1
|
Xue Z, Wu L, Tian R, Gao B, Zhao Y, He B, Sun D, Zhao B, Li Y, Zhu K, Wang L, Yao J, Liu W, Lu L. Integrative mapping of human CD8 + T cells in inflammation and cancer. Nat Methods 2024:10.1038/s41592-024-02530-0. [PMID: 39614111 DOI: 10.1038/s41592-024-02530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Abstract
CD8+ T cells exhibit remarkable phenotypic diversity in inflammation and cancer. However, a comprehensive understanding of their clonal landscape and dynamics remains elusive. Here we introduce scAtlasVAE, a deep-learning-based model for the integration of large-scale single-cell RNA sequencing data and cross-atlas comparisons. scAtlasVAE has enabled us to construct an extensive human CD8+ T cell atlas, comprising 1,151,678 cells from 961 samples across 68 studies and 42 disease conditions, with paired T cell receptor information. Through incorporating information in T cell receptor clonal expansion and sharing, we have successfully established connections between distinct cell subtypes and shed light on their phenotypic and functional transitions. Notably, our approach characterizes three distinct exhausted T cell subtypes and reveals diverse transcriptome and clonal sharing patterns in autoimmune and immune-related adverse event inflammation. Furthermore, scAtlasVAE facilitates the automatic annotation of CD8+ T cell subtypes in query single-cell RNA sequencing datasets, enabling unbiased and scalable analyses. In conclusion, our work presents a comprehensive single-cell reference and computational framework for CD8+ T cell research.
Collapse
Affiliation(s)
- Ziwei Xue
- Department of Rheumatology and Immunology of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University, University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
- Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Lize Wu
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruonan Tian
- Department of Rheumatology and Immunology of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University, University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Bing Gao
- Department of Rheumatology and Immunology of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University, University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Zhao
- AI Lab, Tencent, Shenzhen, China
| | - Bing He
- AI Lab, Tencent, Shenzhen, China
| | - Di Sun
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingkang Zhao
- Department of Rheumatology and Immunology of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University, University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
- Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Yicheng Li
- Department of Rheumatology and Immunology of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University, University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
- Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Kaixiang Zhu
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lie Wang
- Bone Marrow Transplantation Center and Institute of Immunology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Wanlu Liu
- Department of Rheumatology and Immunology of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University, University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China.
- Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK.
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China.
- Zhejiang Key Laboratory of Medical Imaging Artificial Intelligence, Haining, China.
| | - Linrong Lu
- Department of Rheumatology and Immunology of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University, University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China.
- Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK.
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China.
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Kammann T, Cai C, Sekine T, Mouchtaridi E, Boulouis C, Nilsén V, Ballesteros OR, Müller TR, Gao Y, Raineri EJM, Mily A, Adamo S, Constantz C, Niessl J, Weigel W, Kokkinou E, Stamper C, Marchalot A, Bassett J, Ferreira S, Rødahl I, Wild N, Brownlie D, Tibbitt C, Mak JYW, Fairlie DP, Leeansyah E, Michaelsson J, Marquardt N, Mjösberg J, Jorns C, Buggert M, Sandberg JK. MAIT cell heterogeneity across paired human tissues reveals specialization of distinct regulatory and enhanced effector profiles. Sci Immunol 2024; 9:eadn2362. [PMID: 39241054 DOI: 10.1126/sciimmunol.adn2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 08/07/2024] [Indexed: 09/08/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T cells that recognize microbial riboflavin pathway metabolites presented by evolutionarily conserved MR1 molecules. We explored the human MAIT cell compartment across organ donor-matched blood, barrier, and lymphoid tissues. MAIT cell population size was donor dependent with distinct tissue compartmentalization patterns and adaptations: Intestinal CD103+ resident MAIT cells presented an immunoregulatory CD39highCD27low profile, whereas MAIT cells expressing NCAM1/CD56 dominated in the liver and exhibited enhanced effector capacity with elevated response magnitude and polyfunctionality. Both intestinal CD39high and hepatic CD56+ adaptations accumulated with donor age. CD56+ MAIT cells displayed limited T cell receptor-repertoire breadth, elevated MR1 binding, and a transcriptional profile skewed toward innate activation pathways. Furthermore, CD56 was dynamically up-regulated to a persistent steady-state equilibrium after exposure to antigen or IL-7. In summary, we demonstrate functional heterogeneity and tissue site adaptation in resident MAIT cells across human barrier tissues with distinct regulatory and effector signatures.
Collapse
Affiliation(s)
- Tobias Kammann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Curtis Cai
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Takuya Sekine
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elli Mouchtaridi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Vera Nilsén
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Olga Rivera Ballesteros
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Thomas R Müller
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elisa J M Raineri
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Akhirunnesa Mily
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Adamo
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christian Constantz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Julia Niessl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Whitney Weigel
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Stamper
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anne Marchalot
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - John Bassett
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sabrina Ferreira
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Inga Rødahl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Wild
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Demi Brownlie
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Chris Tibbitt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jeffrey Y W Mak
- Centre for Chemistry and Drug Discovery, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jakob Michaelsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Marquardt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Carl Jorns
- ME Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Fazzone B, Anderson EM, Rozowsky JM, Yu X, O’Malley KA, Robinson S, Scali ST, Cai G, Berceli SA. Short-Term Dietary Restriction Potentiates an Anti-Inflammatory Circulating Mucosal-Associated Invariant T-Cell Response. Nutrients 2024; 16:1245. [PMID: 38674935 PMCID: PMC11053749 DOI: 10.3390/nu16081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Short-term protein-calorie dietary restriction (StDR) is a promising preoperative strategy for modulating postoperative inflammation. We have previously shown marked gut microbial activity during StDR, but relationships between StDR, the gut microbiome, and systemic immunity remain poorly understood. Mucosal-associated invariant T-cells (MAITs) are enriched on mucosal surfaces and in circulation, bridge innate and adaptive immunity, are sensitive to gut microbial changes, and may mediate systemic responses to StDR. Herein, we characterized the MAIT transcriptomic response to StDR using single-cell RNA sequencing of human PBMCs and evaluated gut microbial species-level changes through sequencing of stool samples. Healthy volunteers underwent 4 days of DR during which blood and stool samples were collected before, during, and after DR. MAITs composed 2.4% of PBMCs. More MAIT genes were differentially downregulated during DR, particularly genes associated with MAIT activation (CD69), regulation of pro-inflammatory signaling (IL1, IL6, IL10, TNFα), and T-cell co-stimulation (CD40/CD40L, CD28), whereas genes associated with anti-inflammatory IL10 signaling were upregulated. Stool analysis showed a decreased abundance of multiple MAIT-stimulating Bacteroides species during DR. The analyses suggest that StDR potentiates an anti-inflammatory MAIT immunophenotype through modulation of TCR-dependent signaling, potentially secondary to gut microbial species-level changes.
