1
|
Devanathan N, Mukhopadhyay HK, Sihag KK, Terence Nathan A, Chakkaravarthi A, Srinivasan L, Srinivas MV, Vasu J, Shanmugam VP, Rahi M, Devaraju P. Synanthropic rodents and shrews are reservoirs of zoonotic bacterial pathogens and act as sentinels for antimicrobial resistance spillover in the environment: A study from Puducherry, India. One Health 2024; 18:100759. [PMID: 38784598 PMCID: PMC11111835 DOI: 10.1016/j.onehlt.2024.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Antimicrobial resistance (AMR) is a global public health concern and needs to be monitored for control. In this study, synanthropic rodents trapped from humans and animal habitats in Puducherry, India, were screened as sentinels for bacterial pathogens of public health importance and antimicrobial resistance spillover. From the trapped rodents and shrews (n = 100) pathogens viz., Staphylococcus sp, E. coli and Salmonella sp were isolated from oropharyngeal and rectal swabs on Mannitol salt, Mac Conkey and Xylose lysine deoxycholate media respectively. The AMR genes in these isolates were screened by PCR. A total of 76, S. aureus and 19, Staphylococcus non aureus were isolated. E. coli was isolated in 89 samples and among the Salmonella sp (n = 59), 16, were S. enteritidis and 29, were S. typhimurium. A total of 46 MRSA isolates with mec A (n = 40) and mec C (n = 6) were detected. Also, 36.84% and 5.3% Staphylococcus non aureus isolates were tested to have mec A and mec C genes. AMR genes encoding ESBL [blaTEM in 21, blaSHV in 45 and blaCTX-M in 11] was tested positive in 77 E. coli isolates. Among, Salmonella isolates 44/45 were screened to have AMR genes [tet in 13, sul3 & sul4 in 20 and qnrA in 11]. Antibiotic sensitivity test confirmed the antimicrobial resistance. Isolation of pathogens of public health importance and demonstration of genetic elements conferring antimicrobial resistance in the synanthropic rodents confirms that they act as reservoirs and appropriate sentinels to monitor AMR spillover in the environment.
Collapse
Affiliation(s)
- Nivedha Devanathan
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research (RIVER), Kurumbapet, Puducherry 605009, India
| | - Hirak Kumar Mukhopadhyay
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research (RIVER), Kurumbapet, Puducherry 605009, India
| | - Krishan Kumar Sihag
- Unit of One Health, ICMR- Vector Control Research Centre (ICMR-VCRC), Indira Nagar, Puducherry 605006, India
| | - A. Terence Nathan
- Unit of One Health, ICMR- Vector Control Research Centre (ICMR-VCRC), Indira Nagar, Puducherry 605006, India
| | - Aravindasamy Chakkaravarthi
- Unit of One Health, ICMR- Vector Control Research Centre (ICMR-VCRC), Indira Nagar, Puducherry 605006, India
| | - Lakshmy Srinivasan
- Unit of One Health, ICMR- Vector Control Research Centre (ICMR-VCRC), Indira Nagar, Puducherry 605006, India
| | - Mouttou Vivek Srinivas
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research (RIVER), Kurumbapet, Puducherry 605009, India
| | - Jayalakshmi Vasu
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research (RIVER), Kurumbapet, Puducherry 605009, India
| | - Venkatesa Perumal Shanmugam
- Department of Veterinary Biochemistry, Rajiv Gandhi Institute of Veterinary Education and Research (RIVER), Kurumbapet, Puducherry 605009, India
| | - Manju Rahi
- The Director, ICMR- Vector Control Research Centre (ICMR-VCRC), Indira Nagar, Puducherry 605006, India
| | - Panneer Devaraju
- Unit of One Health, ICMR- Vector Control Research Centre (ICMR-VCRC), Indira Nagar, Puducherry 605006, India
| |
Collapse
|
2
|
Bachoon DS, Redhead ASZ, Mead AJ. Mitochondrial DNA marker: A PCR approach for tracking rat (Rattus rattus and Rattus norvegicus) fecal pollution in surface water systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171164. [PMID: 38402984 DOI: 10.1016/j.scitotenv.2024.171164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Rats act as reservoirs for a wide range of zoonotic pathogens and can negatively impact human health. In this study, we developed a novel dye base mitochondrial DNA (mtDNA) PCR-assay (RatMt) specifically targeting a 180 bp fragment of the NADH dehydrogenase subunit 2 gene for detecting fecal pollution from two species of rats (Rattus rattus and Rattus norvegicus) in environmental samples. Estimation of Escherichia coli concentrations in Rattus norvegicus fecal pellets suggested that there were approximately 2.24 × 10 4 ± 4.86 × 103 MPN/g of fecal pellet. The RatMt PCR assay was robust, had a detection limit of rat feces in water of 0.274 ± 0.14 mg/100 mL and was 100 % specific for detecting Rattus rattus and Rattus norvegicus fecal mtDNA. Fecal Indicator Bacteria (FIB) along an urbanized gradient in Pensacola-Bay was assessed by the IDEXX Colilert™ - 18 and indicated that the majority of the fifteen sampling sites in the Pensacola-Bay area had E. coli concentrations >410 MPN/100 mL. Rattus rattus and Rattus norvegicus mtDNA were detected in all the urban marine sites, three of the urban freshwater sampling areas, and three of the forested sampling sites. The RatMt PCR assay is a useful tool for rapidly detecting Rattus rattus and Rattus norvegicus fecal pollution in environmental samples.
Collapse
Affiliation(s)
- Dave S Bachoon
- Department of Biological and Environmental Sciences, Georgia College & State University, Campus Box 81, Milledgeville, GA 31061-0490, USA.
| | - Aaden S Z Redhead
- Department of Biological and Environmental Sciences, Georgia College & State University, Campus Box 81, Milledgeville, GA 31061-0490, USA
| | - Alfred J Mead
- Department of Biological and Environmental Sciences, Georgia College & State University, Campus Box 81, Milledgeville, GA 31061-0490, USA
| |
Collapse
|
3
|
Azimi T, Nasrollahian S, Sabour S, Mosadegh M, Hadi N, Azimi L, Fallah F, Pourmand MR. Intestinal Colonization by Campylobacter jejuni, Clostridium difficile, and Clostridium perfringens among Commensal Rattus norvegicus in the Urban Areas of Tehran, Iran. BIOMED RESEARCH INTERNATIONAL 2024; 2024:2929315. [PMID: 38572169 PMCID: PMC10990632 DOI: 10.1155/2024/2929315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 02/04/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Background Rattus norvegicus (R. norvegicus) population plays a significant role in the spread of numerous diseases in urban environments. The present study is aimed at investigating the presence of Campylobacter jejuni (C. jejuni), C. coli, Clostridium difficile (C. difficile), C. difficile toxigenic, and C. perfringens in R. norvegicus captured from urban areas of Tehran, Iran. Methods From October 2021 to October 2022, 100 urban rats were trapped in 5 different districts of Tehran, Iran. The genomic DNA was extracted from fecal samples, and the presence of C. jejuni, C. coli, C. perfringens, and C. difficile species was evaluated using PCR assay. Moreover, PCR was used to assess the toxicity of C. difficile isolates. Results Overall, 30% (n = 30/100) of fecal samples were positive for zoonotic pathogens. Based on the PCR on hippuricase (hipO), glycine (gly), CIDIF, and phospholipase C (plc) genes, C. perfringens and C. difficile were isolated from 18.2% (n = 14/77) and 5.2% (n = 4/77) of male rats. The highest frequency of C. perfringens and C. jejuni was 25% (n = 5/20) related to the south of Tehran. Toxigenic C. difficile was not detected in all regions. Conclusion According to the findings, rats are the main reservoirs for diseases. Therefore, rodent control coupled with the implementation of surveillance systems should be prioritized for urban health.
