1
|
Spatola M, Nziza N, Jung W, Deng Y, Yuan D, Dinoto A, Bozzetti S, Chiodega V, Ferrari S, Lauffenburger DA, Mariotto S, Alter G. Neurologic sequelae of COVID-19 are determined by immunologic imprinting from previous coronaviruses. Brain 2023; 146:4292-4305. [PMID: 37161609 PMCID: PMC11004923 DOI: 10.1093/brain/awad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 05/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health emergency. Although SARS-CoV-2 is primarily a respiratory pathogen, extra-respiratory organs, including the CNS, can also be affected. Neurologic symptoms have been observed not only during acute SARS-CoV-2 infection, but also at distance from respiratory disease, also known as long-COVID or neurological post-acute sequelae of COVID-19 (neuroPASC). The pathogenesis of neuroPASC is not well understood, but hypotheses include SARS-CoV-2-induced immune dysfunctions, hormonal dysregulations and persistence of SARS-CoV-2 reservoirs. In this prospective cohort study, we used a high throughput systems serology approach to dissect the humoral response to SARS-CoV-2 (and other common coronaviruses: 229E, HKU1, NL63 and OC43) in the serum and CSF from 112 infected individuals who developed (n = 18) or did not develop (n = 94) neuroPASC. Unique SARS-CoV-2 humoral profiles were observed in the CSF of neuroPASC compared with serum responses. All antibody isotypes (IgG, IgM, IgA) and subclasses (IgA1-2, IgG1-4) were detected in serum, whereas CSF was characterized by focused IgG1 (and absence of IgM). These data argue in favour of compartmentalized brain-specific responses against SARS-CoV-2 through selective transfer of antibodies from the serum to the CSF across the blood-brain barrier, rather than intrathecal synthesis, where more diversity in antibody classes/subclasses would be expected. Compared to individuals who did not develop post-acute complications following infection, individuals with neuroPASC had similar demographic features (median age 65 versus 66.5 years, respectively, P = 0.55; females 33% versus 44%, P = 0.52) but exhibited attenuated systemic antibody responses against SARS-CoV-2, characterized by decreased capacity to activate antibody-dependent complement deposition (ADCD), NK cell activation (ADNKA) and to bind Fcγ receptors. However, surprisingly, neuroPASC individuals showed significantly expanded antibody responses to other common coronaviruses, including 229E, HKU1, NL63 and OC43. This biased humoral activation across coronaviruses was particularly enriched in neuroPASC individuals with poor outcome, suggesting an 'original antigenic sin' (or immunologic imprinting), where pre-existing immune responses against related viruses shape the response to the current infection, as a key prognostic marker of neuroPASC disease. Overall, these findings point to a pathogenic role for compromised anti-SARS-CoV-2 responses in the CSF, likely resulting in incomplete virus clearance from the brain and persistent neuroinflammation, in the development of post-acute neurologic complications of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Marianna Spatola
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA
| | - Nadège Nziza
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA
| | - Wonyeong Jung
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yixiang Deng
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dansu Yuan
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA
| | - Alessandro Dinoto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37131 Verona, Italy
| | - Silvia Bozzetti
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37131 Verona, Italy
| | - Vanessa Chiodega
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37131 Verona, Italy
- Department of Neurology/Stroke Unit, San Maurizio Hospital, 39100 Bolzano, Italy
| | - Sergio Ferrari
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37131 Verona, Italy
| | | | - Sara Mariotto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37131 Verona, Italy
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Nowill AE, Caruso M, de Campos-Lima PO. T-cell immunity to SARS-CoV-2: what if the known best is not the optimal course for the long run? Adapting to evolving targets. Front Immunol 2023; 14:1133225. [PMID: 37388738 PMCID: PMC10303130 DOI: 10.3389/fimmu.2023.1133225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
Humanity did surprisingly well so far, considering how unprepared it was to respond to the coronavirus disease 2019 (COVID-19) threat. By blending old and ingenious new technology in the context of the accumulated knowledge on other human coronaviruses, several vaccine candidates were produced and tested in clinical trials in record time. Today, five vaccines account for the bulk of the more than 13 billion doses administered worldwide. The ability to elicit biding and neutralizing antibodies most often against the spike protein is a major component of the protection conferred by immunization but alone it is not enough to limit virus transmission. Thus, the surge in numbers of infected individuals by newer variants of concern (VOCs) was not accompanied by a proportional increase in severe disease and death rate. This is likely due to antiviral T-cell responses, whose evasion is more difficult to achieve. The present review helps navigating the very large literature on T cell immunity induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination. We examine the successes and shortcomings of the vaccinal protection in the light of the emergence of VOCs with breakthrough potential. SARS-CoV-2 and human beings will likely coexist for a long while: it will be necessary to update existing vaccines to improve T-cell responses and attain better protection against COVID-19.