Collapse
Affiliation(s)
- Brian Fazzone
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
| | - Erik M. Anderson
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
| | - Jared M. Rozowsky
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
| | - Xuanxuan Yu
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Kerri A. O’Malley
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL 32608, USA
| | - Scott Robinson
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL 32608, USA
| | - Salvatore T. Scali
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL 32608, USA
| | - Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Scott A. Berceli
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL 32611, USA; (B.F.); (E.M.A.); (K.A.O.); (S.R.); (S.T.S.)
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL 32608, USA
| |
Collapse
|
4
|
He S, Liu SQ, Teng XY, He JY, Liu Y, Gao JH, Wu Y, Hu W, Dong ZJ, Bei JX, Xu JH. Comparative single-cell RNA sequencing analysis of immune response to inactivated vaccine and natural SARS-CoV-2 infection. J Med Virol 2024; 96:e29577. [PMID: 38572977 DOI: 10.1002/jmv.29577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Uncovering the immune response to an inactivated SARS-CoV-2 vaccine (In-Vac) and natural infection is crucial for comprehending COVID-19 immunology. Here we conducted an integrated analysis of single-cell RNA sequencing (scRNA-seq) data from serial peripheral blood mononuclear cell (PBMC) samples derived from 12 individuals receiving In-Vac compared with those from COVID-19 patients. Our study reveals that In-Vac induces subtle immunological changes in PBMC, including cell proportions and transcriptomes, compared with profound changes for natural infection. In-Vac modestly upregulates IFN-α but downregulates NF-κB pathways, while natural infection triggers hyperactive IFN-α and NF-κB pathways. Both In-Vac and natural infection alter T/B cell receptor repertoires, but COVID-19 has more significant change in preferential VJ gene, indicating a vigorous immune response. Our study reveals distinct patterns of cellular communications, including a selective activation of IL-15RA/IL-15 receptor pathway after In-Vac boost, suggesting its potential role in enhancing In-Vac-induced immunity. Collectively, our study illuminates multifaceted immune responses to In-Vac and natural infection, providing insights for optimizing SARS-CoV-2 vaccine efficacy.
Collapse
Affiliation(s)
- Shuai He
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shu-Qiang Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiang-Yun Teng
- Medical Laboratory Center, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China
| | - Jin-Yong He
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Yang Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Hui Gao
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Yue Wu
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Wei Hu
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Zhong-Jun Dong
- School of Medicine and Institute for Immunology, Tsinghua University, Beijing, China
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Hua Xu
- Medical Laboratory Center, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
- Medical Laboratory Center, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China
| |
Collapse
|
5
|
Chen DG, Xie J, Choi J, Ng RH, Zhang R, Li S, Edmark R, Zheng H, Solomon B, Campbell KM, Medina E, Ribas A, Khatri P, Lanier LL, Mease PJ, Goldman JD, Su Y, Heath JR. Integrative systems biology reveals NKG2A-biased immune responses correlate with protection in infectious disease, autoimmune disease, and cancer. Cell Rep 2024; 43:113872. [PMID: 38427562 PMCID: PMC10995767 DOI: 10.1016/j.celrep.2024.113872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 03/03/2024] Open
Abstract
Infection, autoimmunity, and cancer are principal human health challenges of the 21st century. Often regarded as distinct ends of the immunological spectrum, recent studies hint at potential overlap between these diseases. For example, inflammation can be pathogenic in infection and autoimmunity. T resident memory (TRM) cells can be beneficial in infection and cancer. However, these findings are limited by size and scope; exact immunological factors shared across diseases remain elusive. Here, we integrate large-scale deeply clinically and biologically phenotyped human cohorts of 526 patients with infection, 162 with lupus, and 11,180 with cancer. We identify an NKG2A+ immune bias as associative with protection against disease severity, mortality, and autoimmune/post-acute chronic disease. We reveal that NKG2A+ CD8+ T cells correlate with reduced inflammation and increased humoral immunity and that they resemble TRM cells. Our results suggest NKG2A+ biases as a cross-disease factor of protection, supporting suggestions of immunological overlap between infection, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Daniel G Chen
- Institute of Systems Biology, Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jingyi Xie
- Institute of Systems Biology, Seattle, WA, USA; Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, USA
| | | | - Rachel H Ng
- Institute of Systems Biology, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Rongyu Zhang
- Institute of Systems Biology, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Sarah Li
- Institute of Systems Biology, Seattle, WA, USA
| | - Rick Edmark
- Institute of Systems Biology, Seattle, WA, USA
| | - Hong Zheng
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA; Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ben Solomon
- Department of Pediatrics, Division of Allergy and Immunology, Stanford School of Medicine, Stanford, CA, USA
| | - Katie M Campbell
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Egmidio Medina
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA; Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Philip J Mease
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA, USA; Providence St. Joseph Health, Renton, WA, USA
| | - Jason D Goldman
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA, USA; Providence St. Joseph Health, Renton, WA, USA; Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Yapeng Su
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - James R Heath
- Institute of Systems Biology, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
6
|
Kashima Y, Reteng P, Haga Y, Yamagishi J, Suzuki Y. Single-cell analytical technologies: uncovering the mechanisms behind variations in immune responses. FEBS J 2024; 291:819-831. [PMID: 36082537 DOI: 10.1111/febs.16622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
The immune landscape varies among individuals. It determines the immune response and results in surprisingly diverse symptoms, even in response to similar external stimuli. However, the detailed mechanisms underlying such diverse immune responses have remained mostly elusive. The utilization of recently developed single-cell multimodal analysis platforms has started to answer this question. Emerging studies have elucidated several molecular networks that may explain diversity with respect to age or other factors. An elaborate interplay between inherent physical conditions and environmental conditions has been demonstrated. Furthermore, the importance of modifications by the epigenome resulting in transcriptome variation among individuals is gradually being revealed. Accordingly, epigenomes and transcriptomes are direct indicators of the medical history and dynamic interactions with environmental factors. Coronavirus disease 2019 (COVID-19) has recently become one of the most remarkable examples of the necessity of in-depth analyses of diverse responses with respect to various factors to improve treatment in severe cases and to prevent viral transmission from asymptomatic carriers. In fact, determining why some patients develop serious symptoms is still a pressing issue. Here, we review the current "state of the art" in single-cell analytical technologies and their broad applications to healthy individuals and representative diseases, including COVID-19.
Collapse
Affiliation(s)
- Yukie Kashima
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Patrick Reteng
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Haga
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
7
|
Lin X, Wang Y, He Y. Mucosal-associated invariant T cells in infectious diseases of respiratory system: recent advancements and applications. J Inflamm (Lond) 2024; 21:6. [PMID: 38419084 PMCID: PMC10902946 DOI: 10.1186/s12950-024-00376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are an atypical subset of T lymphocytes, which have a highly conserved semi-constant αβ chain of T-cell receptor (TCR) and recognize microbe-derived vitamin B metabolites via major histocompatibility complex class I related-1 molecule (MR1). MAIT cells get activated mainly through unique TCR-dependent and TCR-independent pathways, and express multiple functional and phenotypic traits, including innate-like functionality, T helper (Th) 1 cell immunity, Th 17 cell immunity, and tissue homing. Given the functions, MAIT cells are extensively reported to play a key role in mucosal homeostasis and infectious diseases. In the current work, we review the basic characteristics of MAIT cells and their roles in mucosal homeostasis and development of respiratory infectious diseases as well as their potential therapeutic targets.
