1
|
Stefanou E, Tountas C, Ioannidis E, Kole C. Biomarkers in cardiorenal syndrome, a potential use in precision medicine. J Nephrol 2024:10.1007/s40620-024-02047-x. [PMID: 39153147 DOI: 10.1007/s40620-024-02047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/21/2024] [Indexed: 08/19/2024]
Abstract
Cardiorenal syndrome refers to the interrelated dysfunction of the heart or kidney resulting in a cascade of feedback mechanisms, hemodynamic, neurohormonal, and immunological and/or biochemical feedback pathways causing damage in the other organ. Cardiorenal syndrome is categorized into five clinical subtypes depending on the perceived primary precipitant of organ injury and is associated with high morbidity and mortality. Therefore, the development of tools for the earliest identification of cardiorenal syndrome in hospitalized patients is of extremely high significance to ameliorate the prognosis and outcome of these patients. There is increasing interest in identifying molecules serving as biomarkers, reflecting hemodynamic changes, heart and kidney damage and/or dysfunction and oxidative stress-induced cell damage or changes in the extracellular matrix of both the heart and kidneys. Biomarkers provide important insights into the pathophysiology of cardiorenal syndrome and are invaluable tools to predict the decrease in renal function during cardiac dysfunction and vice versa. Based on the pathophysiological mechanisms of cardiorenal syndrome, we reviewed and evaluated the available literature on serum and urinary biomarkers as predictors of kidney and/or heart injury. In addition, heart- and kidney-specific biomarkers were also evaluated based on their reference to kidney and cardiac (dys)function respectively, and whether they would provide any prediction and prognostication of cardiorenal syndrome. In this article, we discuss the current knowledge on the pathophysiology of different types of cardiorenal syndrome, examine the clinical utility of candidate biomarkers in the early diagnosis of cardiorenal syndrome, and guide treatment by evaluating the respective roles of the involved pathophysiological pathways.
Collapse
Affiliation(s)
- Eleni Stefanou
- Artificial Kidney Unit, General Hospital of Messinia, Kalamata, Greece
| | - Christos Tountas
- Cardiology Department, Sismanogleio General Hospital of Attica, Athens, Greece
| | - Emmanouil Ioannidis
- Cardiology Department, Sismanogleio General Hospital of Attica, Athens, Greece
| | - Christo Kole
- Cardiology Department, Sismanogleio General Hospital of Attica, Athens, Greece.
| |
Collapse
|
2
|
Lisa A, Carbone F, Liberale L, Montecucco F. The Need to Identify Novel Markers for Early Renal Injury in Cardiorenal Syndrome. Cells 2024; 13:1283. [PMID: 39120314 PMCID: PMC11311518 DOI: 10.3390/cells13151283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The term "Cardiorenal Syndrome" (CRS) refers to the complex interplay between heart and kidney dysfunction. First described by Robert Bright in 1836, CRS was brought to its modern view by Ronco et al. in 2008, who defined it as one organ's primary dysfunction leading to secondary dysfunction in the other, a view that led to the distinction of five different types depending on the organ of primary dysfunction and the temporal pattern (acute vs. chronic). Their pathophysiology is intricate, involving various hemodynamic, neurohormonal, and inflammatory processes that result in damage to both organs. While traditional biomarkers have been utilized for diagnosing and prognosticating CRS, they are inadequate for the early detection of acute renal damage. Hence, there is a pressing need to discover new biomarkers to enhance clinical outcomes and treatment approaches.
Collapse
Affiliation(s)
- Anna Lisa
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy (F.C.); (L.L.)
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy (F.C.); (L.L.)
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy (F.C.); (L.L.)
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy (F.C.); (L.L.)
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| |
Collapse
|
3
|
Ajibowo AO, Okobi OE, Emore E, Soladoye E, Sike CG, Odoma VA, Bakare IO, Kolawole OA, Afolayan A, Okobi E, Chukwu C. Cardiorenal Syndrome: A Literature Review. Cureus 2023; 15:e41252. [PMID: 37529809 PMCID: PMC10389294 DOI: 10.7759/cureus.41252] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 08/03/2023] Open
Abstract
Cardiorenal syndrome (CRS) is a condition characterized by the intricate two-way relationship between the heart and kidneys, which can lead to acute or chronic dysfunction in these organs. The interplay between cardiorenal connectors and both hemodynamic and non-hemodynamic factors is crucial to understanding this syndrome. The clinical importance of these interactions is evident in the changes observed in hemodynamic factors, neurohormonal markers, and inflammatory processes. Identifying and understanding biomarkers associated with CRS is valuable for early detection and enabling intervention before significant organ dysfunction occurs. This comprehensive review focuses on the clinical significance of biomarkers in the diagnosis, prognosis, and management of CRS. Finally, it highlights the necessity for further advancements in managing this condition.
