1
|
Park YH, Lee SW, Kim TC, Park HJ, Van Kaer L, Hong S. The iNKT cell ligand α-GalCer prevents murine septic shock by inducing IL10-producing iNKT and B cells. Front Immunol 2024; 15:1457690. [PMID: 39355237 PMCID: PMC11442275 DOI: 10.3389/fimmu.2024.1457690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction α-galactosylceramide (α-GalCer), a prototypical agonist of invariant natural killer T (iNKT) cells, stimulates iNKT cells to produce various cytokines such as IFNγ and IL4. Moreover, repeated α-GalCer treatment can cause protective or pathogenic outcomes in various immune-mediated diseases. However, the precise role of α-GalCer-activated iNKT cells in sepsis development remains unclear. To address this issue, we employed a lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced murine sepsis model and two alternative models. Methods Sepsis was induced in wild-type (WT) C57BL/6 (B6) mice by three methods (LPS/D-GalN, α-GalCer/D-GalN, and cecal slurry), and these mice were monitored for survival rates. WT B6 mice were intraperitoneally injected with α-GalCer or OCH (an IL4-biased α-GalCer analog) one week prior to the induction of sepsis. To investigate the effects of α-GalCer-mediated iNKT cell activation on sepsis development, immune responses were analyzed by flow cytometry using splenocytes and liver-infiltrating leukocytes. In addition, a STAT6 inhibitor (AS1517499) and an IL10 inhibitor (AS101) were employed to evaluate the involvement of IL4 or IL10 signaling. Furthermore, we performed B cell adoptive transfers to examine the contribution of α-GalCer-induced regulatory B (Breg) cell populations in sepsis protection. Results In vivo α-GalCer pretreatment polarized iNKT cells towards IL4- and IL10-producing phenotypes, significantly attenuating LPS/D-GalN-induced septic lethality in WT B6 mice. Furthermore, α-GalCer pretreatment reduced the infiltration of immune cells to the liver and attenuated pro-inflammatory cytokine production. Treatment with a STAT6 inhibitor was unable to modulate disease progression, indicating that IL4 signaling did not significantly affect iNKT cell-mediated protection against sepsis. This finding was confirmed by pretreatment with OCH, which did not alter sepsis outcomes. However, interestingly, prophylactic effects of α-GalCer on sepsis were significantly suppressed by treatment with an IL10 antagonist, suggesting induction of IL10-dependent anti-inflammatory responses. In addition to IL10-producing iNKT cells, IL10-producing B cell populations were significantly increased after α-GalCer pretreatment. Conclusion Overall, our results identify α-GalCer-mediated induction of IL10 by iNKT and B cells as a promising option for controlling the pathogenesis of postoperative sepsis.
Collapse
Affiliation(s)
- Yun Hoo Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| | - Sung Won Lee
- Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju, Republic of Korea
| | - Tae-Cheol Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Iwabuchi K, Van Kaer L. Editorial: Community series in the role of CD1- and MR1-restricted T cells in immunity and disease, volume II. Front Immunol 2024; 15:1490010. [PMID: 39351217 PMCID: PMC11439791 DOI: 10.3389/fimmu.2024.1490010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
3
|
Rients E, Franco C, Diaz F, McGill J, Hansen S. Effects of zinc supplementation and implant abscess on the immune system and growth performance of growing beef steers. Transl Anim Sci 2024; 8:txae075. [PMID: 38764468 PMCID: PMC11100429 DOI: 10.1093/tas/txae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
Seventy-two Angus-cross steers (261 ± 14 kg) were utilized to determine the effects of supplemental Zn sulfate on growth, trace mineral status, circulating immune cells, and functional innate immune responses. Steers were stratified by weight and implanted with a Component E-S with Tylan implant (Elanco Animal Health, Greenfield, IN) on day 0. Dietary treatments included: control (CON; no supplemental Zn), Zn100 (100 mg supplemental Zn/kg DM), and Zn150 (150 mg supplemental Zn/kg DM). Analyzed dietary concentrations of Zn were 58, 160, and 207 mg Zn/kg DM, respectively. On days 13 and 57, blood from nine steers per treatment was collected for immune analyses (cell phenotyping and response to stimulus). On day 16, implant abscesses were evaluated by palpation and visual appraisal. Sixty percent of steers had abscesses; however, there were no differences in abscess prevalence due to treatment (P = 0.67). Data were analyzed as a split-plot design using the Mixed procedure of SAS 9.4 (Cary, NC) with effects of dietary treatment, abscess, and their interaction. There was a tendency (treatment × abscess; P ≤ 0.09) for steers without abscesses to have greater average daily gain (ADG; treatment × abscess P = 0.06) and gain:feed (G:F; treatment × abscess P = 0.09) from d 14 to 27 in CON and Zn100 while within Zn150 steers without abscesses tended to have lesser ADG and G:F than abscessed steers. There were no other treatment × abscess effects for growth performance, but steers with abscesses tended to have decreased final body weight (P = 0.10) and overall G:F (days 0 to 57; P = 0.08). There was no interaction of treatment and abscess on immune cell populations on days 13 or 58 (treatment × abscess P ≥ 0.11). On day 13, Zn150 steers had increased CD45RO + gamma delta (P = 0.04) T cells. Abscessed steers had increased CD21 + B cells (P = 0.03) and tended to have increased CD21 + (P = 0.07) and CD21 + MHCIIhi (P = 0.07) B cells in circulation. This study shows zinc supplementation and implant abscesses can alter the immune system and growth performance of growing beef steers.