Collapse
Affiliation(s)
- Xue Lin
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanqi He
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Talvard-Balland N, Lambert M, Chevalier MF, Minet N, Salou M, Tourret M, Bohineust A, Milo I, Parietti V, Yvorra T, Socié G, Lantz O, Caillat-Zucman S. Human MAIT cells inhibit alloreactive T cell responses and protect against acute graft-versus-host disease. JCI Insight 2024; 9:e166310. [PMID: 38300704 PMCID: PMC11143928 DOI: 10.1172/jci.insight.166310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Adoptive transfer of immunoregulatory cells can prevent or ameliorate graft-versus-host disease (GVHD), which remains the main cause of nonrelapse mortality after allogeneic hematopoietic stem cell transplantation. Mucosal-associated invariant T (MAIT) cells were recently associated with tissue repair capacities and with lower rates of GVHD in humans. Here, we analyzed the immunosuppressive effect of MAIT cells in an in vitro model of alloreactivity and explored their adoptive transfer in a preclinical xenogeneic GVHD model. We found that MAIT cells, whether freshly purified or short-term expanded, dose-dependently inhibited proliferation and activation of alloreactive T cells. In immunodeficient mice injected with human PBMCs, MAIT cells greatly delayed GVHD onset and decreased severity when transferred early after PBMC injection but could also control ongoing GVHD when transferred at delayed time points. This effect was associated with decreased proliferation and effector function of human T cells infiltrating tissues of diseased mice and was correlated with lower circulating IFN-γ and TNF-α levels and increased IL-10 levels. MAIT cells acted partly in a contact-dependent manner, which likely required direct interaction of their T cell receptor with MHC class I-related molecule (MR1) induced on host-reactive T cells. These results support the setup of clinical trials using MAIT cells as universal therapeutic tools to control severe GVHD or mucosal inflammatory disorders.
Collapse
Affiliation(s)
- Nana Talvard-Balland
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Marion Lambert
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Mathieu F. Chevalier
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Norbert Minet
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Marion Salou
- Institut Curie, Université PSL, INSERM U932, Immunity and Cancer, Paris, France
| | - Marie Tourret
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Armelle Bohineust
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Idan Milo
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Véronique Parietti
- Université Paris Cité, INSERM, CNRS, UMS Saint-Louis (US53/UAR2030), Paris, France
| | - Thomas Yvorra
- Institut Curie, Université PSL, CNRS UMR3666, INSERM U1143, Paris, France
| | - Gérard Socié
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
- Hematology Transplantation, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Olivier Lantz
- Institut Curie, Université PSL, INSERM U932, Immunity and Cancer, Paris, France
- Clinical Immunology Laboratory, Institut Curie, Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - Sophie Caillat-Zucman
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
- Immunology Laboratory, Hôpital Saint-Louis, AP-HP, Université Paris Cité, Paris, France
| |
Collapse
|
9
|
Shrinivasan R, Wyatt-Johnson SK, Brutkiewicz RR. The MR1/MAIT cell axis in CNS diseases. Brain Behav Immun 2024; 116:321-328. [PMID: 38157945 PMCID: PMC10842441 DOI: 10.1016/j.bbi.2023.12.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subpopulation of innate-like T cells that can be found throughout the body, predominantly in mucosal sites, the lungs and in the peripheral blood. MAIT cells recognize microbial-derived vitamin B (e.g., riboflavin) metabolite antigens that are presented by the major histocompatibility complex class I-like protein, MR1, found on a variety of cell types in the periphery and the CNS. Since their original discovery, MAIT cells have been studied predominantly in their roles in diseases in the periphery; however, it was not until the early 2000s that these cells were first examined for their contributions to disorders of the CNS, with the bulk of the work being done within the past few years. Currently, the MR1/MAIT cell axis has been investigated in only a few neurological diseases including, multiple sclerosis and experimental autoimmune encephalomyelitis, brain cancer/tumors, ischemia, cerebral palsy, general aging and, most recently, Alzheimer's disease. Each of these diseases demonstrates a role for this under-studied innate immune axis in its neuropathology. Together, they highlight the importance of studying the MR1/MAIT cell axis in CNS disorders. Here, we review the contributions of the MR1/MAIT cell axis in the progression or remission of these neurological diseases. This work has shed some light in terms of potentially exploiting the MR1/MAIT cell axis in novel therapeutic applications.
Collapse
Affiliation(s)
- Rashmi Shrinivasan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
10
|
Heath J, Chen D, Xie J, Choi J, Ng R, Zhang R, Li S, Edmark R, Zheng H, Solomon B, Campbell K, Medina E, Ribas A, Khatri P, Lanier L, Mease P, Goldman J, Su Y. An NKG2A biased immune response confers protection for infection, autoimmune disease, and cancer. RESEARCH SQUARE 2023:rs.3.rs-3413673. [PMID: 37886475 PMCID: PMC10602172 DOI: 10.21203/rs.3.rs-3413673/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Infection, autoimmunity, and cancer are the principal human health challenges of the 21st century and major contributors to human death and disease. Often regarded as distinct ends of the immunological spectrum, recent studies have hinted there may be more overlap between these diseases than appears. For example, pathogenic inflammation has been demonstrated as conserved between infection and autoimmune settings. T resident memory (TRM) cells have been highlighted as beneficial for infection and cancer. However, these findings are limited by patient number and disease scope; exact immunological factors shared across disease remain elusive. Here, we integrate large-scale deeply clinically and biologically phenotyped human cohorts of 526 patients with infection, 162 with lupus, and 11,180 with cancer. We identify an NKG2A+ immune bias as associative with protection against disease severity, mortality, and autoimmune and post-acute chronic disease. We reveal that NKG2A+ CD8+ T cells correlate with reduced inflammation, increased humoral immunity, and resemble TRM cells. Our results suggest that an NKG2A+ bias is a pan-disease immunological factor of protection and thus supports recent suggestions that there is immunological overlap between infection, autoimmunity, and cancer. Our findings underscore the promotion of an NKG2A+ biased response as a putative therapeutic strategy.