Collapse
Affiliation(s)
| | - Okelue E Okobi
- Family Medicine, Medficient Health Systems, Laurel, USA
- Family Medicine, Lakeside Medical Center, Belle Glade, USA
| | | | | | - Cherechi G Sike
- General Practice, Windsor University School of Medicine, Cayon, KNA
| | - Victor A Odoma
- Cardiology/Oncology, Indiana University (IU) Health, Bloomington, USA
| | - Ibrahim O Bakare
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| | | | - Adebola Afolayan
- Internal Medicine, Triboro Center for Nursing and Rehabilitation, New York City, USA
| | - Emeka Okobi
- Dentistry, Ahmadu Bello University Teaching Hospital Zaria, Abuja, NGA
| | | |
Collapse
|
4
|
Vaill M, Kawanishi K, Varki N, Gagneux P, Varki A. Comparative physiological anthropogeny: exploring molecular underpinnings of distinctly human phenotypes. Physiol Rev 2023; 103:2171-2229. [PMID: 36603157 PMCID: PMC10151058 DOI: 10.1152/physrev.00040.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Anthropogeny is a classic term encompassing transdisciplinary investigations of the origins of the human species. Comparative anthropogeny is a systematic comparison of humans and other living nonhuman hominids (so-called "great apes"), aiming to identify distinctly human features in health and disease, with the overall goal of explaining human origins. We begin with a historical perspective, briefly describing how the field progressed from the earliest evolutionary insights to the current emphasis on in-depth molecular and genomic investigations of "human-specific" biology and an increased appreciation for cultural impacts on human biology. While many such genetic differences between humans and other hominids have been revealed over the last two decades, this information remains insufficient to explain the most distinctive phenotypic traits distinguishing humans from other living hominids. Here we undertake a complementary approach of "comparative physiological anthropogeny," along the lines of the preclinical medical curriculum, i.e., beginning with anatomy and considering each physiological system and in each case considering genetic and molecular components that are relevant. What is ultimately needed is a systematic comparative approach at all levels from molecular to physiological to sociocultural, building networks of related information, drawing inferences, and generating testable hypotheses. The concluding section will touch on distinctive considerations in the study of human evolution, including the importance of gene-culture interactions.
Collapse
Affiliation(s)
- Michael Vaill
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| | - Kunio Kawanishi
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nissi Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Pascal Gagneux
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Ajit Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
5
|
Prastaro M, Nardi E, Paolillo S, Santoro C, Parlati ALM, Gargiulo P, Basile C, Buonocore D, Esposito G, Filardi PP. Cardiorenal syndrome: Pathophysiology as a key to the therapeutic approach in an under-diagnosed disease. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1110-1124. [PMID: 36218199 PMCID: PMC9828083 DOI: 10.1002/jcu.23265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 06/09/2023]
Abstract
Cardiorenal syndrome is a clinical condition that impacts both the heart and the kidneys. One organ's chronic or acute impairment can lead to the other's chronic or acute dysregulation. The cardiorenal syndrome has been grouped into five subcategories that describe the etiology, pathophysiology, duration, and pattern of cardiac and renal dysfunction. This classification reflects the large spectrum of interrelated dysfunctions and underlines the bidirectional nature of heart-kidney interactions. However, more evidence is needed to apply these early findings in medical practice. Understanding the relationship between these two organs during each organ's impairment has significant clinical implications that are relevant for therapy in both chronic and acute conditions. The epidemiology, definition, classification, pathophysiology, therapy, and outcome of each form of cardiorenal syndrome are all examined in this review.
Collapse
Affiliation(s)
- Maria Prastaro
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Ermanno Nardi
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Stefania Paolillo
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Ciro Santoro
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Antonio L. M. Parlati
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Paola Gargiulo
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Christian Basile
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Davide Buonocore
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Giovanni Esposito
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | | |
Collapse
|
6
|
Unravelling the role of hub genes associated with cardio renal syndrome through an integrated bioinformatics approach. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
7
|
Ahmed MM, Tazyeen S, Alam A, Farooqui A, Ali R, Imam N, Tamkeen N, Ali S, Malik MZ, Ishrat R. Deciphering key genes in cardio-renal syndrome using network analysis. Bioinformation 2021; 17:86-100. [PMID: 34393423 PMCID: PMC8340714 DOI: 10.6026/97320630017086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/23/2022] Open
Abstract
Cardio-renal syndrome (CRS) is a rapidly recognized clinical entity which refers to the inextricably connection between heart and renal impairment, whereby abnormality to one organ directly promotes deterioration of the other one. Biological markers help to gain insight into the pathological processes for early diagnosis with higher accuracy of CRS using known clinical findings. Therefore, it is of interest to identify target genes in associated pathways implicated linked to CRS. Hence, 119 CRS genes were extracted from the literature to construct the PPIN network. We used the MCODE tool to generate modules from network so as to select the top 10 modules from 23 available modules. The modules were further analyzed to identify 12 essential genes in the network. These biomarkers are potential emerging tools for understanding the pathophysiologic mechanisms for the early diagnosis of CRS. Ontological analysis shows that they are rich in MF protease binding and endo-peptidase inhibitor activity. Thus, this data help increase our knowledge on CRS to improve clinical management of the disease.