Collapse
Affiliation(s)
- Emma Rients
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Carlos Franco
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, USA
| | - Fabian Diaz
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, USA
| | - Jodi McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, USA
| | - Stephanie Hansen
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
4
|
Smolgovsky S, Theall B, Wagner N, Alcaide P. Fibroblasts and immune cells: at the crossroad of organ inflammation and fibrosis. Am J Physiol Heart Circ Physiol 2024; 326:H303-H316. [PMID: 38038714 PMCID: PMC11219060 DOI: 10.1152/ajpheart.00545.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The immune and fibrotic responses have evolved to work in tandem to respond to pathogen clearance and promote tissue repair. However, excessive immune and fibrotic responses lead to chronic inflammation and fibrosis, respectively, both of which are key pathological drivers of organ pathophysiology. Fibroblasts and immune cells are central to these responses, and evidence of these two cell types communicating through soluble mediators or adopting functions from each other through direct contact is constantly emerging. Here, we review complex junctions of fibroblast-immune cell cross talk, such as immune cell modulation of fibroblast physiology and fibroblast acquisition of immune cell-like functions, as well as how these systems of communication contribute to organ pathophysiology. We review the concept of antigen presentation by fibroblasts among different organs with different regenerative capacities, and then focus on the inflammation-fibrosis axis in the heart in the complex syndrome of heart failure. We discuss the need to develop anti-inflammatory and antifibrotic therapies, so far unsuccessful to date, that target novel mechanisms that sit at the crossroads of the fibrotic and immune responses.
Collapse
Affiliation(s)
- Sasha Smolgovsky
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Brandon Theall
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Noah Wagner
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
5
|
Maslanka J, Torres G, Londregan J, Goldman N, Silberman D, Somerville J, Riggs JE. Loss of B1 and marginal zone B cells during ovarian cancer. Cell Immunol 2024; 395-396:104788. [PMID: 38000306 PMCID: PMC10842900 DOI: 10.1016/j.cellimm.2023.104788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Recent advances in immunotherapy have not addressed the challenge presented by ovarian cancer. Although the peritoneum is an "accessible" locus for this disease there has been limited characterization of the immunobiology therein. We investigated the ID8-C57BL/6J ovarian cancer model and found marked depletion of B1 cells from the ascites of the peritoneal cavity. There was also selective loss of the B1 and marginal zone B cell subsets from the spleen. Immunity to antigens that activate these subsets validated their loss rather than relocation. A marked influx of myeloid-derived suppressor cells correlated with B cell subset depletion. These observations are discussed in the context of the housekeeping burden placed on innate B cells during ovarian cancer and to foster consideration of B cell biology in therapeutic strategies to address this challenge.