Collapse
|
11
|
López-Rodríguez JC, Hancock SJ, Li K, Crotta S, Barrington C, Suárez-Bonnet A, Priestnall SL, Aubé J, Wack A, Klenerman P, Bengoechea JA, Barral P. Type I interferons drive MAIT cell functions against bacterial pneumonia. J Exp Med 2023; 220:e20230037. [PMID: 37516912 PMCID: PMC10373297 DOI: 10.1084/jem.20230037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 07/31/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are abundant in the lung and contribute to host defense against infections. During bacterial infections, MAIT cell activation has been proposed to require T cell receptor (TCR)-mediated recognition of antigens derived from the riboflavin synthesis pathway presented by the antigen-presenting molecule MR1. MAIT cells can also be activated by cytokines in an MR1-independent manner, yet the contribution of MR1-dependent vs. -independent signals to MAIT cell functions in vivo remains unclear. Here, we use Klebsiella pneumoniae as a model of bacterial pneumonia and demonstrate that MAIT cell activation is independent of MR1 and primarily driven by type I interferons (IFNs). During Klebsiella infection, type I IFNs stimulate activation of murine and human MAIT cells, induce a Th1/cytotoxic transcriptional program, and modulate MAIT cell location within the lungs. Consequently, adoptive transfer or boosting of pulmonary MAIT cells protect mice from Klebsiella infection, with protection being dependent on direct type I IFN signaling on MAIT cells. These findings reveal type I IFNs as new molecular targets to manipulate MAIT cell functions during bacterial infections.
Collapse
Affiliation(s)
- Juan Carlos López-Rodríguez
- The Peter Gorer Department of Immunobiology, King’s College London, London, UK
- The Francis Crick Institute, London, UK
| | - Steven J. Hancock
- Wellcome-Wolfson Institute for Experimental Medicine. School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Alejandro Suárez-Bonnet
- The Francis Crick Institute, London, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
| | - Simon L. Priestnall
- The Francis Crick Institute, London, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Oxford, UK
| | - Jose A. Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine. School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
| | - Patricia Barral
- The Peter Gorer Department of Immunobiology, King’s College London, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
12
|
Zheng Y, Han F, Ho A, Xue Y, Wu Z, Chen X, Sandberg JK, Ma S, Leeansyah E. Role of MAIT cells in gastrointestinal tract bacterial infections in humans: More than a gut feeling. Mucosal Immunol 2023; 16:740-752. [PMID: 37353006 DOI: 10.1016/j.mucimm.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Mucosa-associated invariant T (MAIT) cells are the largest population of unconventional T cells in humans. These antimicrobial T cells are poised with rapid effector responses following recognition of the cognate riboflavin (vitamin B2)-like metabolite antigens derived from microbial riboflavin biosynthetic pathway. Presentation of this unique class of small molecule metabolite antigens is mediated by the highly evolutionarily conserved major histocompatibility complex class I-related protein. In humans, MAIT cells are widely found along the upper and lower gastrointestinal tracts owing to their high expression of chemokine receptors and homing molecules directing them to these tissue sites. In this review, we discuss recent findings regarding the roles MAIT cells play in various gastrointestinal bacterial infections, and how their roles appear to differ depending on the etiological agents and the anatomical location. We further discuss the potential mechanisms by which MAIT cells contribute to pathogen control, orchestrate adaptive immunity, as well as their potential contribution to inflammation and tissue damage during gastrointestinal bacterial infections, and the ensuing tissue repair following resolution. Finally, we propose and discuss the use of the emerging three-dimensional organoid technology to test different hypotheses regarding the role of MAIT cells in gastrointestinal bacterial infections, inflammation, and immunity.
Collapse
Affiliation(s)
- Yichao Zheng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Amanda Ho
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Yiting Xue
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Zhengyu Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xingchi Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
13
|
Wang X, Liang M, Song P, Guan W, Shen X. Mucosal-associated invariant T cells in digestive tract: Local guardians or destroyers? Immunology 2023; 170:167-179. [PMID: 37132045 DOI: 10.1111/imm.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Mucosa-associated invariant T cells (MAIT) are a class of innate-like T lymphocytes mainly presenting CD8+ phenotype with a semi-invariant αβ T-cell receptor, which specifically recognises MR1-presented biosynthetic derivatives of riboflavin synthesis produced by various types of microbiomes. As innate-like T lymphocytes, MAIT can be activated by a variety of cytokines, leading to immediate immune responses to infection and tumour cues. As an organ that communicates with the external environment, the digestive tract, especially the gastrointestinal tract, contains abundant microbial populations. Communication between MAIT and local microbiomes is important for the homeostasis of mucosal immunity. In addition, accumulating evidence suggests changes in the abundance and structure of the microbial community during inflammation and tumorigenesis plays a critical role in disease progress partly through their impact on MAIT development and function. Therefore, it is essential for the understanding of MAIT response and their interaction with microbiomes in the digestive tract. Here, we summarised MAIT characteristics in the digestive tract and its alteration facing inflammation and tumour, raising that targeting MAIT can be a candidate for treatment of gastrointestinal diseases.
Collapse
Affiliation(s)
- Xingzhou Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Mengjie Liang
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Peng Song
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
14
|
Garner LC, Amini A, FitzPatrick MEB, Lett MJ, Hess GF, Filipowicz Sinnreich M, Provine NM, Klenerman P. Single-cell analysis of human MAIT cell transcriptional, functional and clonal diversity. Nat Immunol 2023; 24:1565-1578. [PMID: 37580605 PMCID: PMC10457204 DOI: 10.1038/s41590-023-01575-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/26/2023] [Indexed: 08/16/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognize microbial metabolites through a semi-invariant T cell receptor (TCR). Major questions remain regarding the extent of human MAIT cell functional and clonal diversity. To address these, we analyzed the single-cell transcriptome and TCR repertoire of blood and liver MAIT cells and developed functional RNA-sequencing, a method to integrate function and TCR clonotype at single-cell resolution. MAIT cell clonal diversity was comparable to conventional memory T cells, with private TCR repertoires shared across matched tissues. Baseline functional diversity was low and largely related to tissue site. MAIT cells showed stimulus-specific transcriptional responses in vitro, with cells positioned along gradients of activation. Clonal identity influenced resting and activated transcriptional profiles but intriguingly was not associated with the capacity to produce IL-17. Overall, MAIT cells show phenotypic and functional diversity according to tissue localization, stimulation environment and clonotype.