Collapse
Affiliation(s)
- Mohd Murshad Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Safia Tazyeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Anam Farooqui
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Rafat Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Nikhat Imam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Naaila Tamkeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Shahnawaz Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Md Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-1100067, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| |
Collapse
|
8
|
Investigation of the relationship between sensorineural hearing loss and associated comorbidities in patients with chronic kidney disease: A nationwide, population-based cohort study. PLoS One 2020; 15:e0238913. [PMID: 32915865 PMCID: PMC7485846 DOI: 10.1371/journal.pone.0238913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Hearing impairment was observed in patients with chronic kidney disease (CKD). Our purpose was to investigate the relationship between sensorineural hearing loss (SNHL) and associated comorbidities in the CKD population. We conducted a retrospective, population-based study to examine the risk of developing SNHL in patients with CKD. Population-based data from 2000–2010 from the Longitudinal Health Insurance Database of the Taiwan National Health Insurance Research Database was used in this study. The population sample comprised 185,430 patients who were diagnosed with CKD, and 556,290 without CKD to determine SNHL risk factors. Cox proportional hazard regression analysis demonstrated the CKD group had a significantly increased risk of SNHL compared with the non-CKD group [adjusted hazard ratio (HR), 3.42; 95% confidence interval (CI), 3.01–3.90, p < 0.001]. In the CKD group, the risk of SNHL (adjusted HR, 5.92) was higher among patients undergoing hemodialysis than among those not undergoing hemodialysis (adjusted HR, 1.40). Furthermore, subgroup analysis revealed an increased risk of SNHL in patients with CKD and comorbidities, including heart failure (adjusted HR, 7.48), liver cirrhosis (adjusted HR, 4.12), type 2 diabetes mellitus (adjusted HR, 3.98), hypertension (adjusted HR, 3.67), and chronic obstructive pulmonary disease (adjusted HR, 3.45). CKD is an independent risk of developing SNHL. Additionally, hemodialysis for uremia can increase the risk of SNHL. Cardiovascular, lung, liver, and metabolic comorbidities in CKD patients may further aggravate the risk of SNHL by inter-organ crosstalk. We should pay attention to SNHL in this high-risk population.
Collapse
|
9
|
Peters LJF, Floege J, Biessen EAL, Jankowski J, van der Vorst EPC. MicroRNAs in Chronic Kidney Disease: Four Candidates for Clinical Application. Int J Mol Sci 2020; 21:E6547. [PMID: 32906849 PMCID: PMC7555601 DOI: 10.3390/ijms21186547] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
There are still major challenges regarding the early diagnosis and treatment of chronic kidney disease (CKD), which is in part due to the fact that its pathophysiology is very complex and not clarified in detail. The diagnosis of CKD commonly is made after kidney damage has occurred. This highlights the need for better mechanistic insight into CKD as well as improved clinical tools for both diagnosis and treatment. In the last decade, many studies have focused on microRNAs (miRs) as novel diagnostic tools or clinical targets. MiRs are small non-coding RNA molecules that are involved in post-transcriptional gene regulation and many have been studied in CKD. A wide array of pre-clinical and clinical studies have highlighted the potential role for miRs in the pathogenesis of hypertensive nephropathy, diabetic nephropathy, glomerulonephritis, kidney tubulointerstitial fibrosis, and some of the associated cardiovascular complications. In this review, we will provide an overview of the miRs studied in CKD, especially highlighting miR-103a-3p, miR-192-5p, the miR-29 family and miR-21-5p as these have the greatest potential to result in novel therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Linsey J. F. Peters
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University Hospital, 52074 Aachen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Erik A. L. Biessen
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University Hospital, 52074 Aachen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| |