Collapse
Affiliation(s)
- Taher Azimi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Nasrollahian
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Sabour
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nahal Hadi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Azimi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Pokrant E, Vargas MB, Navarrete MJ, Yévenes K, Trincado L, Cortés P, Maddaleno A, Lapierre L, Cornejo J. Assessing the Effect of Oxytetracycline on the Selection of Resistant Escherichia coli in Treated and Untreated Broiler Chickens. Antibiotics (Basel) 2023; 12:1652. [PMID: 38136686 PMCID: PMC10740798 DOI: 10.3390/antibiotics12121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Oxytetracycline (OTC) is administered in the poultry industry for the treatment of digestive and respiratory diseases. The use of OTC may contribute to the selection of resistant bacteria in the gastrointestinal tract of birds or in the environment. To determine the effect of OTC on the selection of resistant Escherichia coli strains post-treatment, bacteria were isolated from droppings and litter sampled from untreated and treated birds. Bacterial susceptibility to tetracyclines was determined by the Kirby-Bauer test. A total of 187 resistant isolates were analyzed for the presence of tet(A), (B), (C), (D), (E), and (M) genes by PCR. Fifty-four strains were analyzed by PFGE for subtyping. The proportion of tetracycline-resistant E. coli strains isolated was 42.88%. The susceptibility of the strains was treatment-dependent. A high clonal diversity was observed, with the tet(A) gene being the most prevalent, followed by tet(C). Even at therapeutic doses, there is selection pressure on resistant E. coli strains. The most prevalent resistance genes were tet(A) and tet(C), which could suggest that one of the main mechanisms of resistance of E. coli to tetracyclines is through active efflux pumps.
Collapse
Affiliation(s)
- Ekaterina Pokrant
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (E.P.); (M.B.V.); (M.J.N.); (K.Y.)
- Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Av. Santa Rosa 11315, La Pintana, Santiago 8820808, Chile;
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (P.C.); (A.M.)
| | - María Belén Vargas
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (E.P.); (M.B.V.); (M.J.N.); (K.Y.)
- Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Av. Santa Rosa 11315, La Pintana, Santiago 8820808, Chile;
| | - María José Navarrete
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (E.P.); (M.B.V.); (M.J.N.); (K.Y.)
| | - Karina Yévenes
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (E.P.); (M.B.V.); (M.J.N.); (K.Y.)
- Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Av. Santa Rosa 11315, La Pintana, Santiago 8820808, Chile;
| | - Lina Trincado
- Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Av. Santa Rosa 11315, La Pintana, Santiago 8820808, Chile;
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (P.C.); (A.M.)
| | - Paula Cortés
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (P.C.); (A.M.)
| | - Aldo Maddaleno
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (P.C.); (A.M.)
| | - Lisette Lapierre
- Laboratory of Bacterial Pathogens Diagnostic and Antimicrobial Resistance, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
| | - Javiera Cornejo
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (E.P.); (M.B.V.); (M.J.N.); (K.Y.)
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile; (P.C.); (A.M.)
| |
Collapse
|
5
|
Rosli MZ, Mohd-Taib FS, Khoo JJ, Chee HY, Wong YP, Shafie NJ, Mohamed NZ, AbuBakar S, Nor SM. A Multi-landscape Assessment of Leptospira Prevalence on a Diversity of Small Mammals. ECOHEALTH 2023; 20:208-224. [PMID: 37103759 DOI: 10.1007/s10393-023-01637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Leptospirosis is a major zoonotic disease, especially in the tropics, and rodents were known to be carriers of this bacterium. There was established information on Leptospira prevalence among animal reservoirs in human-dominated landscapes from previous literature. However, there was very little focus given comparing the prevalence of Leptospira in a wide range of habitats. An extensive sampling of small mammals from various landscapes was carried out, covering oil palm plantations, paddy fields, recreational forests, semi-urbans, and wet markets in Peninsular Malaysia. This study aims to determine the prevalence of pathogenic Leptospira in a diversity of small mammals across different landscapes. Cage-trapping was deployed for small mammals' trappings, and the kidneys of captured individuals were extracted, for screening of pathogenic Leptospira by polymerase chain reaction (PCR) using LipL32 primer. Eight microhabitat parameters were measured at each study site. Out of 357 individuals captured, 21 (5.9%) were positive for pathogenic Leptospira of which recreational forest had the highest prevalence (8.8%) for landscape types, whereas Sundamys muelleri shows the highest prevalence (50%) among small mammals' species. Microhabitat analysis reveals that rubbish quantity (p < 0.05) significantly influenced the Leptospira prevalence among small mammals. Furthermore, nMDS analysis indicates that the presence of faeces, food waste, and exposure to humans in each landscape type also were linked with high prevalence of pathogenic Leptospira among the small mammals. This study supplements previous studies on pathogenic Leptospira prevalence across different landscape types, and the major microhabitat factors associated with Leptospira prevalence. This information is crucial for epidemiological surveillance and habitat management to curb the possibility of the disease outbreaks.
Collapse
Affiliation(s)
- Muhammad Zahin Rosli
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Farah Shafawati Mohd-Taib
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Jing Jing Khoo
- Tropical Infectious Diseases Research and Education Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hui Yee Chee
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Yien Ping Wong
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Nur Juliani Shafie
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Nor Zalipah Mohamed
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Shukor Md Nor
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
6
|
Occurrence and characteristics of extended-spectrum-β-lactamase producing Escherichia coli (bla TEM-128) isolated from Mus musculus captured from a veterinary clinic and houses in Tunis, Tunisia. Vet Microbiol 2023; 280:109698. [PMID: 36863174 DOI: 10.1016/j.vetmic.2023.109698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Antimicrobial resistance in Enterobacteriaceae is a public health problem. Rodents, can be a potential vector for transmission of multidrug resistant bacteria between animals, humans, and environment. The aim of our study was to assess the level of Enterobacteriaceae present in the intestines of rats collected from different locations in Tunisia, then to determine their antimicrobial susceptibility profiles, to screen extended spectrum β-lactamases-producing strains and determine the molecular mechanism of β-lactams resistance. Between July 2017 and June 2018, 55 strains of Enterobacteriaceae were isolated from 71 rats captured in various locations in Tunisia. Antibiotic susceptibility testing was performed using the disc diffusion method. Genes encoding ESBL and mcr genes were investigated by RT-PCR, standard PCR and sequencing when these genes were found. Fifty-five strains of Enterobacteriaceae were identified. The overall prevalence of ESBL production found in our study was 12.7 % (7/55) of which two E. coli strains were DDST positive, one isolated from a house-caught rat and one from the veterinary clinic and harbored the blaTEM-128 gene. In addition, the other five strains were DDST negative and harbored the blaTEM gene, including three strains isolated from collective restaurant (n = 2: blaTEM-163; n = 1: blaTEM-1), one strain isolated from the veterinary clinic (blaTEM-82), and one strain isolated from a house (blaTEM-128). The results of our study suggest that rodents may play a role in the spread of antimicrobial resistant E. coli, highlighting the need to protect the environment and monitor antimicrobial resistant bacteria in rodents to prevent their spread to other wildlife and humans.