Collapse
Affiliation(s)
- Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Ali Amini
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Michael E B FitzPatrick
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Martin J Lett
- Department of Biomedicine, Liver Immunology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gabriel F Hess
- Division of Visceral Surgery, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Magdalena Filipowicz Sinnreich
- Department of Biomedicine, Liver Immunology, University Hospital Basel and University of Basel, Basel, Switzerland
- Gastroenterology and Hepatology, University Department of Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Nicholas M Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
15
|
Wang NI, Ninkov M, Haeryfar SMM. Classic costimulatory interactions in MAIT cell responses: from gene expression to immune regulation. Clin Exp Immunol 2023; 213:50-66. [PMID: 37279566 PMCID: PMC10324557 DOI: 10.1093/cei/uxad061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are evolutionarily conserved, innate-like T lymphocytes with enormous immunomodulatory potentials. Due to their strategic localization, their invariant T cell receptor (iTCR) specificity for major histocompatibility complex-related protein 1 (MR1) ligands of commensal and pathogenic bacterial origin, and their sensitivity to infection-elicited cytokines, MAIT cells are best known for their antimicrobial characteristics. However, they are thought to also play important parts in the contexts of cancer, autoimmunity, vaccine-induced immunity, and tissue repair. While cognate MR1 ligands and cytokine cues govern MAIT cell maturation, polarization, and peripheral activation, other signal transduction pathways, including those mediated by costimulatory interactions, regulate MAIT cell responses. Activated MAIT cells exhibit cytolytic activities and secrete potent inflammatory cytokines of their own, thus transregulating the biological behaviors of several other cell types, including dendritic cells, macrophages, natural killer cells, conventional T cells, and B cells, with significant implications in health and disease. Therefore, an in-depth understanding of how costimulatory pathways control MAIT cell responses may introduce new targets for optimized MR1/MAIT cell-based interventions. Herein, we compare and contrast MAIT cells and mainstream T cells for their expression of classic costimulatory molecules belonging to the immunoglobulin superfamily and the tumor necrosis factor (TNF)/TNF receptor superfamily, based not only on the available literature but also on our transcriptomic analyses. We discuss how these molecules participate in MAIT cells' development and activities. Finally, we introduce several pressing questions vis-à-vis MAIT cell costimulation and offer new directions for future research in this area.
Collapse
Affiliation(s)
- Nicole I Wang
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Marina Ninkov
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario, Canada
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
16
|
Fu S, Liu M, Zhu C, Zhang H, Zhao C, Xie Y, Chen G, Sheng D, Pan J, He Z, Dai Y, Gao Y, Li X, Chen L, Qian Y, Jin T, Sun C, Tian Z, Wang H, Bai L. Regulatory mucosa-associated invariant T cells controlled by β1 adrenergic receptor signaling contribute to hepatocellular carcinoma progression. Hepatology 2023; 78:72-87. [PMID: 36626624 DOI: 10.1097/hep.0000000000000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS The innate-like mucosa-associated invariant T (MAIT) cells are enriched in human liver and have been linked to human HCC. However, their contributions to the progression of HCC are controversial due to the heterogeneity of MAIT cells, and new MAIT cell subsets remain to be explored. APPROACH AND RESULTS Combining single cell RNA sequencing (scRNA-seq) and flow cytometry analysis, we performed phenotypic and functional studies and found that FOXP3 + CXCR3 + MAIT cells in HCC patients were regulatory MAIT cells (MAITregs) with high immunosuppressive potential. These MAITregs were induced under Treg-inducing condition and predominantly from FOXP3 - CXCR3 + MAIT cells, which displayed mild Treg-related features and represented a pre-MAITreg reservoir. In addition, the induction and function of MAITregs were promoted by β1 adrenergic receptor signaling in pre-MAITregs and MAITregs, respectively. In HCC patients, high proportion of the intratumoral MAITregs inhibited antitumor immune responses and was associated with poor clinical outcomes. CONCLUSIONS Together, we reveal an immunosuppressive subset of MAIT cells in HCC patients that contributes to HCC progression, and propose a control through neuroimmune crosstalk.
Collapse
Affiliation(s)
- Sicheng Fu
- Division of Life Sciences and Medicine, Department of Oncology of the First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Muziying Liu
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, China
| | - Chenwen Zhu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huimin Zhang
- Division of Life Sciences and Medicine, Department of Oncology of the First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Changfeng Zhao
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Yaping Xie
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guanghou Chen
- Department of General Surgery, Organ Transplantation Center, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Daping Sheng
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Pan
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Ziqing He
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yufeng Gao
- Department of Infectious Disease, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaomei Li
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, the First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yeben Qian
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tengchuan Jin
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Cheng Sun
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Li Bai
- Division of Life Sciences and Medicine, Department of Oncology of the First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| |
Collapse
|
17
|
Sharma M, Niu L, Zhang X, Huang S. Comparative transcriptomes reveal pro-survival and cytotoxic programs of mucosal-associated invariant T cells upon Bacillus Calmette-Guérin stimulation. Front Cell Infect Microbiol 2023; 13:1134119. [PMID: 37091679 PMCID: PMC10116416 DOI: 10.3389/fcimb.2023.1134119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are protective against tuberculous and non-tuberculous mycobacterial infections with poorly understood mechanisms. Despite an innate-like nature, MAIT cell responses remain heterogeneous in bacterial infections. To comprehensively characterize MAIT activation programs responding to different bacteria, we stimulated MAIT cells with E. coli to compare with Bacillus Calmette-Guérin (BCG), which remains the only licensed vaccine and a feasible tool for investigating anti-mycobacterial immunity in humans. Upon sequencing mRNA from the activated and inactivated CD8+ MAIT cells, results demonstrated the altered MAIT cell gene profiles by each bacterium with upregulated expression of activation markers, transcription factors, cytokines, and cytolytic mediators crucial in anti-mycobacterial responses. Compared with E. coli, BCG altered more MAIT cell genes to enhance cell survival and cytolysis. Flow cytometry analyses similarly displayed a more upregulated protein expression of B-cell lymphoma 2 and T-box transcription factor Eomesodermin in BCG compared to E.coli stimulations. Thus, the transcriptomic program and protein expression of MAIT cells together displayed enhanced pro-survival and cytotoxic programs in response to BCG stimulation, supporting BCG induces cell-mediated effector responses of MAIT cells to fight mycobacterial infections.
Collapse
Affiliation(s)
| | | | | | - Shouxiong Huang
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
18
|
Depuydt MAC, Schaftenaar FH, Prange KHM, Boltjes A, Hemme E, Delfos L, de Mol J, de Jong MJM, Bernabé Kleijn MNA, Peeters JAHM, Goncalves L, Wezel A, Smeets HJ, de Borst GJ, Foks AC, Pasterkamp G, de Winther MPJ, Kuiper J, Bot I, Slütter B. Single-cell T cell receptor sequencing of paired human atherosclerotic plaques and blood reveals autoimmune-like features of expanded effector T cells. NATURE CARDIOVASCULAR RESEARCH 2023; 2:112-125. [PMID: 38665903 PMCID: PMC11041750 DOI: 10.1038/s44161-022-00208-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/20/2022] [Indexed: 04/28/2024]
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease; however, whether it can be classified as an autoimmune disease remains unclear. In this study, we applied single-cell T cell receptor seqencing (scTCR-seq) on human carotid artery plaques and matched peripheral blood mononuclear cell samples to assess the extent of TCR clonality and antigen-specific activation within the various T cell subsets. We observed the highest degree of plaque-specific clonal expansion in effector CD4+ T cells, and these clonally expanded T cells expressed genes such as CD69, FOS and FOSB, indicative of recent TCR engagement, suggesting antigen-specific stimulation. CellChat analysis suggested multiple potential interactions of these effector CD4+ T cells with foam cells. Finally, we integrated a published scTCR-seq dataset of the autoimmune disease psoriatic arthritis, and we report various commonalities between the two diseases. In conclusion, our data suggest that atherosclerosis has an autoimmune compondent driven by autoreactive CD4+ T cells.