Collapse
Affiliation(s)
- Jeffrey Maslanka
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - Gretel Torres
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | | | - Naomi Goldman
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - Daniel Silberman
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - John Somerville
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - James E Riggs
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA.
| |
Collapse
|
6
|
Lee IS, Van Dyken SJ. Both Horatio and Polonius: Innate Lymphoid Cells in Tissue Homeostasis and Repair. Immunohorizons 2023; 7:729-736. [PMID: 37916861 PMCID: PMC10695417 DOI: 10.4049/immunohorizons.2300053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells (ILCs) have emerged as critical tissue-resident lymphocytes that coordinate responses to environmental stress and injury. Traditionally, their function was thought to mirror adaptive lymphocytes that respond to specific pathogens. However, recent work has uncovered a more central role for ILCs in maintaining homeostasis even in the absence of infection. ILCs are now better conceptualized as an environmental rheostat that helps maintain the local tissue setpoint during environmental challenge by integrating sensory stimuli to direct homeostatic barrier and repair programs. In this article, we trace the developmental origins of ILCs, relate how ILCs sense danger signals, and describe their subsequent engagement of appropriate repair responses using a general paradigm of ILCs functioning as central controllers in tissue circuits. We propose that these interactions form the basis for how ILC subsets maintain organ function and organismal homeostasis, with important implications for human health.
Collapse
Affiliation(s)
- Intelly S. Lee
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Steven J. Van Dyken
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
7
|
Yayon N, Kedlian VR, Boehme L, Suo C, Wachter B, Beuschel RT, Amsalem O, Polanski K, Koplev S, Tuck E, Dann E, Van Hulle J, Perera S, Putteman T, Predeus AV, Dabrowska M, Richardson L, Tudor C, Kreins AY, Engelbert J, Stephenson E, Kleshchevnikov V, De Rita F, Crossland D, Bosticardo M, Pala F, Prigmore E, Chipampe NJ, Prete M, Fei L, To K, Barker RA, He X, Van Nieuwerburgh F, Bayraktar O, Patel M, Davies GE, Haniffa MA, Uhlmann V, Notarangelo LD, Germain RN, Radtke AJ, Marioni JC, Taghon T, Teichmann SA. A spatial human thymus cell atlas mapped to a continuous tissue axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.562925. [PMID: 37986877 PMCID: PMC10659407 DOI: 10.1101/2023.10.25.562925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
T cells develop from circulating precursors, which enter the thymus and migrate throughout specialised sub-compartments to support maturation and selection. This process starts already in early fetal development and is highly active until the involution of the thymus in adolescence. To map the micro-anatomical underpinnings of this process in pre- vs. post-natal states, we undertook a spatially resolved analysis and established a new quantitative morphological framework for the thymus, the Cortico-Medullary Axis. Using this axis in conjunction with the curation of a multimodal single-cell, spatial transcriptomics and high-resolution multiplex imaging atlas, we show that canonical thymocyte trajectories and thymic epithelial cells are highly organised and fully established by post-conception week 12, pinpoint TEC progenitor states, find that TEC subsets and peripheral tissue genes are associated with Hassall's Corpuscles and uncover divergence in the pace and drivers of medullary entry between CD4 vs. CD8 T cell lineages. These findings are complemented with a holistic toolkit for spatial analysis and annotation, providing a basis for a detailed understanding of T lymphocyte development.
Collapse
Affiliation(s)
- Nadav Yayon
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | | | - Lena Boehme
- Ghent University, Department of Diagnostic Sciences, Ghent, Belgium
| | - Chenqu Suo
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Brianna Wachter
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, Bethesda, MD, United States
| | - Rebecca T Beuschel
- National Institute of Allergy and Infectious Diseases, NIH, Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Bethesda, MD, United States
| | - Oren Amsalem
- Beth Israel Deaconess Medical Center, Harvard Medical School, Division of Endocrinology, Diabetes and Metabolism, Boston, MA, United States
| | | | - Simon Koplev
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Emma Dann
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Jolien Van Hulle
- Ghent University, Department of Diagnostic Sciences, Ghent, Belgium
| | - Shani Perera
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Tom Putteman
- Ghent University, Department of Diagnostic Sciences, Ghent, Belgium
| | | | - Monika Dabrowska
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Laura Richardson
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Catherine Tudor
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Alexandra Y Kreins
- Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Immunology and Gene Therapy, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research & Teaching Department, London, United Kingdom
| | - Justin Engelbert
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Emily Stephenson
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | | | - Fabrizio De Rita
- Freeman Hospital, Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Newcastle upon Tyne, United Kingdom
| | - David Crossland