Collapse
|
10
|
Bjornstad P, Wiromrat P, Johnson RJ, Sippl R, Cherney DZI, Wong R, Rewers MJ, Snell-Bergeon JK. Serum Uromodulin Predicts Less Coronary Artery Calcification and Diabetic Kidney Disease Over 12 Years in Adults With Type 1 Diabetes: The CACTI Study. Diabetes Care 2019; 42:297-302. [PMID: 30482755 PMCID: PMC6341281 DOI: 10.2337/dc18-1527] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/23/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Novel biomarkers are needed to better predict coronary artery calcification (CAC), a marker of subclinical atherosclerosis, and diabetic kidney disease (DKD) in type 1 diabetes. We evaluated the associations between serum uromodulin (SUMOD [a biomarker associated with anti-inflammatory and renal protective properties]), CAC progression, and DKD development over 12 years. RESEARCH DESIGN AND METHODS Participants (n = 527, 53% females) in the Coronary Artery Calcification in Type 1 Diabetes (CACTI) study were examined during 2002-2004, at a mean age of 39.6 ± 9.0 years and a median duration of diabetes of 24.8 years. Urine albumin-to-creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR) determined by the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) creatinine equation were measured at baseline and after a mean follow-up period of 12.1 ± 1.5 years. Elevated albumin excretion was defined as ACR ≥30 mg/g, rapid GFR decline (>3 mL/min/1.73 m2/year), and impaired GFR as eGFR <60 mL/min/1.73 m2. SUMOD was measured on stored baseline plasma samples (Meso Scale Discovery). CAC was measured using electron beam computed tomography. CAC progression was defined as a change in the square root-transformed CAC volume of ≥2.5. RESULTS Higher baseline SUMOD level conferred lower odds of CAC progression (odds ratio 0.68; 95% CI 0.48-0.97), incident elevated albumin excretion (0.37; 0.16-0.86), rapid GFR decline (0.56; 0.35-0.91), and impaired GFR (0.44; 0.24-0.83) per 1 SD increase in SUMOD (68.44 ng/mL) after adjustment for baseline age, sex, systolic blood pressure, LDL cholesterol, and albuminuria/GFR. The addition of SUMOD to models with traditional risk factors also significantly improved the prediction performance for CAC progression and incident DKD. CONCLUSIONS Higher baseline SUMOD level predicted lower odds of both CAC progression and incident DKD over 12 years in adults with type 1 diabetes.
Collapse
Affiliation(s)
- Petter Bjornstad
- Section of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, CO .,Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO
| | - Pattara Wiromrat
- Section of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, CO
| | - Richard J Johnson
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Rachel Sippl
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO
| | - David Z I Cherney
- Division of Nephrology, Department of Medicine, and Department of Physiology, University of Toronto, Ontario, Canada
| | - Randy Wong
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO
| | - Marian J Rewers
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO
| | | |
Collapse
|
11
|
Lee SA, Cozzi M, Bush EL, Rabb H. Distant Organ Dysfunction in Acute Kidney Injury: A Review. Am J Kidney Dis 2018; 72:846-856. [PMID: 29866457 DOI: 10.1053/j.ajkd.2018.03.028] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/25/2018] [Indexed: 01/09/2023]
Abstract
Acute kidney injury (AKI) is common in critically ill patients and is associated with increased morbidity and mortality. Dysfunction of other organs is an important cause of poor outcomes from AKI. Ample clinical and epidemiologic data show that AKI is associated with distant organ dysfunction in lung, heart, brain, and liver. Recent advancements in basic and clinical research have demonstrated physiologic and molecular mechanisms of distant organ interactions in AKI, including leukocyte activation and infiltration, generation of soluble factors such as inflammatory cytokines/chemokines, and endothelial injury. Oxidative stress and production of reactive oxygen species, as well as dysregulation of cell death in distant organs, are also important mechanism of AKI-induced distant organ dysfunction. This review updates recent clinical and experimental findings on organ crosstalk in AKI and highlights potential molecular mechanisms and therapeutic targets to improve clinical outcomes during AKI.