Collapse
Affiliation(s)
- Marie A. C. Depuydt
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Frank H. Schaftenaar
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Koen H. M. Prange
- Amsterdam University Medical Centers, University of Amsterdam, Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam, the Netherlands
| | - Arjan Boltjes
- Central Diagnostic Laboratory, University Medical Center, Utrecht University, Utrecht, the Netherlands
| | - Esmeralda Hemme
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Lucie Delfos
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Jill de Mol
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Maaike J. M. de Jong
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Mireia N. A. Bernabé Kleijn
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | | | - Lauren Goncalves
- Department of Surgery, Haaglanden Medisch Centrum Westeinde, The Hague, the Netherlands
| | - Anouk Wezel
- Department of Surgery, Haaglanden Medisch Centrum Westeinde, The Hague, the Netherlands
| | - Harm J. Smeets
- Department of Surgery, Haaglanden Medisch Centrum Westeinde, The Hague, the Netherlands
| | - Gert J. de Borst
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Amanda C. Foks
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory, University Medical Center, Utrecht University, Utrecht, the Netherlands
| | - Menno P. J. de Winther
- Amsterdam University Medical Centers, University of Amsterdam, Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam, the Netherlands
| | - Johan Kuiper
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Ilze Bot
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Bram Slütter
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| |
Collapse
|
19
|
Jakob J, Kröger A, Klawonn F, Bruder D, Jänsch L. Translatome analyses by bio-orthogonal non-canonical amino acid labeling reveal that MR1-activated MAIT cells induce an M1 phenotype and antiviral programming in antigen-presenting monocytes. Front Immunol 2023; 14:1091837. [PMID: 36875139 PMCID: PMC9977998 DOI: 10.3389/fimmu.2023.1091837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
MAIT cells are multifunctional innate-like effector cells recognizing bacterial-derived vitamin B metabolites presented by the non-polymorphic MHC class I related protein 1 (MR1). However, our understanding of MR1-mediated responses of MAIT cells upon their interaction with other immune cells is still incomplete. Here, we performed the first translatome study of primary human MAIT cells interacting with THP-1 monocytes in a bicellular system. We analyzed the interaction between MAIT and THP-1 cells in the presence of the activating 5-OP-RU or the inhibitory Ac-6-FP MR1-ligand. Using bio-orthogonal non-canonical amino acid tagging (BONCAT) we were able to enrich selectively those proteins that were newly translated during MR1-dependent cellular interaction. Subsequently, newly translated proteins were measured cell-type-specifically by ultrasensitive proteomics to decipher the coinciding immune responses in both cell types. This strategy identified over 2,000 MAIT and 3,000 THP-1 active protein translations following MR1 ligand stimulations. Translation in both cell types was found to be increased by 5-OP-RU, which correlated with their conjugation frequency and CD3 polarization at MAIT cell immunological synapses in the presence of 5-OP-RU. In contrast, Ac-6-FP only regulated a few protein translations, including GSK3B, indicating an anergic phenotype. In addition to known effector responses, 5-OP-RU-induced protein translations uncovered type I and type II Interferon-driven protein expression profiles in both MAIT and THP-1 cells. Interestingly, the translatome of THP-1 cells suggested that activated MAIT cells can impact M1/M2 polarization in these cells. Indeed, gene and surface expression of CXCL10, IL-1β, CD80, and CD206 confirmed an M1-like phenotype of macrophages being induced in the presence of 5-OP-RU-activated MAIT cells. Furthermore, we validated that the Interferon-driven translatome was accompanied by the induction of an antiviral phenotype in THP-1 cells, which were found able to suppress viral replication following conjugation with MR1-activated MAIT cells. In conclusion, BONCAT translatomics extended our knowledge of MAIT cell immune responses at the protein level and discovered that MR1-activated MAIT cells are sufficient to induce M1 polarization and an anti-viral program of macrophages.
Collapse
Affiliation(s)
- Josefine Jakob
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andrea Kröger
- Innate Immunity and Infection, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology, Health Campus Immunology, Infectiology and Inflammation, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Frank Klawonn
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
20
|
Labuz DR, Lewis G, Fleming ID, Thompson CM, Zhai Y, Firpo MA, Leung DT. Targeted multi-omic analysis of human skin tissue identifies alterations of conventional and unconventional T cells associated with burn injury. eLife 2023; 12:82626. [PMID: 36790939 PMCID: PMC9931389 DOI: 10.7554/elife.82626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Burn injuries are a leading cause of unintentional injury, associated with a dysfunctional immune response and an increased risk of infections. Despite this, little is known about the role of T cells in human burn injury. In this study, we compared the activation and function of conventional T cells and unconventional T cell subsets in skin tissue from acute burn (within 7 days from initial injury), late phase burn (beyond 7 days from initial injury), and non-burn patients. We compared T cell functionality by a combination of flow cytometry and a multi-omic single-cell approach with targeted transcriptomics and protein expression. We found a significantly lower proportion of CD8+ T cells in burn skin compared to non-burn skin, with CD4+ T cells making up the bulk of the T cell population. Both conventional and unconventional burn tissue T cells show significantly higher IFN-γ and TNF-α levels after stimulation than non-burn skin T cells. In sorted T cells, clustering showed that burn tissue had significantly higher expression of homing receptors CCR7, S1PR1, and SELL compared to non-burn skin. In unconventional T cells, including mucosal-associated invariant T (MAIT) and γδ T cells, we see significantly higher expression of cytotoxic molecules GZMB, PRF1, and GZMK. Multi-omics analysis of conventional T cells suggests a shift from tissue-resident T cells in non-burn tissue to a circulating T cell phenotype in burn tissue. In conclusion, by examining skin tissue from burn patients, our results suggest that T cells in burn tissue have a pro-inflammatory rather than a homeostatic tissue-resident phenotype, and that unconventional T cells have a higher cytotoxic capacity. Our findings have the potential to inform the development of novel treatment strategies for burns.