Collapse
Affiliation(s)
- Alexandre E. Nowill
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas, SP, Brazil
| | - Manuel Caruso
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, Québec, QC, Canada
| | - Pedro O. de Campos-Lima
- Boldrini Children’s Center, Campinas, SP, Brazil
- Molecular and Morphofunctional Biology Graduate Program, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
3
|
Bindu S, Dandapat S, Manikandan R, Dinesh M, Subbaiyan A, Mani P, Dhawan M, Tiwari R, Bilal M, Emran TB, Mitra S, Rabaan AA, Mutair AA, Alawi ZA, Alhumaid S, Dhama K. Prophylactic and therapeutic insights into trained immunity: A renewed concept of innate immune memory. Hum Vaccin Immunother 2022; 18:2040238. [PMID: 35240935 PMCID: PMC9009931 DOI: 10.1080/21645515.2022.2040238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/18/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
Trained immunity is a renewed concept of innate immune memory that facilitates the innate immune system to have the capacity to remember and train cells via metabolic and transcriptional events to enable them to provide nonspecific defense against the subsequent encounters with a range of pathogens and acquire a quicker and more robust immune response, but different from the adaptive immune memory. Reversing the epigenetic changes or targeting the immunological pathways may be considered potential therapeutic approaches to counteract the hyper-responsive or hypo-responsive state of trained immunity. The efficient regulation of immune homeostasis and promotion or inhibition of immune responses is required for a balanced response. Trained immunity-based vaccines can serve as potent immune stimuli and help in the clearance of pathogens in the body through multiple or heterologous effects and confer protection against nonspecific and specific pathogens. This review highlights various features of trained immunity and its applications in developing novel therapeutics and vaccines, along with certain detrimental effects, challenges as well as future perspectives.
Collapse
Affiliation(s)
- Suresh Bindu
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Satyabrata Dandapat
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Rajendran Manikandan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Anbazhagan Subbaiyan
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Pashupathi Mani
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- Indian Council of Agricultural Research, The Trafford Group of Colleges, Manchester, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangldesh
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, Australia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
4
|
Van der Sluis RM, Holm CK, Jakobsen MR. Plasmacytoid dendritic cells during COVID-19: Ally or adversary? Cell Rep 2022; 40:111148. [PMID: 35858624 PMCID: PMC9279298 DOI: 10.1016/j.celrep.2022.111148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized cells of the immune system that are thought to be the main cellular source of type I interferon alpha (IFNα) in response to viral infections. IFNs are powerful antivirals, whereas defects in their function or induction lead to impaired resistance to virus infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. IFN production needs to be controlled, because sustained IFN production can also have detrimental effects on disease outcome. As such, pDCs are likely important for acute antiviral protection against SARS-CoV-2 infection but could potentially also contribute to chronic IFN levels. Here, we provide a historical overview of pDC biology and summarize existing literature addressing their involvement and importance during viral infections of the airways. Furthermore, we outline recent reports focused on the potential role of pDCs during SARS-CoV-2 infection, as well as the potential for this cellular subset to impact COVID-19 disease outcome.