Collapse
Affiliation(s)
- Sul A Lee
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD; Yonsei University College of Medicine, Seoul, South Korea
| | - Martina Cozzi
- Department of Nephrology and Dialysis, Azienda Sanitaria Universitaria Integrata di Trieste, Trieste, Italy
| | - Errol L Bush
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hamid Rabb
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
12
|
Xu JR, Zhuang YM, Liu L, Shen B, Wang YM, Luo Z, Teng J, Wang CS, Ding XQ. Reversible preoperative renal dysfunction does not add to the risk of postoperative acute kidney injury after cardiac valve surgery. Ther Clin Risk Manag 2017; 13:1499-1505. [PMID: 29184415 PMCID: PMC5689023 DOI: 10.2147/tcrm.s148549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objective To evaluate the impact of the renal dysfunction (RD) type and change of postoperative cardiac function on the risk of developing acute kidney injury (AKI) in patients who underwent cardiac valve surgery. Method Reversible renal dysfunction (RRD) was defined as preoperative RD in patients who had not been initially diagnosed with chronic kidney disease (CKD). Cardiac function improvement (CFI) was defined as postoperative left ventricular ejection function – preoperative left ventricular ejection function (ΔEF) >0%, and cardiac function not improved (CFNI) as ΔEF ≤0%. Results Of the 4,805 (94%) cardiac valve surgery patients, 301 (6%) were RD cases. The AKI incidence in the RRD group (n=252) was significantly lower than in the CKD group (n=49) (36.5% vs 63.3%, P=0.018). The AKI and renal replacement therapy incidences in the CFI group (n=174) were significantly lower than in the CFNI group (n=127) (33.9% vs 50.4%, P=0.004; 6.3% vs 13.4%, P=0.037). After adjustment for age, gender, and other confounding factors, CKD and CKD + CFNI were identified as independent risk factors for AKI in all patients after cardiac valve surgery. Multivariate logistic regression analysis showed that the risk factors for postoperative AKI in preoperative RD patients were age, gender (male), hypertension, diabetes, chronic heart failure, cardiopulmonary bypass time (every 1 min added), and intraoperative hypotension, while CFI after surgery could reduce the risk. Conclusion For cardiac valve surgery patients, preoperative CKD was an independent risk factor for postoperative AKI, but RRD did not add to the risk. Improved postoperative cardiac function can significantly reduce the risk of postoperative AKI.
Collapse
Affiliation(s)
- Jia-Rui Xu
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai.,Shanghai Institute for Kidney and Dialysis, Shanghai.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai
| | - Ya-Min Zhuang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai
| | - Lan Liu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai.,Shanghai Institute for Kidney and Dialysis, Shanghai.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai
| | - Yi-Mei Wang
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai.,Shanghai Institute for Kidney and Dialysis, Shanghai.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai
| | - Zhe Luo
- Department of Cardiovascular Surgery, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai.,Shanghai Institute for Kidney and Dialysis, Shanghai.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai.,Department of Nephrology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Chun-Sheng Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai
| | - Xiao-Qiang Ding
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai.,Shanghai Institute for Kidney and Dialysis, Shanghai.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai
| |
Collapse
|
13
|
Pleasant L, Ma Q, Devarajan M, Parameswaran P, Drake K, Siroky B, Shay-Winkler K, Robbins J, Devarajan P. Increased susceptibility to structural acute kidney injury in a mouse model of presymptomatic cardiomyopathy. Am J Physiol Renal Physiol 2017; 313:F699-F705. [PMID: 28679593 DOI: 10.1152/ajprenal.00505.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 01/03/2023] Open
Abstract
The early events that signal renal dysfunction in presymptomatic heart failure are unclear. We tested the hypothesis that functional and mechanistic changes occur in the kidney that precede the development of symptomatic heart failure. We employed a transgenic mouse model with cardiomyocyte-specific overexpression of mutant α-B-crystallin that develops slowly progressive cardiomyopathy. Presymptomatic transgenic mice displayed an increase in serum creatinine (1.17 ± 0.34 vs. wild type 0.65 ± 0.16 mg/dl, P < 0.05) and in urinary neutrophil gelatinase-associated lipocalin (NGAL; 278.92 ± 176.24 vs. wild type 49.11 ± 22.79 ng/ml, P < 0.05) but no renal fibrosis. Presymptomatic transgenic mouse kidneys exhibited a twofold upregulation of the Ren1 gene, marked overexpression of renin protein in the tubules, and a worsened response to ischemia-reperfusion injury based on serum creatinine (2.77 ± 0.66 in transgenic mice vs. 2.01 ± 0.58 mg/dl in wild type, P < 0.05), urine NGAL (9,198.79 ± 3,799.52 in transgenic mice vs. 3,252.94 ± 2,420.36 ng/ml in wild type, P < 0.05), tubule dilation score (3.4 ± 0.5 in transgenic mice vs. 2.6 ± 0.5 in wild type, P < 0.05), tubule cast score (3.2 ± 0.4 in transgenic mice vs. 2.5 ± 0.5 in wild type, P < 0.05), and TdT-mediated dUTP nick-end labeling (TUNEL)-positive nuclei (10.1 ± 2.1 in the transgenic group vs. 5.7 ± 1.6 per 100 cells counted in wild type, P < 0.01). Our findings indicate functional renal impairment, urinary biomarker elevations, and induction of renin gene and protein expression in the kidney that occur in early presymptomatic heart failure, which increase the susceptibility to subsequent acute kidney injury.