Collapse
Affiliation(s)
- Daniel R Labuz
- Division of Infectious Disease, Department of Internal Medicine, University of UtahSalt Lake CityUnited States,Division of Microbiology & Immunology, Department of Pathology, University of UtahSalt Lake CityUnited States
| | - Giavonni Lewis
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Irma D Fleming
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Callie M Thompson
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Yan Zhai
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Matthew A Firpo
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Daniel T Leung
- Division of Infectious Disease, Department of Internal Medicine, University of UtahSalt Lake CityUnited States,Division of Microbiology & Immunology, Department of Pathology, University of UtahSalt Lake CityUnited States
| |
Collapse
|
21
|
Kane H, LaMarche NM, Ní Scannail Á, Garza AE, Koay HF, Azad AI, Kunkemoeller B, Stevens B, Brenner MB, Lynch L. Longitudinal analysis of invariant natural killer T cell activation reveals a cMAF-associated transcriptional state of NKT10 cells. eLife 2022; 11:e76586. [PMID: 36458691 PMCID: PMC9831610 DOI: 10.7554/elife.76586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Innate T cells, including CD1d-restricted invariant natural killer T (iNKT) cells, are characterized by their rapid activation in response to non-peptide antigens, such as lipids. While the transcriptional profiles of naive, effector, and memory adaptive T cells have been well studied, less is known about the transcriptional regulation of different iNKT cell activation states. Here, using single-cell RNA-sequencing, we performed longitudinal profiling of activated murine iNKT cells, generating a transcriptomic atlas of iNKT cell activation states. We found that transcriptional signatures of activation are highly conserved among heterogeneous iNKT cell populations, including NKT1, NKT2, and NKT17 subsets, and human iNKT cells. Strikingly, we found that regulatory iNKT cells, such as adipose iNKT cells, undergo blunted activation and display constitutive enrichment of memory-like cMAF+ and KLRG1+ populations. Moreover, we identify a conserved cMAF-associated transcriptional network among NKT10 cells, providing novel insights into the biology of regulatory and antigen-experienced iNKT cells.
Collapse
Affiliation(s)
- Harry Kane
- Trinity Biomedical Science Institute, Trinity College DublinDublinIreland
| | - Nelson M LaMarche
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Áine Ní Scannail
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Amanda E Garza
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Hui-Fern Koay
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Adiba I Azad
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Britta Kunkemoeller
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Brenneth Stevens
- Trinity Biomedical Science Institute, Trinity College DublinDublinIreland
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Michael B Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Lydia Lynch
- Trinity Biomedical Science Institute, Trinity College DublinDublinIreland
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
22
|
Improved MAIT cell functions following fecal microbiota transplantation for metastatic renal cell carcinoma. Cancer Immunol Immunother 2022; 72:1247-1260. [PMID: 36396738 PMCID: PMC9672546 DOI: 10.1007/s00262-022-03329-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
Strategies to modify the gut microbiome in cancer patients using fecal microbiota transplantation (FMT) have gained momentum as a therapeutic intervention. However, how FMT impacts innate-like, antimicrobial T lymphocytes is unclear. In this study, we assessed peripheral blood (PB) mucosa-associated invariant T (MAIT) cell frequencies and functions in patients with metastatic renal cell carcinoma (mRCC) before and seven days after they received FMT as part of a clinical trial. We found comparable MAIT cell frequencies in healthy controls and mRCC patients. In contrast, γδ T cells exhibited a numerical decline in mRCC, which was partially reversed by FMT. We also found a significant increase in the PB CD4+ MAIT cell compartment of mRCC patients with or without FMT. Paired sample analyses revealed CD69 upregulation on MAIT cells accompanied by decreased PD-1 levels post-FMT. These changes were unique to MAIT cells as non-MAIT T lymphocytes showed either no trend or a trend in the opposite direction. Importantly, FMT did not render MAIT cells exhausted as also judged by their stable expression of TIM-3, LAG-3, BTLA, CTLA-4, TIGIT and VISTA. These findings were corroborated in functional assays in which MAIT cells were stimulated with MR1 ligands or with a combination of IL-12 and IL-18 to produce inflammatory cytokines and granzyme B. Indeed, when stimulated ex vivo with IL-12 and IL-18, MAIT cells mounted a more rigorous TNF-α response post-FMT. In conclusion, FMT improves MAIT cell functions, which should serve patients well in subsequent microbial challenges in the face of cancer-elicited immunosuppression. Trial Registration: https://clinicaltrials.gov/ Identifier: NCT04163289 (registration date: November 14, 2019).
Collapse
|
23
|
Souter MN, Awad W, Li S, Pediongco TJ, Meehan BS, Meehan LJ, Tian Z, Zhao Z, Wang H, Nelson A, Le Nours J, Khandokar Y, Praveena T, Wubben J, Lin J, Sullivan LC, Lovrecz GO, Mak JY, Liu L, Kostenko L, Kedzierska K, Corbett AJ, Fairlie DP, Brooks AG, Gherardin NA, Uldrich AP, Chen Z, Rossjohn J, Godfrey DI, McCluskey J, Pellicci DG, Eckle SB. CD8 coreceptor engagement of MR1 enhances antigen responsiveness by human MAIT and other MR1-reactive T cells. J Exp Med 2022; 219:213423. [PMID: 36018322 PMCID: PMC9424912 DOI: 10.1084/jem.20210828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 11/04/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells detect microbial infection via recognition of riboflavin-based antigens presented by the major histocompatibility complex class I (MHC-I)-related protein 1 (MR1). Most MAIT cells in human peripheral blood express CD8αα or CD8αβ coreceptors, and the binding site for CD8 on MHC-I molecules is relatively conserved in MR1. Yet, there is no direct evidence of CD8 interacting with MR1 or the functional consequences thereof. Similarly, the role of CD8αα in lymphocyte function remains ill-defined. Here, using newly developed MR1 tetramers, mutated at the CD8 binding site, and by determining the crystal structure of MR1-CD8αα, we show that CD8 engaged MR1, analogous to how it engages MHC-I molecules. CD8αα and CD8αβ enhanced MR1 binding and cytokine production by MAIT cells. Moreover, the CD8-MR1 interaction was critical for the recognition of folate-derived antigens by other MR1-reactive T cells. Together, our findings suggest that both CD8αα and CD8αβ act as functional coreceptors for MAIT and other MR1-reactive T cells.