Collapse
|
7
|
Falay D, Hardy L, Tanzito J, Lunguya O, Bonebe E, Peeters M, Mattheus W, Van Geet C, Verheyen E, Akaibe D, Katuala P, Ngbonda D, Weill FX, Pardos de la Gandara M, Jacobs J. Urban rats as carriers of invasive Salmonella Typhimurium sequence type 313, Kisangani, Democratic Republic of Congo. PLoS Negl Trop Dis 2022; 16:e0010740. [PMID: 36067238 PMCID: PMC9481155 DOI: 10.1371/journal.pntd.0010740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/16/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Invasive non-typhoidal Salmonella (iNTS-mainly serotypes Enteritidis and Typhimurium) are major causes of bloodstream infections in children in sub-Saharan Africa, but their reservoir remains unknown. We assessed iNTS carriage in rats in an urban setting endemic for iNTS carriage and compared genetic profiles of iNTS from rats with those isolated from humans. METHODOLOGY/PRINCIPAL FINDINGS From April 2016 to December 2018, rats were trapped in five marketplaces and a slaughterhouse in Kisangani, Democratic Republic of the Congo. After euthanasia, blood, liver, spleen, and rectal content were cultured for Salmonella. Genetic relatedness between iNTS from rats and humans-obtained from blood cultures at Kisangani University Hospital-was assessed with multilocus variable-number tandem repeat (VNTR) analysis (MLVA), multilocus sequence typing (MLST) and core-genome MLST (cgMLST). 1650 live-capture traps yielded 566 (34.3%) rats (95.6% Rattus norvegicus, 4.4% Rattus rattus); 46 (8.1%) of them carried Salmonella, of which 13 had more than one serotype. The most common serotypes were II.42:r:- (n = 18 rats), Kapemba (n = 12), Weltevreden and Typhimurium (n = 10, each), and Dublin (n = 8). Salmonella Typhimurium belonged to MLST ST19 (n = 7 rats) and the invasive ST313 (n = 3, isolated from deep organs but not from rectal content). Sixteen human S. Typhimurium isolates (all ST313) were available for comparison: MLVA and cgMLST revealed two distinct rat-human clusters involving both six human isolates, respectively, i.e. in total 12/16 human ST313 isolates. All ST313 Typhimurium isolates from rats and humans clustered with the ST313 Lineage 2 isolates and most were multidrug resistant; the remaining isolates from rats including S. Typhimurium ST19 were pan-susceptible. CONCLUSION The present study provides evidence of urban rats as potential reservoirs of S. Typhimurium ST313 in an iNTS endemic area in sub-Saharan Africa.
Collapse
Affiliation(s)
- Dadi Falay
- Department of Pediatrics, University Hospital of Kisangani, Kisangani, the Democratic Republic of the Congo
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Liselotte Hardy
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jacques Tanzito
- Biodiversity Monitoring Center (Centre de Surveillance de la Biodiversité, CSB), Faculty of Science, University of Kisangani, Kisangani, the Democratic Republic of the Congo
| | - Octavie Lunguya
- Department of Medical Biology, National Institute for Biomedical Research, Kinshasa, the Democratic Republic of the Congo
- Department of Microbiology, University Teaching Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Edmonde Bonebe
- Department of Medical Biology, National Institute for Biomedical Research, Kinshasa, the Democratic Republic of the Congo
| | - Marjan Peeters
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Wesley Mattheus
- Sciensano, Infectious Diseases in Humans, Bacterial Diseases, Brussels, Belgium
| | - Chris Van Geet
- Department of Cardiovascular Sciences and Pediatrics, KU Leuven and University Hospital Leuven, Leuven, Belgium
| | - Erik Verheyen
- OD Taxonomy & Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Evolutionary Ecology, University of Antwerp, Antwerp, Belgium
| | - Dudu Akaibe
- Biodiversity Monitoring Center (Centre de Surveillance de la Biodiversité, CSB), Faculty of Science, University of Kisangani, Kisangani, the Democratic Republic of the Congo
| | - Pionus Katuala
- Biodiversity Monitoring Center (Centre de Surveillance de la Biodiversité, CSB), Faculty of Science, University of Kisangani, Kisangani, the Democratic Republic of the Congo
| | - Dauly Ngbonda
- Department of Pediatrics, University Hospital of Kisangani, Kisangani, the Democratic Republic of the Congo
| | - François-Xavier Weill
- Institut Pasteur, Université Paris Cité, Unité des bactéries pathogènes entériques, Paris, France
| | | | - Jan Jacobs
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
8
|
Pettengill JB, Kase JA, Murray MH. The Population Genetics, Virulence, and Public Health Concerns of Escherichia coli Collected From Rats Within an Urban Environment. Front Microbiol 2021; 12:631761. [PMID: 34777266 PMCID: PMC8585510 DOI: 10.3389/fmicb.2021.631761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
The co-existence of rats and humans in urban environments has long been a cause for concern regarding human health because of the potential for rats to harbor and transmit disease-causing pathogens. Here, we analyze whole-genome sequence (WGS) data from 41 Escherichia coli isolates collected from rat feces from 12 locations within the city of Chicago, IL, United States to determine the potential for rats to serve as a reservoir for pathogenic E. coli and describe its population structure. We identified 25 different serotypes, none of which were isolated from strains containing significant virulence markers indicating the presence of Shiga toxin-producing and other disease-causing E. coli. Nor did the E. coli isolates harbor any particularly rare stress tolerant or antimicrobial resistance genes. We then compared the isolates against a public database of approximately 100,000 E. coli and Shigella isolates of primarily food, food facility, or clinical origin. We found that only one isolate was genetically similar to genome sequences in the database. Phylogenetic analyses showed that isolates cluster by serotype, and there was little geographic structure (e.g., isolation by distance) among isolates. However, a greater signal of isolation by distance was observed when we compared genetic and geographic distances among isolates of the same serotype. This suggests that E. coli serotypes are independent lineages and recombination between serotypes is rare.
Collapse
Affiliation(s)
- J B Pettengill
- Division of Biostatistics and Bioinformatics, Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, MD, United States
| | - J A Kase
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, MD, United States
| | - M H Murray
- Davee Center for Epidemiology and Endocrinology, Urban Wildlife Institute, Lincoln Park Zoo, Chicago, IL, United States
| |
Collapse
|
9
|
Islam MM, Farag E, Mahmoudi A, Hassan MM, Mostafavi E, Enan KA, Al-Romaihi H, Atta M, El Hussein ARM, Mkhize-Kwitshana Z. Rodent-Related Zoonotic Pathogens at the Human-Animal-Environment Interface in Qatar: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115928. [PMID: 34073025 PMCID: PMC8198466 DOI: 10.3390/ijerph18115928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/06/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
Rodents are one of the most diversified terrestrial mammals, and they perform several beneficial activities in nature. These animals are also important as carriers of many pathogens with public health importance. The current systematic review was conducted to formulate a true depiction of rodent-related zoonoses in Qatar. Following systematic searches on PubMed, Scopus, Science Direct, and Web of Science and a screening process, a total of 94 published articles were selected and studied. The studied articles reported 23 rodent-related zoonotic pathogens that include nine bacterial, eleven parasitic, and three viral pathogens, from which the frequently reported pathogens were Mycobacterium tuberculosis (32 reports), Escherichia coli (23), and Salmonella spp. (16). The possible pathway of entry of the rodent-borne pathogens can be the land port, seaports, and airport of Qatar through carrier humans and animals, contaminated food, and agricultural products. The pathogens can be conserved internally by rodents, pets, and livestock; by agricultural production systems; and by food marketing chains. The overall estimated pooled prevalence of the pathogens among the human population was 4.27% (95%CI: 4.03–4.51%; p < 0.001) with significant heterogeneity (I2 = 99.50%). The top three highest prevalent pathogens were M.tuberculosis (30.90%; 22.75–39.04%; p < 0.001; I2 = 99.70%) followed by Toxoplasma gondii (21.93%; 6.23–37.61%; p < 0.001; I2 = 99.30%) and hepatitis E virus (18.29%; 11.72–24.86%; p < 0.001; I2 = 96.70%). However, there is a knowledge gap about the listed pathogens regarding the occurrence, transmission pathways, and rodent role in transmission dynamics at the human–animal–environment interface in Qatar. Further studies are required to explore the role of rodents in spreading zoonotic pathogens through the One Health framework, consisting of zoologists, ecologists, microbiologists, entomologists, veterinarians, and public health experts in this country.