- Freeman Hospital, Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Newcastle upon Tyne, United Kingdom
| | - Marita Bosticardo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, Bethesda, MD, United States
| | - Francesca Pala
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, Bethesda, MD, United States
| | - Elena Prigmore
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | | | - Martin Prete
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Lijiang Fei
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Ken To
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Roger A Barker
- University of Cambridge, John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Xiaoling He
- University of Cambridge, John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Filip Van Nieuwerburgh
- Ghent University, Laboratory of Pharmaceutical Biotechnology, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Omer Bayraktar
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Minal Patel
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Graham E Davies
- Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Immunology and Gene Therapy, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research & Teaching Department, London, United Kingdom
| | - Muzlifah A Haniffa
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Virginie Uhlmann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Luigi D Notarangelo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, Bethesda, MD, United States
| | - Ronald N Germain
- National Institute of Allergy and Infectious Diseases, NIH, Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Bethesda, MD, United States
| | - Andrea J Radtke
- National Institute of Allergy and Infectious Diseases, NIH, Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Bethesda, MD, United States
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK, Cambridge, United Kingdom
| | - Tom Taghon
- Ghent University, Department of Diagnostic Sciences, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
- University of Cambridge, Cavendish Laboratory, Cambridge, United Kingdom
| |
Collapse
|
8
|
Paiola M, McGuire CC, Lopez Ruiz V, De Jesús Andino F, Robert J. Larval T Cells Are Functionally Distinct from Adult T Cells in Xenopus laevis. Immunohorizons 2023; 7:696-707. [PMID: 37870488 PMCID: PMC10615653 DOI: 10.4049/immunohorizons.2300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
The amphibian Xenopus laevis tadpole provides a unique comparative experimental organism for investigating the roles of innate-like T (iT) cells in tolerogenic immunity during early development. Unlike mammals and adult frogs, where conventional T cells are dominant, tadpoles rely mostly on several prominent distinct subsets of iT cells interacting with cognate nonpolymorphic MHC class I-like molecules. In the present study, to investigate whole T cell responsiveness ontogenesis in X. laevis, we determined in tadpoles and adult frogs the capacity of splenic T cells to proliferate in vivo upon infection with two different pathogens, ranavirus FV3 and Mycobacterium marinum, as well as in vitro upon PHA stimulation using the thymidine analogous 5-ethynyl-2'-deoxyuridine and flow cytometry. We also analyzed by RT-quantitative PCR T cell responsiveness upon PHA stimulation. In vivo tadpole splenic T cells showed limited capacity to proliferate, whereas the in vitro proliferation rate was higher than adult T cells. Gene markers for T cell activation and immediate-early genes induced upon TCR activation were upregulated with similar kinetics in tadpole and adult splenocytes. However, the tadpole T cell signature included a lower amplitude in the TCR signaling, which is a hallmark of mammalian memory-like T cells and iT or "preset" T cells. This study suggests that reminiscent of mammalian neonatal T cells, tadpole T cells are functionally different from their adult counterpart.
Collapse
Affiliation(s)
- Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Connor C. McGuire
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY
| | - Vania Lopez Ruiz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | | | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
9
|
Kumar V, Hertz M, Agro A, Byrne AJ. Type 1 invariant natural killer T cells in chronic inflammation and tissue fibrosis. Front Immunol 2023; 14:1260503. [PMID: 37818376 PMCID: PMC10561218 DOI: 10.3389/fimmu.2023.1260503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
Chronic tissue inflammation often results in fibrosis characterized by the accumulation of extracellular matrix components remodeling normal tissue architecture and function. Recent studies have suggested common immune mechanisms despite the complexity of the interactions between tissue-specific fibroblasts, macrophages, and distinct immune cell populations that mediate fibrosis in various tissues. Natural killer T (NKT) cells recognizing lipid antigens bound to CD1d molecules have been shown to play an important role in chronic inflammation and fibrosis. Here we review recent data in both experimental models and in humans that suggest a key role of type 1 invariant NKT (iNKT) cell activation in the progression of inflammatory cascades leading to recruitment of neutrophils and activation of the inflammasome, macrophages, fibroblasts, and, ultimately, fibrosis. Emerging evidence suggests that iNKT-associated mechanisms contribute to type 1, type 2 and type 3 immune pathways mediating tissue fibrosis, including idiopathic pulmonary fibrosis (IPF). Thus, targeting a pathway upstream of these immune mechanisms, such as the inhibition of iNKT activation, may be important in modulating various fibrotic conditions.
