, DCs display the unique property of inducing protective immune responses against invading microbes, or cancer cells, while safeguarding the proper homeostatic equilibrium of the immune system and maintaining self-tolerance. Unsurprisingly, DCs play a role in many diseases such as autoimmunity, allergy, infectious disease and cancer. This makes them attractive but challenging targets for therapeutics. Since their initial discovery, research and understanding of DC biology have flourished. We now recognize the presence of multiple subsets of DCs distributed across tissues. Recent studies of phenotype and gene expression at the single cell level have identified heterogeneity even within the same DC type, supporting the idea that DCs have evolved to greatly expand the flexibility of the immune system to react appropriately to a wide range of threats. This review is meant to serve as a quick and robust guide to understand the basic divisions of DC subsets and their role in the immune system. Between mice and humans, there are some differences in how these subsets are identified and function, and we will point out specific distinctions as necessary. Throughout the text, we are using both fundamental and therapeutic lens to describe overlaps and distinctions and what this could mean for future research and therapies.
Collapse
|
19
|
Ndeupen S, Qin Z, Jacobsen S, Estanbouli H, Bouteau A, Igyártó BZ. The mRNA-LNP platform's lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.04.430128. [PMID: 33688649 PMCID: PMC7941620 DOI: 10.1101/2021.03.04.430128] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Vaccines based on mRNA-containing lipid nanoparticles (LNPs) are a promising new platform used by two leading vaccines against coronavirus disease in 2019 (COVID-19). Clinical trials and ongoing vaccinations present with very high protection levels and varying degrees of side effects. However, the nature of the reported side effects remains poorly defined. Here we present evidence that LNPs used in many preclinical studies are highly inflammatory in mice. Intradermal injection of these LNPs led to rapid and robust inflammatory responses, characterized by massive neutrophil infiltration, activation of diverse inflammatory pathways, and production of various inflammatory cytokines and chemokines. The same dose of LNP delivered intranasally led to similar inflammatory responses in the lung and resulted in a high mortality rate. In summary, here we show that the LNPs used for many preclinical studies are highly inflammatory. Thus, their potent adjuvant activity and reported superiority comparing to other adjuvants in supporting the induction of adaptive immune responses likely stem from their inflammatory nature. Furthermore, the preclinical LNPs are similar to the ones used for human vaccines, which could also explain the observed side effects in humans using this platform.
Collapse
Affiliation(s)
- Sonia Ndeupen
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, PA
| | - Zhen Qin
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, PA
| | - Sonya Jacobsen
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, PA
| | - Henri Estanbouli
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, PA
| | - Aurélie Bouteau
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, PA
| | - Botond Z. Igyártó
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, PA
- Address correspondence to: Botond Z. Igyártó,
| |
Collapse
|
20
|
Abstract
As the professional antigen-presenting cells of the immune system, dendritic cells (DCs) sense the microenvironment and shape the ensuing adaptive immune response. DCs can induce both immune activation and immune tolerance according to the peripheral cues. Recent work has established that DCs comprise several phenotypically and functionally heterogeneous subsets that differentially regulate T lymphocyte differentiation. This review summarizes both mouse and human DC subset phenotypes, development, diversification, and function. We focus on advances in our understanding of how different DC subsets regulate distinct CD4+ T helper (Th) cell differentiation outcomes, including Th1, Th2, Th17, T follicular helper, and T regulatory cells. We review DC subset intrinsic properties, local tissue microenvironments, and other immune cells that together determine Th cell differentiation during homeostasis and inflammation.
Collapse
Affiliation(s)
- Xiangyun Yin
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Shuting Chen
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| |
Collapse
|
21
|
Abstract
Dendritic cell (DC) vaccines are a safe and effective means of inducing tumor immune responses, however, a better understanding of DC biology is required in order to realize their full potential. Recent advances in DC biology have identified a crucial role for cDC1 in tumor immune responses, making this DC subset an attractive vaccine target. Human cDC1 exclusively express the C-type-lectin-like receptor, CLEC9A (DNGR-1) that plays an important role in cross-presentation, the process by which effective CD8+ T cell responses are generated. CLEC9A antibodies deliver antigen specifically to cDC1 for the induction of humoral, CD4+ and CD8+ T cell responses and are therefore promising candidates to develop as vaccines for infectious diseases and cancer. The development of human CLEC9A antibodies now facilitates their application as vaccines for cancer immunotherapy. Here we discuss the recent advances in CLEC9A targeting antibodies as vaccines for cancer and their translation to the clinic.
Collapse
Affiliation(s)
- M H Lahoud
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - K J Radford
- Cancer Immunotherapies Laboratory, Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| |
Collapse
|
22
|
Duckworth BC, Groom JR. Conversations that count: Cellular interactions that drive T cell fate. Immunol Rev 2021; 300:203-219. [PMID: 33586207 PMCID: PMC8048805 DOI: 10.1111/imr.12945] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
The relationship between the extrinsic environment and the internal transcriptional network is circular. Naive T cells first engage with antigen‐presenting cells to set transcriptional differentiation networks in motion. In turn, this regulates specific chemokine receptors that direct migration into distinct lymph node niches. Movement into these regions brings newly activated T cells into contact with accessory cells and cytokines that reinforce the differentiation programming to specify T cell function. We and others have observed similarities in the transcriptional networks that specify both CD4+ T follicular helper (TFH) cells and CD8+ central memory stem‐like (TSCM) cells. Here, we compare and contrast the current knowledge for these shared differentiation programs, compared to their effector counterparts, CD4+ T‐helper 1 (TH1) and CD8+ short‐lived effector (TSLEC) cells. Understanding the interplay between cellular interactions and transcriptional programming is essential to harness T cell differentiation that is fit for purpose; to stimulate potent T cell effector function for the elimination of chronic infection and cancer; or to amplify the formation of humoral immunity and longevity of cellular memory to prevent infectious diseases.
Collapse
Affiliation(s)
- Brigette C Duckworth
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
23
|
Abstract
Dendritic cells are a specialized subset of hematopoietic cells essential for mounting immunity against tumors and infectious disease as well as inducing tolerance for maintenance of homeostasis. DCs are equipped with number of immunoregulatory or stimulatory molecules that interact with other leukocytes to modulate their functions. Recent advances in DC biology identified a specific role for the conventional dendritic cell type 1 (cDC1) in eliciting cytotoxic CD8+ T cells essential for clearance of tumors and infected cells. The critical role of this subset in eliciting immune responses or inducing tolerance has largely been defined in mice whereas the biology of human cDC1 is poorly characterized owing to their extremely low frequency in tissues. A detailed characterization of the functions of many immunoregulatory and stimulatory molecules expressed by human cDC1 is critical for understanding their biology to exploit this subset for designing novel therapeutic modalities against cancer, infectious disease and autoimmune disorders.
Collapse
Affiliation(s)
- Sreekumar Balan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Kristen J Radford
- Cancer Immunotherapies Laboratory, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Extramural member Parker Institute of Cancer Immunotherapy, CA, United States.
| |
Collapse
|