Collapse
Affiliation(s)
- Md Mazharul Islam
- Department of Animal Resources, Ministry of Municipality and Environment, Doha P.O. Box 35081, Qatar; (K.A.E.), (M.A.)
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu Natal, Durban 4000, South Africa
- Correspondence: or (M.M.I.); (E.F.); Tel.: +974-660-64382 (M.M.I.); +974-440-70396 (E.F.)
| | - Elmoubashar Farag
- Ministry of Public Health, Doha P.O. Box 42, Qatar;
- Correspondence: or (M.M.I.); (E.F.); Tel.: +974-660-64382 (M.M.I.); +974-440-70396 (E.F.)
| | - Ahmad Mahmoudi
- Department of Biology, Faculty of Science, Urmia University, Urmia 5756151818, Iran;
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh;
| | - Ehsan Mostafavi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran 1316943551, Iran;
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan 6556153145, Iran
| | - Khalid A. Enan
- Department of Animal Resources, Ministry of Municipality and Environment, Doha P.O. Box 35081, Qatar; (K.A.E.), (M.A.)
- Department of Virology, Central Laboratory, The Ministry of Higher Education and Scientific Research, Khartum 7099, Sudan;
| | | | - Muzzamil Atta
- Department of Animal Resources, Ministry of Municipality and Environment, Doha P.O. Box 35081, Qatar; (K.A.E.), (M.A.)
- College of Animal Production, Bahri University, Khartoum 11111, Sudan
| | - Abdel Rahim M. El Hussein
- Department of Virology, Central Laboratory, The Ministry of Higher Education and Scientific Research, Khartum 7099, Sudan;
| | - Zilungile Mkhize-Kwitshana
- School of Life Sciences, College of Agriculture, Engineering & Science, University of KwaZulu Natal, Durban 4000, South Africa;
- South African Medical Research Council, Cape Town 7505, South Africa
| |
Collapse
|
10
|
Huy HL, Koizumi N, Nuradji H, Susanti, Noor SM, Dharmayanti NI, Haga T, Hirayama K, Miura K. Antimicrobial resistance in Escherichia coli isolated from brown rats and house shrews in markets, Bogor, Indonesia. J Vet Med Sci 2021; 83:531-534. [PMID: 33473051 PMCID: PMC8025418 DOI: 10.1292/jvms.20-0558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The prevalence of antimicrobial resistance (AMR) in small mammals dwelling in the city was used as an indicator of AMR bacteria in the environment. We captured
87 small mammals (79 brown rats and 8 house shrews) in four markets, Bogor, Indonesia in October 2019, and we obtained 20 AMR Escherichia coli
(E. coil) from 18 brown rats and two house shrews. Of these, eight isolates were determined to be multi-drug resistant (MDR) E.
coli, suggesting the potential contamination of AMR E. coli in the markets in Bogor, Indonesia, and that mammals, including humans,
are at risk of infection with AMR E. coli from environment.
Collapse
Affiliation(s)
- Hoang Le Huy
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Harimurti Nuradji
- Indonesian Research Center for Veterinary Science (BB Litvet), JI. RE Martadinata No. 30, Bogor, West Java, Indonesia 16114
| | - Susanti
- Indonesian Research Center for Veterinary Science (BB Litvet), JI. RE Martadinata No. 30, Bogor, West Java, Indonesia 16114
| | - Susan M Noor
- Indonesian Research Center for Veterinary Science (BB Litvet), JI. RE Martadinata No. 30, Bogor, West Java, Indonesia 16114
| | - Nlp Indi Dharmayanti
- Indonesian Research Center for Veterinary Science (BB Litvet), JI. RE Martadinata No. 30, Bogor, West Java, Indonesia 16114
| | - Takeshi Haga
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuhiro Hirayama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kozue Miura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
11
|
Sarkodie SA, Owusu PA. Impact of COVID-19 pandemic on waste management. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2021. [PMID: 32863738 DOI: 10.1607/s10668-020-00956-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The containment of the spread of COVID-19 pandemic and limitations on commercial activities, mobility and manufacturing sector have significantly affected waste management. Waste management is critical to human development and health outcomes, especially during the COVID-19 pandemic. The invaluable service provided by the waste management sector ensures that the unusual heaps of waste that poses health risks and escalate the spread of COVID-19 is avoided. In this study, we assess the impact of COVID-19 pandemic on waste management by observing lockdown and social distancing measures. We found that the quantity of waste increased across countries observing the social distancing measure of staying at home. The intensification of single-use products and panic buying have increased production and consumption, hence thwarting efforts towards reducing plastic pollution. However, several countries have thus far instituted policies to ensure sustainable management of waste while protecting the safety of waste handlers.
Collapse
|
12
|
Sarkodie SA, Owusu PA. Impact of COVID-19 pandemic on waste management. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2021; 23:7951-7960. [PMID: 32863738 PMCID: PMC7447614 DOI: 10.1007/s10668-020-00956-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/17/2020] [Indexed: 05/18/2023]
Abstract
The containment of the spread of COVID-19 pandemic and limitations on commercial activities, mobility and manufacturing sector have significantly affected waste management. Waste management is critical to human development and health outcomes, especially during the COVID-19 pandemic. The invaluable service provided by the waste management sector ensures that the unusual heaps of waste that poses health risks and escalate the spread of COVID-19 is avoided. In this study, we assess the impact of COVID-19 pandemic on waste management by observing lockdown and social distancing measures. We found that the quantity of waste increased across countries observing the social distancing measure of staying at home. The intensification of single-use products and panic buying have increased production and consumption, hence thwarting efforts towards reducing plastic pollution. However, several countries have thus far instituted policies to ensure sustainable management of waste while protecting the safety of waste handlers.
Collapse
|
13
|
Azimi T, Azimi L, Fallah F, Pourmand MR, Ostadtaghizadeh A, Abai MR, Rahimi Foroushani A. Detection and characterization of Enterobacteriaceae family members carried by commensal Rattus norvegicus from Tehran, Iran. Arch Microbiol 2021; 203:1321-1334. [PMID: 33386421 DOI: 10.1007/s00203-020-02126-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022]
Abstract
Wild rats are known to carry different microorganisms and are considered a reservoir of zoonotic pathogens worldwide. The urban rats were collected from five districts of Tehran and Gram-negative bacteria (GNB) were isolated from fecal samples and were identified using classical biochemical tests. The antibiotic susceptibility patterns of isolated bacteria were determined by Kirby-Bauer disk diffusion method, the results of which were interpreted in line with CLSI guideline. The frequency of antibiotic-resistant genes was identified using multiplex-PCR. Moreover, PCR method was used to identify the frequency of Escherichia coli O157:H7 and main categories of diarrheagenic E. coli including EPEC, ETEC, EIEC, EAEC, and STEC pathotypes. A total of 100 Rattus norvegicus were trapped and fecal samples were collected. Overall, 72 fecal samples were positive for GNB. E. coli (n = 46/72) had the highest frequency among the isolated GNB. Among E. coli isolates, the highest and lowest resistance rates belonged to ampicillin (56.5%) and ceftriaxone (0%), respectively. Klebsiella spp. was 100% resistant to imipenem, and streptomycin (0%) was the most effective antimicrobial agent on Klebsiella spp. Among surveyed genes, blaTEM (95.8%) and blaaadA-1 (58.3%) had the highest frequency, while blaKPC, and blaCMY-2 were not detected among Enterobacteriaceae. Herein, O157: H7 serotype was not detected and aEPEC (87%) was the most common pathotype detected. Results suggested that rodents might be a reservoir of antimicrobial-resistant pathogens and rodent control along with implementation of surveillance programs should be considered as a critical priority for urban health.