Collapse
Affiliation(s)
- LaTawnya Pleasant
- Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| | - Qing Ma
- Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| | - Mahima Devarajan
- Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| | - Priyanka Parameswaran
- Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| | - Keri Drake
- Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| | - Brian Siroky
- Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| | - Kritton Shay-Winkler
- Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jeffrey Robbins
- Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Prasad Devarajan
- Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| |
Collapse
|
14
|
|
15
|
Di Lullo L, Bellasi A, Barbera V, Russo D, Russo L, Di Iorio B, Cozzolino M, Ronco C. Pathophysiology of the cardio-renal syndromes types 1-5: An uptodate. Indian Heart J 2017; 69:255-265. [PMID: 28460776 PMCID: PMC5415026 DOI: 10.1016/j.ihj.2017.01.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/06/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022] Open
Abstract
According to the recent definition proposed by the Consensus conference on Acute Dialysis Quality Initiative Group, the term cardio-renal syndrome (CRS) has been used to define different clinical conditions in which heart and kidney dysfunction overlap. Type 1 CRS (acute cardio- renal syndrome) is characterized by acute worsening of cardiac function leading to AKI (5, 6) in the setting of active cardiac disease such as ADHF, while type - 2 CRS occurs in a setting of chronic heart disease. Type 3 CRS is closely link to acute kidney injury (AKI), while type 4 represent cardiovascular involvement in chronic kidney disese (CKD) patients. Type 5 CRS represent cardiac and renal involvement in several diseases such as sepsis, hepato - renal syndrome and immune - mediated diseases.
Collapse
Affiliation(s)
- L Di Lullo
- Department of Nephrology and Dialysis, L. Parodi - Delfino Hospital, Colleferro Rome, Italy.
| | - A Bellasi
- Department of Nephrology and Dialysis, S. Anna Hospital, Como, Italy
| | - V Barbera
- Department of Nephrology and Dialysis, L. Parodi - Delfino Hospital, Colleferro Rome, Italy
| | - D Russo
- Division of Nephrology, University of Naples "Federico II", Napoli, Italy
| | - L Russo
- Division of Nephrology, University of Naples "Federico II", Napoli, Italy
| | - B Di Iorio
- Department of Nephrology and Dialysis, A. Landolfi Hospital, Solofra, Avellino, Italy
| | - M Cozzolino
- Department of Health Sciences, Renal Division, San Paolo Hospital, University of Milan, Italy
| | - C Ronco
- International Renal Research Institute, S. Bortolo Hospital, Vicenza, Italy
| |
Collapse
|
16
|
De Rosa S, Samoni S, Villa G, Ronco C. Management of Chronic Kidney Disease Patients in the Intensive Care Unit: Mixing Acute and Chronic Illness. Blood Purif 2017; 43:151-162. [PMID: 28114127 DOI: 10.1159/000452650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Patients with chronic kidney disease (CKD) are at high risk for developing critical illness and for admission to intensive care units (ICU). 'Critically ill CKD patients' frequently develop an acute worsening of renal function (i.e. acute-on-chronic, AoC) that contributes to long-term kidney dysfunction, potentially leading to end-stage kidney disease (ESKD). An integrated multidisciplinary effort is thus necessary to adequately manage the multi-organ damage of those kidney patients and contemporaneously reduce the progression of kidney dysfunction when they are critically ill. The aim of this review is to describe (1) the pathophysiological mechanisms underlying the development of AoC kidney dysfunction and its role in the progression toward ESKD; (2) the most common clinical presentations of critical illness among CKD/ESKD patients; and (3) the continuum of care for CKD/ESKD patients from maintenance hemodialysis/peritoneal dialysis to acute renal replacement therapy performed in ICU and, vice-versa, for AoC patients who develop ESKD.