Collapse
|
5
|
Dunai C, Collie C, Michael BD. Immune-Mediated Mechanisms of COVID-19 Neuropathology. Front Neurol 2022; 13:882905. [PMID: 35665037 PMCID: PMC9160362 DOI: 10.3389/fneur.2022.882905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022] Open
Abstract
Although SARS-CoV-2 causes a respiratory viral infection, there is a large incidence of neurological complications occurring in COVID-19 patients. These range from headaches and loss of smell to encephalitis and strokes. Little is known about the likely diverse mechanisms causing these pathologies and there is a dire need to understand how to prevent and treat them. This review explores recent research from the perspective of investigating how the immune system could play a role in neurological complications, including cytokines, blood biomarkers, immune cells, and autoantibodies. We also discuss lessons learnt from animal models. Overall, we highlight two key points that have emerged from increasing evidence: (1) SARS-CoV-2 does not invade the brain in the majority of cases and so the associated neurological complications might arise from indirect effects, such as immune activation (2) although the immune system plays a critical role in controlling the virus, its dysregulation can cause pathology.
Collapse
Affiliation(s)
- Cordelia Dunai
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- NIHR HPRU for Emerging and Zoonotic Infection, Liverpool, United Kingdom
| | - Ceryce Collie
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Benedict D. Michael
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- NIHR HPRU for Emerging and Zoonotic Infection, Liverpool, United Kingdom
- The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
6
|
Zhu L, Li X, Xu F, Yin Z, Jin J, Liu Z, Qi H, Shuai J. Network modeling-based identification of the switching targets between pyroptosis and secondary pyroptosis. CHAOS, SOLITONS, AND FRACTALS 2022; 155:111724. [PMID: 36570873 PMCID: PMC9759288 DOI: 10.1016/j.chaos.2021.111724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/09/2021] [Indexed: 06/17/2023]
Abstract
The newly identified cell death type, pyroptosis plays crucial roles in various diseases. Most recently, mounting evidence accumulates that pyroptotic signaling is highly correlated with coronavirus disease 2019 (COVID-19). Thus, understanding the induction of the pyroptotic signaling and dissecting the detail molecular control mechanisms are urgently needed. Based on recent experimental studies, a core regulatory model of the pyroptotic signaling is constructed to investigate the intricate crosstalk dynamics between the two cell death types, i.e., pyroptosis and secondary pyroptosis. The model well reproduces the experimental observations under different conditions. Sensitivity analysis determines that only the expression level of caspase-1 or GSDMD has the potential to individually change death modes. The decrease of caspase-1 or GSDMD level switches cell death from pyroptosis to secondary pyroptosis. Besides, eight biochemical reactions are identified that can efficiently switch death modes. While from the viewpoint of bifurcation analysis, the expression level of caspase-3 is further identified and twelve biochemical reactions are obtained. The coexistence of pyroptosis and secondary pyroptosis is predicted to be observed not only within the bistable range, but also within proper monostable range, presenting two potential different control mechanisms. Combined with the landscape theory, we further explore the stochastic dynamic and global stability of the pyroptotic system, accurately quantifying how each component mediates the individual occurrence probability of pyroptosis and secondary pyroptosis. Overall, this study sheds new light on the intricate crosstalk of the pyroptotic signaling and uncovers the regulatory mechanisms of various stable state transitions, providing potential clues to guide the development for prevention and treatment of pyroptosis-related diseases.
Collapse
Affiliation(s)
- Ligang Zhu
- Department of Physics, and Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Xiang Li
- Department of Physics, and Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361102, China
| | - Fei Xu
- Department of Physics, and Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Zhiyong Yin
- Department of Physics, and Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Jun Jin
- Department of Physics, and Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Zhilong Liu
- Department of Physics, and Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Hong Qi
- Complex Systems Research Center, Shanxi University, Taiyuan 030006, China
| | - Jianwei Shuai
- Department of Physics, and Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361102, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
7
|
Abstract
COVID-19, the infectious disease caused by the beta-corona virus SARS-CoV2, has posed a global health threat causing more than five million of deaths in the last two years in the world. Although the disease often presents with mild cold-like symptoms, it may have lethal consequences following thromboembolisms, hyperinflammation and cytokine storm eventually leading to pulmonary fibrosis and multiple organ failure. Despite the progress made in the understanding of the SARS-CoV2 pathology and the clinical management of COVID-19, the viral illness is still a health concern since outbreaks continue to resurge due to the emergence of mutant variants of the virus that resist the vaccines. Therefore, there is an urgent need for therapeutics that can block SARS-CoV2 viral transmission and the progression from infection to severe symptomatic illness. Natural products could be a valuable source of drugs for the management of COVID-19 disease, particularly because they can act on multitargets and through different mechanisms including inhibition of biochemical pathways, epigenetic regulation of gene expression, modulation of immune response, regulation of pathophysiological stress response. Here we present an overview of the natural products that possess SARS-CoV2 antiviral activity and the potential to benefit the management of COVID-19.