Collapse
Affiliation(s)
- Taher Azimi
- Department of Pathobiology, School of Public Health, and Biotechnology Research Center, Tehran University of Medical Sciences, Poursina St., Tehran, Iran
| | - Leila Azimi
- Pediatric Infection Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, and Biotechnology Research Center, Tehran University of Medical Sciences, Poursina St., Tehran, Iran.
| | - Abbas Ostadtaghizadeh
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Abai
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Pimentel Sobrinho C, Lima Godoi J, Neves Souza F, Graco Zeppelini C, Espirito Santo V, Carvalho Santiago D, Sady Alves R, Khalil H, Carvalho Pereira T, Hanzen Pinna M, Begon M, Machado Cordeiro S, Neves Reis J, Costa F. Prevalence of Diarrheagenic Escherichia coli (DEC) and Salmonella spp. with zoonotic potential in urban rats in Salvador, Brazil. Epidemiol Infect 2020; 149:e128. [PMID: 33213546 PMCID: PMC8167902 DOI: 10.1017/s095026882000285x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/15/2020] [Accepted: 09/16/2020] [Indexed: 11/29/2022] Open
Abstract
Studies evaluating the occurrence of enteropathogenic bacteria in urban rats (Rattus spp.) are scarce worldwide, specifically in the urban environments of tropical countries. This study aims to estimate the prevalence of diarrhoeagenic Escherichia coli (DEC) and Salmonella spp. with zoonotic potential in urban slum environments. We trapped rats between April and June 2018 in Salvador, Brazil. We collected rectal swabs from Rattus spp., and cultured for E. coli and Salmonella spp., and screened E. coli isolates by polymerase chain reaction to identify pathotypes. E. coli were found in 70% of Rattus norvegicus and were found in four Rattus rattus. DEC were isolated in 31.3% of the 67 brown rats (R. norvegicus). The pathotypes detected more frequently were shiga toxin E. coli in 11.9%, followed by atypical enteropathogenic E. coli in 10.4% and enteroinvasive E. coli in 4.5%. From the five black rats (R. rattus), two presented DEC. Salmonella enterica was found in only one (1.4%) of 67 R. norvegicus. Our findings indicate that both R. norvegicus and R. rattus are host of DEC and, at lower prevalence, S. enterica, highlighting the importance of rodents as potential sources of pathogenic agents for humans.
Collapse
Affiliation(s)
| | - J. Lima Godoi
- Biology Institute, Federal University of Bahia, UFBA, Salvador, Brazil
| | - F. Neves Souza
- Biology Institute, Federal University of Bahia, UFBA, Salvador, Brazil
| | | | - V. Espirito Santo
- Collective Health Institute, Federal University of Bahia, UFBA, Salvador, Brazil
| | - D. Carvalho Santiago
- Collective Health Institute, Federal University of Bahia, UFBA, Salvador, Brazil
| | - R. Sady Alves
- School of Veterinary Medicine, Federal University of Bahia, UFBA, Salvador, Brazil
| | - H. Khalil
- Collective Health Institute, Federal University of Bahia, UFBA, Salvador, Brazil
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - T. Carvalho Pereira
- Collective Health Institute, Federal University of Bahia, UFBA, Salvador, Brazil
| | - M. Hanzen Pinna
- School of Veterinary Medicine, Federal University of Bahia, UFBA, Salvador, Brazil
| | - M. Begon
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - J. Neves Reis
- School of Pharmacy, Federal University of Bahia, UFBA, Salvador, Brazil
| | - F. Costa
- Collective Health Institute, Federal University of Bahia, UFBA, Salvador, Brazil
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
15
|
Ong KH, Khor WC, Quek JY, Low ZX, Arivalan S, Humaidi M, Chua C, Seow KLG, Guo S, Tay MYF, Schlundt J, Ng LC, Aung KT. Occurrence and Antimicrobial Resistance Traits of Escherichia coli from Wild Birds and Rodents in Singapore. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155606. [PMID: 32756497 PMCID: PMC7432465 DOI: 10.3390/ijerph17155606] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/03/2022]
Abstract
Antimicrobial resistance (AMR) in Escherichia coli (E. coli) poses a public health concern worldwide. Wild birds and rodents, due to their mobility, are potential vehicles for transmission of AMR bacteria to humans. Ninety-six wild birds’ faecal samples and 135 rodents’ droppings samples were collected and analysed in 2017. Forty-six E. coli isolates from wild birds and rodents were subjected to AMR phenotypic and genotypic characterisation. The proportion of E. coli isolates resistant to at least one of the antimicrobials tested from wild birds (80.8%) was significantly higher than that of isolates from rodents (40.0%). The proportion of E. coli isolates resistant to each antimicrobial class for wild birds was 3.8% to 73.1% and that for rodents was 5.0% to 35.0%. Six out of 26 E. coli isolates from wild birds (23.1%) and two out of 20 (10.0%) isolates from rodents were multi-drug resistant (MDR) strains. These MDR E. coli isolates were detected with various antimicrobial resistance genes such as blaTEM-1B and qnrS1 and could be considered as part of the environmental resistome. Findings in this study suggested that wild birds and rodents could play a role in disseminating antimicrobial resistant E. coli, and this underscores the necessity of environment management and close monitoring on AMR bacteria in wild birds and rodents to prevent spreading of resistant organisms to other wildlife animals and humans.
Collapse
Affiliation(s)
- Kar Hui Ong
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore; (K.H.O.); (J.Y.Q.); (Z.X.L.); (S.A.); (M.H.); (C.C.); (K.T.A.)
- National Centre for Food Science, Singapore Food Agency, Singapore 608550, Singapore;
| | - Wei Ching Khor
- National Centre for Food Science, Singapore Food Agency, Singapore 608550, Singapore;
| | - Jing Yi Quek
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore; (K.H.O.); (J.Y.Q.); (Z.X.L.); (S.A.); (M.H.); (C.C.); (K.T.A.)
| | - Zi Xi Low
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore; (K.H.O.); (J.Y.Q.); (Z.X.L.); (S.A.); (M.H.); (C.C.); (K.T.A.)
| | - Sathish Arivalan
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore; (K.H.O.); (J.Y.Q.); (Z.X.L.); (S.A.); (M.H.); (C.C.); (K.T.A.)
| | - Mahathir Humaidi
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore; (K.H.O.); (J.Y.Q.); (Z.X.L.); (S.A.); (M.H.); (C.C.); (K.T.A.)
| | - Cliff Chua
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore; (K.H.O.); (J.Y.Q.); (Z.X.L.); (S.A.); (M.H.); (C.C.); (K.T.A.)
| | - Kelyn L. G. Seow
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; (K.L.G.S.); (S.G.); (M.Y.F.T.); (J.S.)
- Nanyang Technological University Food Technology Centre (NAFTEC), Singapore 637459, Singapore
| | - Siyao Guo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; (K.L.G.S.); (S.G.); (M.Y.F.T.); (J.S.)