Collapse
Affiliation(s)
- Silvia De Rosa
- International Renal Research Institute (IRRIV), Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy
| | | | | | | |
Collapse
|
17
|
Domingos MAM, Moreira SR, Gomez L, Goulart A, Lotufo PA, Benseñor I, Titan S. Urinary Retinol-Binding Protein: Relationship to Renal Function and Cardiovascular Risk Factors in Chronic Kidney Disease. PLoS One 2016; 11:e0162782. [PMID: 27655369 PMCID: PMC5031461 DOI: 10.1371/journal.pone.0162782] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 08/29/2016] [Indexed: 11/18/2022] Open
Abstract
The role of urinary retinol-binding protein (RBP) as a biomarker of CKD in proximal tubular diseases, glomerulopathies and in transplantation is well established. However, whether urinary RBP is also a biomarker of renal damage and CKD progression in general CKD is not known. In this study, we evaluated the association of urinary RBP with renal function and cardiovascular risk factors in the baseline data of the Progredir Study, a CKD cohort in Sao Paulo, Brazil, comprising 454 participants with stages 3 and 4 CKD. In univariate analysis, urinary RBP was inversely related to estimated glomerular filtration rate (CKD-EPI eGFR) and several cardiovascular risk factors. After adjustments, however, only CKD-EPI eGFR, albuminuria, systolic blood pressure, anemia, acidosis, and left atrium diameter remained significantly related to urinary RBP. The inverse relationship of eGFR to urinary RBP (β-0.02 ± 95CI -0.02; -0.01, p<0.0001 for adjusted model) remained in all strata of albuminuria, even after adjustments: in normoalbuminuria (β-0.008 ± 95CI (-0.02; -0.001, p = 0.03), in microalbuminuria (β-0.02 ± 95CI (-0.03; -0.02, p<0,0001) and in macroalbuminuria (β-0.02 ± 95CI (-0.03; -0.01, p<0,0001). Lastly, urinary RBP was able to significantly increase the accuracy of a logistic regression model (adjusted for sex, age, SBP, diabetes and albuminuria) in diagnosing eGFR<35 ml/min/1.73m2 (AUC 0,77, 95%CI 0,72–0,81 versus AUC 0,71, 95%CI 0,65–0,75, respectively; p = 0,05). Our results suggest that urinary RBP is significantly associated to renal function in CKD in general, a finding that expands the interest in this biomarker beyond the context of proximal tubulopathies, glomerulopathies or transplantation. Urinary RBP should be further explored as a predictive marker of CKD progression.
Collapse
Affiliation(s)
- Maria Alice Muniz Domingos
- Nephrology Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- * E-mail:
| | - Silvia Regina Moreira
- Nephrology Division, Kidney and Hypertension Hospital, São Paulo Federal University, São Paulo, Brazil
| | - Luz Gomez
- Genetics Cardiovascular Laboratory, Heart’s Institute, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alessandra Goulart
- Clinical Center Research, University Hospital, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paulo Andrade Lotufo
- Clinical Center Research, University Hospital, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Isabela Benseñor
- Clinical Center Research, University Hospital, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Silvia Titan
- Nephrology Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Abstract
Cardio-renal syndrome is a commonly encountered problem in clinical practice. Its pathogenesis is not fully understood. The purpose of this article is to highlight the interaction between the cardiovascular system and the renal system and how their interaction results in the complex syndrome of cardio-renal dysfunction. Additionally, we outline the available therapeutic strategies to manage this complex syndrome.
Collapse
Affiliation(s)
- Joseph Gnanaraj
- Department of Cardiology, Bridgeport Hospital, Bridgeport, CT, USA
| | | |
Collapse
|
19
|
Chilton J, Wilcox A, Lammey M, Meyer D. Characterization of a Cardiorenal-like Syndrome in Aged Chimpanzees (Pan troglodytes). Vet Pathol 2016; 53:417-24. [PMID: 26792841 DOI: 10.1177/0300985815618435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cardiorenal syndrome involves disease and dysfunction of the heart that leads to progressive renal dysfunction. This study investigated the relationship between cardiac and renal disease in 91 aged chimpanzees at the Alamogordo Primate Facility by evaluation of the medical histories, metabolic parameters, functional measurements of the cardiovascular system, clinical pathology, and histopathology focused on the heart and kidney. Cardiac fibrosis was the most frequent microscopic finding in 82 of 91 animals (90%), followed by glomerulosclerosis with tubulointerstitial fibrosis in 63 of 91 (69%). Cardiac fibrosis with attendant glomerulosclerosis and tubulointerstitial fibrosis was observed in 58 of 91 animals (63%); there was a statistically significant association between the 2 conditions. As the severity of cardiac fibrosis increased, there was corresponding increase in severity of glomerulosclerosis with tubulointerstitial fibrosis. Altered metabolic, cardiovascular, and clinical pathology parameters indicative of heart and kidney failure were commonly associated with the moderate to severe microscopic changes, and concurrent heart and kidney failure were considered the cause of death. The constellation of findings in the chimpanzees were similar to cardiorenal syndrome in humans.