Collapse
Affiliation(s)
- Vipin Kumar
- Laboratory of Immune Regulation, Department of Medicine, University of California San Diego, La Jolla, CA, United States
- GRI Bio, La Jolla, CA, United States
| | | | | | - Adam J. Byrne
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- School of Medicine and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Motta F, Tonutti A, Isailovic N, Ceribelli A, Costanzo G, Rodolfi S, Selmi C, De Santis M. Proteomic aptamer analysis reveals serum biomarkers associated with disease mechanisms and phenotypes of systemic sclerosis. Front Immunol 2023; 14:1246777. [PMID: 37753072 PMCID: PMC10518467 DOI: 10.3389/fimmu.2023.1246777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Background Systemic sclerosis (SSc) is an autoimmune connective tissue disease that affects multiple organs, leading to elevated morbidity and mortality with limited treatment options. The early detection of organ involvement is challenging as there is currently no serum marker available to predict the progression of SSc. The aptamer technology proteomic analysis holds the potential to correlate SSc manifestations with serum proteins up to femtomolar concentrations. Methods This is a two-tier study of serum samples from women with SSc (including patients with interstitial lung disease - ILD - at high-resolution CT scan) and age-matched healthy controls (HC) that were first analyzed with aptamer-based proteomic analysis for over 1300 proteins. Proposed associated proteins were validated by ELISA first in an independent cohort of patients with SSc and HC, and selected proteins subject to further validation in two additional cohorts. Results The preliminary aptamer-based proteomic analysis identified 33 proteins with significantly different concentrations in SSc compared to HC sera and 9 associated with SSc-ILD, including proteins involved in extracellular matrix formation and cell-cell adhesion, angiogenesis, leukocyte recruitment, activation, and signaling. Further validations in independent cohorts ultimately confirmed the association of specific proteins with early SSc onset, specific organ involvement, and serum autoantibodies. Conclusions Our multi-tier proteomic analysis identified serum proteins discriminating patients with SSc and HC or associated with different SSc subsets, disease duration, and manifestations, including ILD, skin involvement, esophageal disease, and autoantibodies.
Collapse
Affiliation(s)
- Francesca Motta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Natasa Isailovic
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Angela Ceribelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Giovanni Costanzo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Stefano Rodolfi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Maria De Santis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
11
|
Jin S, He L, Yang C, He X, Chen H, Feng Y, Tang W, Li J, Liu D, Li T. Crosstalk between trace elements and T-cell immunity during early-life health in pigs. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1994-2005. [PMID: 37300752 DOI: 10.1007/s11427-022-2339-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/20/2023] [Indexed: 06/12/2023]
Abstract
With gradual ban on the use of antibiotics, the deficiency and excessive use of trace elements in intestinal health is gaining attention. In mammals, trace elements are essential for the development of the immune system, specifically T-cell proliferation, and differentiation. However, there remain significant gaps in our understanding of the effects of certain trace elements on T-cell immune phenotypes and functions in pigs. In this review, we summarize the specificity, development, subpopulations, and responses to pathogens of porcine T cells and the effects of functional trace elements (e.g., iron, copper, zinc, and selenium) on intestinal T-cell immunity during early-life health in pigs. Furthermore, we discuss the current trends of research on the crosstalk mechanisms between trace elements and T-cell immunity. The present review expands our knowledge of the association between trace elements and T-cell immunity and provides an opportunity to utilize the metabolism of trace elements as a target to treat various diseases.
Collapse
Affiliation(s)
- Shunshun Jin
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
| | - Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China.
| | - Chenbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
| | - Xinmiao He
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Heshu Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yanzhong Feng
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Di Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Tiejun Li
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China.
| |
Collapse
|
12
|
Kim HY, Kim JH. Deciphering the complexities of mucosal innate lymphocytes: guardians and potential therapeutic targets. Exp Mol Med 2023; 55:1843-1844. [PMID: 37696891 PMCID: PMC10545738 DOI: 10.1038/s12276-023-01092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Affiliation(s)
- Hye Young Kim
- Laboratory of Mucosal Immunology in the Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea.