- Nanyang Technological University Food Technology Centre (NAFTEC), Singapore 637459, Singapore
| | - Moon Y. F. Tay
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; (K.L.G.S.); (S.G.); (M.Y.F.T.); (J.S.)
- Nanyang Technological University Food Technology Centre (NAFTEC), Singapore 637459, Singapore
| | - Joergen Schlundt
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; (K.L.G.S.); (S.G.); (M.Y.F.T.); (J.S.)
- Nanyang Technological University Food Technology Centre (NAFTEC), Singapore 637459, Singapore
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore; (K.H.O.); (J.Y.Q.); (Z.X.L.); (S.A.); (M.H.); (C.C.); (K.T.A.)
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Correspondence:
| | - Kyaw Thu Aung
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore; (K.H.O.); (J.Y.Q.); (Z.X.L.); (S.A.); (M.H.); (C.C.); (K.T.A.)
- National Centre for Food Science, Singapore Food Agency, Singapore 608550, Singapore;
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; (K.L.G.S.); (S.G.); (M.Y.F.T.); (J.S.)
- Nanyang Technological University Food Technology Centre (NAFTEC), Singapore 637459, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
16
|
Prevalence and Genetic Diversity of C. Jejuni Isolated from Broilers and their Environment Using flaA-RFLP Typing and MLST Analysis. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Campylobacter is highly diverse genetically and also undergoes frequent intraspecific recombination. A major source of campylobacteriosis, which is transmitted to humans is found in poultry. The assessment of the genetic diversity among Campylobacter population is critical to our understanding of the epidemiology. The genetic diversity of Campylobacter jejuni isolates in broilers and their environment were investigated by flaA-restriction fragment length polymorphism (RFLP) and multilocus sequence typing (MLST). The study revealed that 92.3% of the examined broiler flocks were contaminated with Campylobacter spp. A total number of 35 different flaA types defined by flaA-RFLP were found in 448 C. jejuni isolates originated from broilers, litter, puddles, zones, anteroom and wild birds. The most dominant flaA type was XXV. MLST defined 20 sequence types (STs) belonging to 10 clonal complexes (CCs). Among all the STs 9 isolates (15%) were consigned to 2 different STs (ST-7413 and ST-4800), which could not be assigned. The most common CCs were ST-21 and ST-179. The ST-21 CC was common in broilers and environment (puddle water and concentric zones) and the ST-179 CC was specific to wild birds, but also was found in puddle water and concentric zones.
Collapse
|
17
|
LE Huy H, Koizumi N, Ung TTH, LE TT, Nguyen HLK, Hoang PVM, Nguyen CN, Khong TM, Hasebe F, Haga T, LE MTQ, Hirayama K, Miura K. Antibiotic-resistant Escherichia coli isolated from urban rodents in Hanoi, Vietnam. J Vet Med Sci 2020; 82:653-660. [PMID: 32224554 PMCID: PMC7273608 DOI: 10.1292/jvms.19-0697] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global public health concern for both clinical and veterinary medicine. Rodent feces are one of the major infectious sources of zoonotic pathogens including AMR bacteria. So far, there are limited studies reported focused on Escherichia coli isolated in rodent feces from rural and suburban areas in Vietnam. In this study, we investigated the prevalence of antimicrobial resistance in E. coli isolated from feces samples of 144 urban rodents caught in Hanoi, Vietnam. A total of 59 AMR E. coli was isolated from urban rodents of which 42 were multidrug-resistant (MDR) isolates (resistance to at least three classes of antimicrobial agents), four were extended-spectrum β-lactamase (ESBL) producing isolates and five were colistin-resistant isolates. The highest prevalence of the resistance was against ampicillin (79.7%: 47/59), followed by tetracycline (78.0%: 46/59), nalidixic acid (67.8%: 40/59), sulfamethoxazole-trimethoprim (59.3%: 35/59), chloramphenicol (45.8%: 27/59), ciprofloxacin (44.1%: 26/59), cefotaxime (30.5%: 18/59), cefodizime (23.7%: 14/59), amoxicillin-clavulanate (22.0%: 13/59), and gentamicin (22.0%: 13/59). With regard to the virulence genes associated with diarrheagenic E. coli (DEC), only aaiC gene found in one AMR isolate. In general, the use of antimicrobials does not aim to treat rodents except for companion animals. However, our findings show the carriage of AMR and MDR E. coli in urban rodents and highlight the potential risk of rodents in Hanoi acting as a reservoir of transferable MDR E. coli, including ESBL-producing, colistin-resistant E. coli, and virulence-associated with DEC.
Collapse
Affiliation(s)
- Hoang LE Huy
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | - Thanh Thi LE
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | | | | | - Cam Nhat Nguyen
- Hanoi Center for Disease Control, No 70 Nguyen Chi Thanh, Dong Da district, Hanoi 100000, Vietnam
| | - Tuan Minh Khong
- Hanoi Center for Disease Control, No 70 Nguyen Chi Thanh, Dong Da district, Hanoi 100000, Vietnam
| | - Futoshi Hasebe
- Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| | - Takeshi Haga
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mai Thi Quynh LE
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Kazuhiro Hirayama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kozue Miura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
18
|
Zhong XS, Li YZ, Ge J, Xiao G, Mo Y, Wen YQ, Liu JP, Xiong YQ, Qiu M, Huo ST, Cheng MJ, Chen Q. Comparisons of microbiological characteristics and antibiotic resistance of Klebsiella pneumoniae isolates from urban rodents, shrews, and healthy people. BMC Microbiol 2020; 20:12. [PMID: 31937244 PMCID: PMC6961239 DOI: 10.1186/s12866-020-1702-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
Background The comparisons of molecular characterization and antibiotic resistance of Klebsiella pneumoniae (KP) isolates from humans and other animal hosts are not well studied. Our goal was to compare the molecular epidemiology of KP strains that were isolated from urban rodents, shrews, and healthy people. Results K. pneumoniae (KP) isolates were isolated from fecal samples of rodents, shrews and healthy adults in 2015 in southern China. In total, 465 fecal samples were collected, of which 85 from rodents, 105 from shrews, and 275 from healthy adults. Antimicrobial susceptibility and production of extended-spectrum β-lactamases (ESBL) of the isolates were tested. PCR-based methods were used to detect specific genes, including ESBL genes (blaTEM, blaSHV, and blaCTX-M) in ESBL-producing isolates, capsular serotypes (K1, K2, K5, K20, K54, and K57) in hypervirulent KPs (hvKPs), and virulence genes (magA, wcaG, rmpA, uge, kfu, and aerobactin) in hvKP isolates. Multilocus sequence type (MLST) and pulsed-field gel electrophoresis (PFGE) were performed to exclude the homology of these isolates. The carriage rate of KP in urban rodents and shrews (78.42%) was higher than that in healthy adults (66.18%) (χ2 = 8.206, P = 0.004). The prevalence rates of ESBL-producing isolates among rodents, shrews, and humans were 7.94, 12.79, and 17.03%, respectively. The positive rates of CTX-M, TEM and SHV types in ESBL-producing isolates were 29.79, 27.66, and 17.02%, respectively. Serotype K1, K5, K20, and K57 were detected in both small mammals and humans. PFGE typing revealed thirty-six clusters. PFGE cluster A was clustered by samples of shrews and healthy adult, with a similarity of 88.4%. MLST typing revealed thirty-eight types. ST23 and ST35 were detected in samples of shrews and healthy adults. ST37 was detected in samples of 2 rodents and a healthy adult. Conclusions Overlapping serotypes of hvKP were observed in both the animals and humans. The same PFGE or MLST types were also found in isolates derived humans, rodents and shrews. Therefore, urban rodents and shrews might play a certain role in the transmission of drug-resistant and hypervirulent KP.