Collapse
Affiliation(s)
| | | | - M Lammey
- Alamogordo Primate Facility, Alamogordo, NM, USA
| | - D Meyer
- Charles River, Reno, NV, USA
| |
Collapse
|
20
|
Boriani G, Savelieva I, Dan GA, Deharo JC, Ferro C, Israel CW, Lane DA, La Manna G, Morton J, Mitjans AM, Vos MA, Turakhia MP, Lip GY. Chronic kidney disease in patients with cardiac rhythm disturbances or implantable electrical devices: clinical significance and implications for decision making-a position paper of the European Heart Rhythm Association endorsed by the Heart Rhythm Society and the Asia Pacific Heart Rhythm Society. Europace 2015; 17:1169-96. [PMID: 26108808 PMCID: PMC6281310 DOI: 10.1093/europace/euv202] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Giuseppe Boriani
- Corresponding author. Giuseppe Boriani, Institute of Cardiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, S.Orsola-Malpighi University Hospital, Via Massarenti 9, 40138 Bologna, Italy. Tel: +39 051 349858; fax: +39 051 344859. E-mail address:
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rad EM, Assadi F. Management of hypertension in children with cardiovascular disease and heart failure. Int J Prev Med 2014; 5:S10-6. [PMID: 24791185 PMCID: PMC3990921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/16/2013] [Indexed: 11/07/2022] Open
Abstract
Although primary chronic hypertension (HTN) is increasingly common in adolescence, secondary forms of HTN are more common among children. Primary HTN is associated with being overweight and/or a positive family history of HTN. Carotid intima-media thickness, a known risk factor for atherosclerosis is frequent in both adults and children with HTN and other associated cardiovascular (CV) risk factors including obesity, dyslipidemia, diabetes and chronic kidney disease. Left ventricular (LV) hypertrophy is also a common finding in children and adolescents with newly diagnosed HTN. Children with certain medical conditions such as congenital heart disease and Kawasaki disease can develop premature atherosclerosis heart disease that may lead to coronary heart disease and heart failure. Life-style interventions are recommended for all children with HTN, with pharmacologic therapy added for symptomatic children based on the presence of co-morbidities. As an example, beta-blockers, angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blocker and/or calcium channel blockers would be best for children with CV risk factors such as diabetes or renal disease, whereas an ACE inhibitor in combination with a beta-blocker and diuretics including spironolactone are recommended for patients with heart failure and reduced LV ejection fraction. This report will summarize new developments in the management of pediatric HTN complicated with CV disease and heart failure and will address the appropriate antihypertensive therapy that could potentially reduce the future burden of adult CV disease.
Collapse
Affiliation(s)
- Elaheh Malakan Rad
- Department of Pediatics, Division of Pediatric Cardiology, Children's Medical Center (Pediatrics Center of Excellence), Tehran University of Medical Sciences, Tehran, Iran,Correspondence to: Dr. Elaheh Malakan Rad, Department of Pediatics, Division of Pediatric Cardiology, Children's Medical Center, Tehran University of Medical Sciences, Tehran 1419733151, Iran. E-mail:
| | - Farahnak Assadi
- Department of Pediatrics Section of Nephrology Rush University Medical College Chicago, Illinois, USA,Department of Pediatrics, Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
Schaffer JM, Chiu P, Singh SK, Oyer PE, Reitz BA, Mallidi HR. Heart and combined heart-kidney transplantation in patients with concomitant renal insufficiency and end-stage heart failure. Am J Transplant 2014; 14:384-96. [PMID: 24279876 DOI: 10.1111/ajt.12522] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/09/2013] [Accepted: 07/28/2013] [Indexed: 01/25/2023]
Abstract
In patients with end-stage heart failure (ESHF) who are candidates for isolated heart transplant (HRT), dialysis dependence (DD) is considered an indication for combined heart-kidney transplantation (HKT). HKT remains controversial in ESHF transplant candidates with nondialysis-dependent renal insufficiency (NDDRI). Using United Network for Organ Sharing data, we examined the cumulative incidences of transplant and mortality in patients with DD and NDDRI waitlisted for HKT or HRT. In all groups, 3-month waitlist mortality was dismal: 31% and 21% for HRT- and HKT-listed patients with DD and 12% and 7% for HRT- and HKT-listed patients with NDDRI. Five-year posttransplant survival was improved in HKT recipients compared with HRT recipients for both patients with DD (73% vs. 51%, p<0.001) and NDDRI (80% vs. 69%, p<0.001). Likewise, multivariable analysis associated HKT with better outcomes than HRT in HKT-listed patients, although both improved survival. These data argue strongly for HKT in ESHF transplant candidates with DD. However, in patients with NDDRI, HKT must be weighed against the possibility of renal recovery with isolated HRT. Whether HRT (followed by a staged kidney transplant in patients who do not recover renal function after HRT), as opposed to HKT, maximizes organ benefit for patients with NDDRI and ESHF requires assessment. Nevertheless, given their dismal waitlist outcomes and excellent posttransplant results, we suggest that patients with DD and NDDRI with ESHF be considered for early listing and transplant.
Collapse
Affiliation(s)
- J M Schaffer
- Department of Cardiothoracic Surgery, Stanford Hospital and Clinics, Stanford, CA
| | | | | | | | | | | |
Collapse
|