Collapse
Affiliation(s)
- Ciro Isidoro
- Corresponding author. Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via P. Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
8
|
Tembhare PR, Sriram H, Chatterjee G, Khanka T, Gokarn A, Mirgh S, Rajendra A, Chaturvedi A, Ghogale SG, Deshpande N, Girase K, Dalvi K, Rajpal S, Patkar N, Trivedi B, Joshi A, Murthy V, Shetty N, Nair S, More A, Kamtalwar S, Chavan P, Bhat V, Bhat P, Subramanian PG, Gupta S, Khattry N. Comprehensive immune cell profiling depicts an early immune response associated with severe coronavirus disease 2019 in cancer patients. Immunol Cell Biol 2021; 100:61-73. [PMID: 34582592 PMCID: PMC8652640 DOI: 10.1111/imcb.12504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/22/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Recent studies have highlighted multiple immune perturbations related to severe acute respiratory syndrome coronavirus 2 infection-associated respiratory disease [coronavirus disease 2019 (COVID-19)]. Some of them were associated with immunopathogenesis of severe COVID-19. However, reports on immunological indicators of severe COVID-19 in the early phase of infection in patients with comorbidities such as cancer are scarce. We prospectively studied about 200 immune response parameters, including a comprehensive immune-cell profile, inflammatory cytokines and other parameters, in 95 patients with COVID-19 (37 cancer patients without active disease and intensive chemo/immunotherapy, 58 patients without cancer) and 21 healthy donors. Of 95 patients, 41 had severe disease, and the remaining 54 were categorized as having a nonsevere disease. We evaluated the association of immune response parameters with severe COVID-19. By principal component analysis, three immune signatures defining characteristic immune responses in COVID-19 patients were found. Immune cell perturbations, in particular, decreased levels of circulating dendritic cells (DCs) along with reduced levels of CD4 T-cell subsets such as regulatory T cells (Tregs ), type 1 T helper (Th1) and Th9; additionally, relative expansion of effector natural killer (NK) cells were significantly associated with severe COVID-19. Compared with patients without cancer, the levels of terminal effector CD4 T cells, Tregs , Th9, effector NK cells, B cells, intermediate-type monocytes and myeloid DCs were significantly lower in cancer patients with mild and severe COVID-19. We concluded that severely depleted circulating myeloid DCs and helper T subsets in the initial phase of infection were strongly associated with severe COVID-19 independent of age, type of comorbidity and other parameters. Thus, our study describes the early immune response associated with severe COVID-19 in cancer patients without intensive chemo/immunotherapy.
Collapse
Affiliation(s)
- Prashant R Tembhare
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Mumbai, India
| | - Harshini Sriram
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Mumbai, India
| | - Gaurav Chatterjee
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Mumbai, India
| | - Twinkle Khanka
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Mumbai, India
| | - Anant Gokarn
- Department of Medical Oncology, ACTREC, Tata Memorial Center, HBNI University, Mumbai, India
| | - Sumeet Mirgh
- Department of Medical Oncology, ACTREC, Tata Memorial Center, HBNI University, Mumbai, India
| | - Akhil Rajendra
- Department of Medical Oncology, ACTREC, Tata Memorial Center, HBNI University, Mumbai, India
| | - Anumeha Chaturvedi
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Mumbai, India
| | - Sitaram G Ghogale
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Mumbai, India
| | - Nilesh Deshpande
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Mumbai, India
| | - Karishma Girase
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Mumbai, India
| | - Kajal Dalvi
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Mumbai, India
| | - Sweta Rajpal
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Mumbai, India
| | - Nikhil Patkar
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Mumbai, India
| | - Bhakti Trivedi
- Department of Anesthesiology, Critical Care and Pain, Tata Memorial Center, HBNI University, Mumbai, India
| | - Amit Joshi
- Department of Medical Oncology, ACTREC, Tata Memorial Center, HBNI University, Mumbai, India
| | - Vedang Murthy
- Department of Radiation Oncology, ACTREC, Tata Memorial Center, HBNI University, Mumbai, India
| | - Nitin Shetty
- Department of Radio-Diagnosis, ACTREC, Tata Memorial Center, HBNI University, Mumbai, India
| | - Sudhir Nair
- Department of Head and Neck Surgical Oncology, ACTREC, Tata Memorial Center, HBNI University, Mumbai, India
| | - Ashwini More