Collapse
Affiliation(s)
- Xue-Shan Zhong
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Zhi Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jing Ge
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Gang Xiao
- Department of clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Yun Mo
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Qi Wen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jing-Ping Liu
- Department of clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Yi-Quan Xiong
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Min Qiu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Ting Huo
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Ming-Ji Cheng
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
19
|
Namroodi S. Detection of Zoonotic Antibiotic Resistant Salmonella spp. Carrying Virulence Genes in Rural Mus musculus, Golestan Province, North of Iran. INTERNATIONAL JOURNAL OF EPIDEMIOLOGIC RESEARCH 2019. [DOI: 10.15171/ijer.2019.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background and aims: Salmonella spp. infect cold-blooded and warm-blooded animals and may cause a worldwide zoonotic disease, salmonellosis, in infected animals. Rodents can be Salmonella carriers without any signs of salmonellosis. The frequency of salmonella contamination, the presence of virulence genes (SpvR and SpvB) and antibiotic resistance pattern of isolated Salmonella were studied in rural Mus musculus to reveal the possible role of them in Salmonella dissemination in Golestan province. Methods: A total of 190 wet rectal swabs of M. musculus were obtained from rural areas of Golestan province with different climate conditions. The swabs were cultured and positive samples were serotyped and their antibiotic resistance patterns were studied. The presence of Salmonella and virulence genes was analyzed by SpvR and SpvB genes primers, respectively. Results: Salmonella spp. were detected in 15 (7%) of 190 fecal samples by bacterial culture and PCR. S. enteritidis (n=9) and S. typhimurium (n=6) were identified. The highest and lowest frequencies were detected in humid (13.1%) and arid areas (3.1%), respectively. SpvR and SpvB genes were diagnosed in 10 of 15 (66.6%) isolated Salmonella. The highest resistance of detected Salmonella spp. was observed against streptomycin (53%). All the isolates were sensitive to chloramphenicol, gentamicin and trimethoprim. Conclusion: The Salmonella contamination in sampled house mice indicates that native people should be made aware of the risk of Salmonella infection and possible ways of salmonella transmission through rodents. In addition, the application of appropriate therapeutic approaches to prevent the spread of antibiotic resistant Salmonella is recommended.
Collapse
Affiliation(s)
- Somayeh Namroodi
- Department of Environmental sciences, Faculty of fisheries and environmental Sciences, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan, Iran
| |
Collapse
|
20
|
Kumar N, Mohan K, Georges K, Dziva F, Adesiyun AA. Prevalence, Serovars, and Antimicrobial Resistance of Salmonella in Cecal Samples of Chickens Slaughtered in Pluck Shops in Trinidad. J Food Prot 2019; 82:1560-1567. [PMID: 31424291 DOI: 10.4315/0362-028x.jfp-18-553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of the study was to determine the prevalence and zonal distribution of Salmonella serotypes in poultry and to determine the antimicrobial resistance profile of Salmonella isolates. A total of 1,503 cecal samples of poultry were randomly collected from 33 pluck shops across Trinidad. Isolation and identification of Salmonella followed standard methods, and the disk diffusion method was used to determine resistance of isolates to 14 antimicrobial agents. Ninety-one (6.1%) of the 1,503 samples collected from four zones were positive for Salmonella. The frequency of isolation of Salmonella from chicken ceca (6.5%) was higher than that detected in duck ceca (5.1%), but the difference was not statistically significant (P > 0.05). Ten serotypes were detected, with Salmonella Molade, Salmonella enterica subsp. enterica I, and Salmonella Typhimurium the most prevalent at 56.0, 11.0, and 8.8%, respectively. The highest frequency of isolation of Salmonella was recorded in the northeast zone (59.3%). All 91 isolates exhibited resistance to at least 1 of the 14 antimicrobial agents. The highest frequency of resistance was exhibited to ampicillin (51.0%), kanamycin (49.5%), and streptomycin (37.4%). A total of 22 resistance patterns were exhibited by the 91 isolates of Salmonella, and 13 isolates (14.3%) exhibited multiple drug resistance. The results emphasize the need to implement hygienic practices to reduce the levels of contamination at poultry pluck shops and the need for prudent use of antimicrobial agents in the poultry production system in Trinidad.
Collapse
Affiliation(s)
- Nitu Kumar
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of The West Indies, St. Augustine, Trinidad and Tobago (ORCID: https://orcid.org/0000-0001-9470-9421 [A.A.A.])
| | - Krishna Mohan
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of The West Indies, St. Augustine, Trinidad and Tobago (ORCID: https://orcid.org/0000-0001-9470-9421 [A.A.A.])
| | - Karla Georges
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of The West Indies, St. Augustine, Trinidad and Tobago (ORCID: https://orcid.org/0000-0001-9470-9421 [A.A.A.])
| | - Francis Dziva
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of The West Indies, St. Augustine, Trinidad and Tobago (ORCID: https://orcid.org/0000-0001-9470-9421 [A.A.A.])
| | - Abiodun A Adesiyun
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of The West Indies, St. Augustine, Trinidad and Tobago (ORCID: https://orcid.org/0000-0001-9470-9421 [A.A.A.])
| |
Collapse
|
21
|
Yusof MA, Mohd-Taib FS, Ishak SN, Md-Nor S, Md-Sah SA, Mohamed NZ, Azhari NN, Neela V, Sekawi Z. Microhabitat Factors Influenced the Prevalence of Pathogenic Leptospira spp. in Small Mammal Host. ECOHEALTH 2019; 16:260-274. [PMID: 31124020 DOI: 10.1007/s10393-019-01419-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 05/12/2023]
Abstract
Leptospirosis, a widespread zoonotic disease, is a public health problem, especially in major urban centres, and is mainly reported to be associated with rats. In Malaysia, focus has been primarily given to the Leptospira prevalence in rodents per se, but there is lack of information on the microhabitat structure of the outbreak areas. We aimed to determine the diversity of small mammal species, microhabitat types, and their prevalence of pathogenic Leptospira spp. in the outbreak areas, which were categorized as urban, semi-urban, and recreational forests. Sampling involved deploying 100 to 300 live traps at each study site. Kidney samples were extracted from selected individuals, for screening of pathogenic Leptospira spp. by PCR. Out of 537 individuals from 15 small mammal species captured, 4 species were recorded from urban, 13 from semi-urban, and 11 from recreational forest sites. From 389 individuals screened, 58 were tested positive for pathogenic Leptospira. Recreational forests recorded the highest prevalence with 19.4% (n = 93), followed by urban, 16.6% (n = 163) and semi-urban sites with 9.8% (n = 133). Seven rodent species were tested positive for pathogenic Leptospira from all areas. R. norvegicus was found to harbour the highest prevalence (66.7%) in urban, R. rattus (53.8%) in semi-urban, whereby M. whiteheadi (44.4%) in recreational forest sites. Microhabitat analysis revealed that rubbish quantity contributed especially strongly to a high prevalence of Leptospira. This study contributes to understanding of the host and microhabitat preferences of Leptospira, which is important in controlling the spread of this disease in human's landscapes.