Collapse
Affiliation(s)
- Michael N.T. Souter
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Troi J. Pediongco
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Bronwyn S. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lucy J. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zehua Tian
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhe Zhao
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Adam Nelson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Yogesh Khandokar
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - T. Praveena
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jacinta Wubben
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jie Lin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lucy C. Sullivan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - George O. Lovrecz
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia
| | - Jeffrey Y.W. Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Lyudmila Kostenko
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Andrew G. Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Adam P. Uldrich
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Daniel G. Pellicci
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Murdoch Children’s Research Institute, Parkville, Melbourne, Australia
| | - Sidonia B.G. Eckle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
24
|
Jensen O, Trivedi S, Li K, Aubé J, Hale JS, Ryan ET, Leung DT. Use of a MAIT-Activating Ligand, 5-OP-RU, as a Mucosal Adjuvant in a Murine Model of Vibrio cholerae O1 Vaccination. Pathog Immun 2022; 7:122-144. [PMID: 36072570 PMCID: PMC9438945 DOI: 10.20411/pai.v7i1.525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Mucosal-associated invariant T (MAIT) cells are innate-like T cells enriched in the mucosa with capacity for B-cell help. We hypothesize that targeting MAIT cells, using a MAIT-activating ligand as an adjuvant, could improve mucosal vaccine responses to bacterial pathogens such as Vibrio cholerae. Methods We utilized murine models of V. cholerae vaccination to test the adjuvant potential of the MAIT-activating ligand, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU). We measured V. cholerae-specific antibody and antibody-secreting cell responses and used flow cytometry to examine MAIT-cell and B-cell phenotype, in blood, bronchoalveolar lavage fluid (BALF), and mucosal tissues, following intranasal vaccination with live V. cholerae O1 or a V. cholerae O1 polysaccharide conjugate vaccine. Results We report significant expansion of MAIT cells in the lungs (P < 0.001) and BALF (P < 0.001) of 5-OP-RU treated mice, and higher mucosal (BALF, P = 0.045) but not systemic (serum, P = 0.21) V. cholerae O-specific-polysaccharide IgG responses in our conjugate vaccine model when adjuvanted with low-dose 5-OP-RU. In contrast, despite significant MAIT cell expansion, no significant differences in V. cholerae-specific humoral responses were found in our live V. cholerae vaccination model. Conclusions Using a murine model, we demonstrate the potential, as well as the limitations, of targeting MAIT cells to improve antibody responses to mucosal cholera vaccines. Our study highlights the need for future research optimizing MAIT-cell targeting for improving mucosal vaccines.
Collapse
Affiliation(s)
- Owen Jensen
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Shubhanshi Trivedi
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - J. Scott Hale
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Edward T. Ryan
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Immunology and Infectious diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Daniel T. Leung
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
25
|
Gao MG, Zhao XS. Mining the multifunction of mucosal-associated invariant T cells in hematological malignancies and transplantation immunity: A promising hexagon soldier in immunomodulatory. Front Immunol 2022; 13:931764. [PMID: 36052080 PMCID: PMC9427077 DOI: 10.3389/fimmu.2022.931764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved innate-like T cells capable of recognizing bacterial and fungal ligands derived from vitamin B biosynthesis. Under different stimulation conditions, MAIT cells can display different immune effector phenotypes, exerting immune regulation and anti-/protumor responses. Based on basic biological characteristics, including the enrichment of mucosal tissue, the secretion of mucosal repair protective factors (interleukin-17, etc.), and the activation of riboflavin metabolites by intestinal flora, MAIT cells may play an important role in the immune regulation effect of mucosal lesions or inflammation. At the same time, activated MAIT cells secrete granzyme B, perforin, interferon γ, and other toxic cytokines, which can mediate anti-tumor effects. In addition, since a variety of hematological malignancies express the targets of MAIT cell-specific effector molecules, MAIT cells are also a potentially attractive target for cell therapy or immunotherapy for hematological malignancies. In this review, we will provide an overview of MAIT research related to blood system diseases and discuss the possible immunomodulatory or anti-tumor roles that unique biological characteristics or effector phenotypes may play in hematological diseases.
Collapse
Affiliation(s)
- Meng-Ge Gao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Su Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- *Correspondence: Xiao-Su Zhao,
| |
Collapse
|
26
|
Wang H, Nelson AG, Wang B, Zhao Z, Lim XY, Shi M, Meehan LJ, Jia X, Kedzierska K, Meehan BS, Eckle SBG, Souter MNT, Pediongco TJ, Mak JYW, Fairlie DP, McCluskey J, Wang Z, Corbett AJ, Chen Z. The balance of interleukin‐12 and interleukin‐23 determines the bias of MAIT1
versus
MAIT17 responses during bacterial infection. Immunol Cell Biol 2022; 100:547-561. [PMID: 35514192 PMCID: PMC9539875 DOI: 10.1111/imcb.12556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/28/2022]
Abstract
Mucosal‐associated invariant T (MAIT) cells are a major subset of innate‐like T cells mediating protection against bacterial infection through recognition of microbial metabolites derived from riboflavin biosynthesis. Mouse MAIT cells egress from the thymus as two main subpopulations with distinct functions, namely, T‐bet‐expressing MAIT1 and RORγt‐expressing MAIT17 cells. Previously, we reported that inducible T‐cell costimulator and interleukin (IL)‐23 provide essential signals for optimal MHC‐related protein 1 (MR1)‐dependent activation and expansion of MAIT17 cells in vivo. Here, in a model of tularemia, in which MAIT1 responses predominate, we demonstrate that IL‐12 and IL‐23 promote MAIT1 cell expansion during acute infection and that IL‐12 is indispensable for MAIT1 phenotype and function. Furthermore, we showed that the bias toward MAIT1 or MAIT17 responses we observed during different bacterial infections was determined and modulated by the balance between IL‐12 and IL‐23 and that these responses could be recapitulated by cytokine coadministration with antigen. Our results indicate a potential for tailored immunotherapeutic interventions via MAIT cell manipulation.
Collapse
Affiliation(s)
- Huimeng Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease Guangzhou Medical University Guangzhou China
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Adam G Nelson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Bingjie Wang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
- School of Medicine Tsinghua University Beijing China
| | - Zhe Zhao
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Xin Yi Lim
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Mai Shi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine Tsinghua University Beijing China
| | - Lucy J Meehan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Bronwyn S Meehan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Sidonia BG Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Michael NT Souter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Troi J Pediongco
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Jeffrey YW Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience The University of Queensland Brisbane QLDAustralia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging The University of Queensland Brisbane QLDAustralia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience The University of Queensland Brisbane QLDAustralia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging The University of Queensland Brisbane QLDAustralia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Zhongfang Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease Guangzhou Medical University Guangzhou China
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity The University of Melbourne Melbourne VIC Australia
| |
Collapse
|
27
|
Van Kaer L, Postoak JL, Song W, Wu L. Innate and Innate-like Effector Lymphocytes in Health and Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:199-207. [PMID: 35821102 PMCID: PMC9285656 DOI: 10.4049/jimmunol.2200074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 04/20/2023]
Abstract
Lymphocytes can be functionally partitioned into subsets belonging to the innate or adaptive arms of the immune system. Subsets of innate and innate-like lymphocytes may or may not express Ag-specific receptors of the adaptive immune system, yet they are poised to respond with innate-like speed to pathogenic insults but lack the capacity to develop classical immunological memory. These lymphocyte subsets display a number of common properties that permit them to integrate danger and stress signals dispatched by innate sensor cells to facilitate the generation of specialized effector immune responses tailored toward specific pathogens or other insults. In this review, we discuss the functions of distinct subsets of innate and innate-like lymphocytes. A better understanding of the mechanisms by which these cells are activated in different contexts, their interactions with other immune cells, and their role in health and disease may inform the development of new or improved immunotherapies.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - J Luke Postoak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Wenqiang Song
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|