- Department of Medicine, ACTREC, Tata Memorial Center, HBNI University, Mumbai, India
| | - Sujeet Kamtalwar
- Department of Medicine, ACTREC, Tata Memorial Center, HBNI University, Mumbai, India
| | - Preeti Chavan
- Composite Laboratory and Microbiology, ACTREC, Tata Memorial Center, HBNI University, Mumbai, India
| | - Vivek Bhat
- Composite Laboratory and Microbiology, ACTREC, Tata Memorial Center, HBNI University, Mumbai, India
| | - Prashant Bhat
- Medical Administration, ACTREC, Tata Memorial Center, HBNI University, Mumbai, India
| | - Papagudi G Subramanian
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Mumbai, India
| | - Sudeep Gupta
- Department of Medical Oncology, ACTREC, Tata Memorial Center, HBNI University, Mumbai, India
| | - Navin Khattry
- Department of Medical Oncology, ACTREC, Tata Memorial Center, HBNI University, Mumbai, India
| |
Collapse
|
9
|
Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune system. Cell 2021; 184:1671-1692. [PMID: 33743212 PMCID: PMC7885626 DOI: 10.1016/j.cell.2021.02.029] [Citation(s) in RCA: 454] [Impact Index Per Article: 113.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/19/2021] [Accepted: 02/10/2021] [Indexed: 01/08/2023]
Abstract
The introduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the human population represents a tremendous medical and economic crisis. Innate immunity-as the first line of defense of our immune system-plays a central role in combating this novel virus. Here, we provide a conceptual framework for the interaction of the human innate immune system with SARS-CoV-2 to link the clinical observations with experimental findings that have been made during the first year of the pandemic. We review evidence that variability in innate immune system components among humans is a main contributor to the heterogeneous disease courses observed for coronavirus disease 2019 (COVID-19), the disease spectrum induced by SARS-CoV-2. A better understanding of the pathophysiological mechanisms observed for cells and soluble mediators involved in innate immunity is a prerequisite for the development of diagnostic markers and therapeutic strategies targeting COVID-19. However, this will also require additional studies addressing causality of events, which so far are lagging behind.
Collapse
Affiliation(s)
- Joachim L Schultze
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, Bonn, Germany; Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| | - Anna C Aschenbrenner
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, Bonn, Germany; Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
10
|
Gu T, Zhao S, Jin G, Song M, Zhi Y, Zhao R, Ma F, Zheng Y, Wang K, Liu H, Xin M, Han W, Li X, Dong CD, Liu K, Dong Z. Cytokine Signature Induced by SARS-CoV-2 Spike Protein in a Mouse Model. Front Immunol 2021; 11:621441. [PMID: 33584719 PMCID: PMC7876321 DOI: 10.3389/fimmu.2020.621441] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Although COVID-19 has become a major challenge to global health, there are currently no efficacious agents for effective treatment. Cytokine storm syndrome (CSS) can lead to acute respiratory distress syndrome (ARDS), which contributes to most COVID-19 mortalities. Research points to interleukin 6 (IL-6) as a crucial signature of the cytokine storm, and the clinical use of the IL-6 inhibitor tocilizumab shows potential for treatment of COVID-19 patient. In this study, we challenged wild-type and adenovirus-5/human angiotensin-converting enzyme 2-expressing BALB/c mice with a combination of polyinosinic-polycytidylic acid and recombinant SARS-CoV-2 spike-extracellular domain protein. High levels of TNF-α and nearly 100 times increased IL-6 were detected at 6 h, but disappeared by 24 h in bronchoalveolar lavage fluid (BALF) following immunostimulant challenge. Lung injury observed by histopathologic changes and magnetic resonance imaging at 24 h indicated that increased TNF-α and IL-6 may initiate CSS in the lung, resulting in the continual production of inflammatory cytokines. We hypothesize that TNF-α and IL-6 may contribute to the occurrence of CSS in COVID-19. We also investigated multiple monoclonal antibodies (mAbs) and inhibitors for neutralizing the pro-inflammatory phenotype of COVID-19: mAbs against IL-1α, IL-6, TNF-α, and granulocyte-macrophage colony-stimulating factor (GM-CSF), and inhibitors of p38 and JAK partially relieved CSS; mAbs against IL-6, TNF-α, and GM-CSF, and inhibitors of p38, extracellular signal-regulated kinase, and myeloperoxidase somewhat reduced neutrophilic alveolitis in the lung. This novel murine model opens a biologically safe, time-saving avenue for clarifying the mechanism of CSS/ARDS in COVID-19 and developing new therapeutic drugs.