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.
| |
Collapse
|
13
|
Joyce S, Okoye GD, Driver JP. Die Kämpfe únd schláchten-the struggles and battles of innate-like effector T lymphocytes with microbes. Front Immunol 2023; 14:1117825. [PMID: 37168859 PMCID: PMC10165076 DOI: 10.3389/fimmu.2023.1117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/13/2023] Open
Abstract
The large majority of lymphocytes belong to the adaptive immune system, which are made up of B2 B cells and the αβ T cells; these are the effectors in an adaptive immune response. A multitudinous group of lymphoid lineage cells does not fit the conventional lymphocyte paradigm; it is the unconventional lymphocytes. Unconventional lymphocytes-here called innate/innate-like lymphocytes, include those that express rearranged antigen receptor genes and those that do not. Even though the innate/innate-like lymphocytes express rearranged, adaptive antigen-specific receptors, they behave like innate immune cells, which allows them to integrate sensory signals from the innate immune system and relay that umwelt to downstream innate and adaptive effector responses. Here, we review natural killer T cells and mucosal-associated invariant T cells-two prototypic innate-like T lymphocytes, which sense their local environment and relay that umwelt to downstream innate and adaptive effector cells to actuate an appropriate host response that confers immunity to infectious agents.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare Service, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gosife Donald Okoye
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
14
|
Ng CK, Belz GT. Innate lymphoid cells: potential targets for cancer therapeutics. Trends Cancer 2023; 9:158-171. [PMID: 36357314 DOI: 10.1016/j.trecan.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022]
Abstract
Innate lymphoid cells (ILCs) comprise a number of different subsets, including natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue-inducer (LTi) cells that express receptors and signaling pathways that are highly responsive to continuously changing microenvironmental cues. In this Review, we highlight the key features of innate cells that define their capacity to respond rapidly to different environments, how this ability can drive both tumor protection (limiting tumor development) or, alternatively, tumor progression, promoting tumor dissemination and resistance to immunotherapy. We discuss how understanding the regulation of ILCs that can detect tumor cells early in a response opens the possibility of exploiting this functional plasticity to develop rational therapeutic strategies to bolster adaptive immune responses and improve patient outcomes.
Collapse
Affiliation(s)
- Chun Ki Ng
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Gabrielle T Belz
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
15
|
Opposing Roles of DCs and iNKT Cells in the Induction of Foxp3 Expression by MLN CD25 +CD4 + T Cells during IFNγ-Driven Colitis. Int J Mol Sci 2022; 23:ijms232315316. [PMID: 36499642 PMCID: PMC9738888 DOI: 10.3390/ijms232315316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/29/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
We have previously shown that a deficiency of CD1d-restricted invariant natural killer T (iNKT) cells exacerbates dextran sulfate sodium (DSS)-induced colitis in Yeti mice that exhibit IFNγ-mediated hyper-inflammation. Although iNKT cell-deficiency resulted in reduced Foxp3 expression by mesenteric lymph node (MLN) CD4+ T cells in DSS-treated Yeti mice, the cellular mechanisms that regulate Foxp3 expression by CD25+CD4+ T cells during intestinal inflammation remain unclear. We found that Foxp3-CD25+CD4+ T cells expressing Th1 and Th17 phenotypic hallmarks preferentially expanded in the MLNs of DSS-treated Yeti/CD1d knockout (KO) mice. Moreover, adoptive transfer of Yeti iNKT cells into iNKT cell-deficient Jα18 KO mice effectively suppressed the expansion of MLN Foxp3-CD25+CD4+ T cells during DSS-induced colitis. Interestingly, MLN dendritic cells (DCs) purified from DSS-treated Yeti/CD1d KO mice promoted the differentiation of naive CD4+ T cells into Foxp3-CD25+CD4+ T cells rather than regulatory T (Treg) cells, indicating that MLN DCs might mediate Foxp3+CD25+CD4+ T cell expansion in iNKT cell-sufficient Yeti mice. Furthermore, we showed that Foxp3-CD25+CD4+ T cells were pathogenic in DSS-treated Yeti/CD1d KO mice. Our result suggests that pro-inflammatory DCs and CD1d-restricted iNKT cells play opposing roles in Foxp3 expression by MLN CD25+CD4+ T cells during IFNγ-mediated intestinal inflammation, with potential therapeutic implications.
Collapse
|
16
|
Joyce S. Life In-Between: Bridging Innate and Adaptive Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:193-195. [PMID: 35821100 DOI: 10.4049/jimmunol.2290012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|