Collapse
Affiliation(s)
- Tingxuan Gu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Simin Zhao
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Guoguo Jin
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- The Henan Luoyang Orthopedic Hospital, Zhengzhou, China
| | - Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yafei Zhi
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Fayang Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yaqiu Zheng
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Keke Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mingxia Xin
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Wei Han
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China
| | | | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| |
Collapse
|
11
|
Brendler T, Al‐Harrasi A, Bauer R, Gafner S, Hardy ML, Heinrich M, Hosseinzadeh H, Izzo AA, Michaelis M, Nassiri‐Asl M, Panossian A, Wasser SP, Williamson EM. Botanical drugs and supplements affecting the immune response in the time of
COVID
‐19: Implications for research and clinical practice. Phytother Res 2020; 35:3013-3031. [DOI: 10.1002/ptr.7008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Thomas Brendler
- Department of Botany and Plant Biotechnology University of Johannesburg Johannesburg South Africa
- Plantaphile Collingswood New Jersey USA
| | - Ahmed Al‐Harrasi
- Natural and Medical Sciences Research Centre University of Nizwa Nizwa Oman
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy University of Graz Graz Austria
| | | | - Mary L. Hardy
- Association of Integrative and Holistic Medicine San Diego California USA
| | - Michael Heinrich
- Research Group ‘Pharmacognosy and Phytotherapy’, UCL School of Pharmacy University of London London UK
- Graduate Institute of Integrated Medicine, College of Chinese Medicine China Medical University Taichung Taiwan
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Angelo A. Izzo
- Department of Pharmacy, School of Medicine University of Naples Federico II Naples Italy
| | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences University of Kent Canterbury UK
| | - Marjan Nassiri‐Asl
- Department of Pharmacology, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
- Neurobiology Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | | | - Solomon P. Wasser
- Institute of Evolution and Department of Evolutionary and Environmental Biology University of Haifa Haifa Israel
| | | |
Collapse
|
12
|
Abstract
COVID-19 has spread to all countries around the world after it was first discovered in Wuhan of China at the end of 2019. It is caused by a novel coronavirus called SARS-CoV-2 with much semblance to SARS-CoV including the sequence homology and disease symptoms. It is reported to be more infectious than SARS-CoV due to higher binding affinities between its spike protein and the ACE2 receptor on cell surface. Despite this, its case fatality rate is much lower compared with that of SARS-CoV although it varies in different countries. However, the case fatality rate increases steadily with age and it is reported to be the highest in aged COVID-19 male patients in almost all countries. Consistent with these, females have higher antiviral immune responses. Males and females are different in inflammatory response and aberrantly hyperactive cytokines are the main lethal causes of COVID-19. Interestingly, the gene encoding the ACE2 receptor protein and some genes encoding the immune regulatory proteins such as TLR7 are located on X chromosome which is subject to X chromosome inactivation and sex hormone regulation. These may account for some sex-dependent immune responses and lethality observed in COVID-19 patients. In general, children are less likely to be infected with SARS-CoV-2 and only less than 1% of pediatric COVID-19 patients may die of COVID-19. However, the most severe pediatric cases become multisystem inflammatory syndrome that is similar to Kawasiki disease with features of viral infection. Since most infected kids were boys in China, there may be sex-dependent immune response in pediatric COVID-19 cases as well.
Collapse
Affiliation(s)
- Albert Jiarui Li
- Edgemont High School, 200 White Oak Lane, Scarsdale, NY 10583, USA
| | - Xiajun Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|