Collapse
Affiliation(s)
| | - Farah Shafawati Mohd-Taib
- Wildlife Research Group, Center for Biological Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
| | - Siti Nabilah Ishak
- Wildlife Research Group, Center for Biological Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Shukor Md-Nor
- Wildlife Research Group, Center for Biological Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | | | - Nor Zalipah Mohamed
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Nurul Natasya Azhari
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Vasanthakumari Neela
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
22
|
Saengthongpinit C, Sratongno K, Phimpraphai W, Tulayakul P, Morand S, de Garine-Wichatitsky M. Antimicrobial Resistance of Salmonella spp. Isolates and Heavy Metal Traces from Rodent Meat Purchased from Roadside Markets, Central Thailand. Foodborne Pathog Dis 2019; 16:687-695. [PMID: 31140877 DOI: 10.1089/fpd.2018.2609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although game meat consumption is widespread across the globe, involving a great diversity of species in very different ecological and sociocultural environments, the safety of wild meat products is rarely assessed routinely. We conducted a survey to evaluate the safety of two rodents products (Rattus tanezumi and Bandicota indica) purchased from roadside markets in central Thailand. Total aerobic bacteria and Escherichia coli counts measured were above Thai poultry product standards for 83.3% and 100% of the samples, respectively (n = 108), although there was no difference between rat species (analysis of variance [ANOVA], p > 0.05). Salmonella spp. were isolated from 32% of the swabs collected (67/208), including 19 different serovars. All strains were resistant or partially resistant to at least 2 of the 16 antibiotics tested, with levels of resistance varying greatly among antibiotics (e.g., 97% of strains sensitive to ciprofloxacin and 98.5% of strains resistant to cloxacillin). Detectable traces of Cd and Pb were found in 98% and 46% of the samples analyzed, respectively (n = 61). Pb and Cd concentrations measured in the kidneys of R. tanezumi were significantly higher than in the liver and muscles and significantly higher than B. indica muscles and kidneys but not liver (ANOVA, p < 0.05). These results highlight potential health hazards that may be associated with rodent-meat consumption, including contamination by coliform bacteria, multiresistant Salmonella spp. strains, and heavy metals. The significance of these results for public health cannot be determined precisely in the absence of appropriate standards, and information gaps remain regarding the frequency of rodent-meat consumption and the origin of bacterial and heavy metal contaminations (i.e., capture environment or during carcass handling and processing). We suggest that appropriate information and training on best hygienic practices for preparing, cooking, and preserving rodent meat should be provided to the producers and to the consumers.
Collapse
Affiliation(s)
| | | | | | | | - Serge Morand
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Michel de Garine-Wichatitsky
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand.,CIRAD, UMR ASTRE, Montpellier, France.,ASTRE, Univ Montpellier, CIRAD, INRA, Bangkok, Thailand
| |
Collapse
|
23
|
Ayyal NM, Abbas ZA, Karim AJ, Abbas ZM, Al-Salihi KA, Khalaf JM, Mahmood DD, Mohammed EA, Jumaa RS, Abdul-Majeed DI. Bacterial isolation from internal organs of rats ( Rattus rattus) captured in Baghdad city of Iraq. Vet World 2019; 12:119-125. [PMID: 30936664 PMCID: PMC6431815 DOI: 10.14202/vetworld.2019.119-125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022] Open
Abstract
Aim Rats are accused in disseminating many zoonotic diseases. This study aimed to isolate and identify bacteria from internal organs of rats captured in Baghdad City, Iraq. Materials and Methods A total of 120 black rats (R. rattus) were trapped from different areas in Baghdad city. Rats were kept in individual plastic cages for 3 h before euthanizing. Deep pharyngeal swab, intestinal content, urine, and pieces of the liver and spleen, lung, kidney, and brain were obtained aseptically. The specimens were inoculated into peptone water and incubated at 37°C for 24 h for enrichment. A loopful of each specimen was then subcultured onto MacConkey Agar, Blood Agar, and Mannitol Salt Agar. CHROMagar O157 H7 and CHROMagar Listeria were used to detect Escherichia coli 157:7 and Listeria spp., respectively. Biochemical tests on analytical profile index, microscopic examination, and commercial kit for latex agglutination test for serotyping E. coli O157:H7 were used. Results Mixed bacterial isolates were recorded as 116, 52, 36, 28, 18, 6, and 4 from intestinal contents, deep pharyngeal, liver and spleen, urine, lung, brain, and kidney, respectively. Microorganisms included E. coli, Staphylococcus aureus, Streptococcus spp., Bacillus spp., Pseudomonas aeruginosa, Citrobacter freundii, Proteus vulgaris, E. coli O157:H7, Enterobacter cloacae, Listeria spp., Klebsiella spp., Ochrobactrum anthropi, Aeromonas spp., Brucella spp., Pseudomonas fluorescens, Escherichia fergusonii, Micrococcus spp., Morganella spp., Proteus mirabilis, Pseudomonas luteola, and Streptobacillus spp. The highest bacterial prevalence (88; 73.33%) was recorded for E. coli, where 68 isolates were identified from the intestinal contents. Of these, four isolates were E. coli O157:H7. Conclusion Rats are important carriers and transmitters of a number of pathogens and can disseminate these microorganisms to humans and animals.
Collapse
Affiliation(s)
- Nagham Mohammed Ayyal
- Unit of Zoonotic Diseases, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Zainab Abdulzahra Abbas
- Unit of Zoonotic Diseases, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Abdulkarim Jafar Karim
- Unit of Zoonotic Diseases, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Zainab Majid Abbas
- Department of Pathological Analysis, Babylon Technical Institute, Al-Furat Al-Awsat Technical University, Babylon, Iraq
| | - Karima Akool Al-Salihi
- Department of Internal and Preventive Medicine, College of Veterinary Medicine, Al-Muthanna University, Al-Muthanna, Iraq
| | - Jenan Mahmood Khalaf
- Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Dunya Dhafir Mahmood
- Unit of Zoonotic Diseases, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Eman Abdullah Mohammed
- Department of Parasitology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Rawaa Saladdin Jumaa
- Department of Microbiology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
24
|
Rawat N, Maansi, Kumar D, Upadhyay AK. Virulence typing and antibiotic susceptibility profiling of thermophilic Campylobacters isolated from poultry, animal, and human species. Vet World 2018; 11:1698-1705. [PMID: 30774261 PMCID: PMC6362333 DOI: 10.14202/vetworld.2018.1698-1705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/11/2018] [Indexed: 01/23/2023] Open
Abstract
Background and Aim: Campylobacteriosis finds its place among the four important global foodborne illnesses. The disease, though self-limiting, needs antibacterial therapy in extraintestinal complications. Therefore, the present study was designed to estimate the prevalence of thermophilic Campylobacters in poultry, animals, and humans of the Kumaon region of Uttarakhand. Materials and Methods: A total of 609 samples comprising of poultry ceca (n=116), poultry droppings (n=203), and feces of pigs (n=71), cattle (n=61), sheep (n=19), goat (n=17), human beings (n=88), and laboratory animals (n=34) (rats, rabbits, and guinea pigs) were collected. The thermophilic Campylobacters, Campylobacter jejuni and Campylobacter coli were confirmed using multiplex polymerase chain reaction. The isolates were also screened for the presence of virulence genes, and their antibiotic susceptibility testing was done against eight antibiotics. Results: An overall prevalence of 6.24% was revealed with highest from poultry ceca (15.52%), followed by poultry droppings (5.91%), cattle feces (4.92%), human stools (3.40%), and pig feces (2.82%). The virulence genes, namely cadF, flaA, virB11, and pldA, were present in 38 (100%), 37 (97.37%), 7 (18.42%), and 14 (36.84%) isolates, respectively. All the isolates were resistant to nalidixic acid, while all were sensitive to erythromycin and co-trimoxazole. Conclusion: It was concluded that the animals and humans in the region harbored the thermophilic Campylobacters which may contribute to the human illness. Resistance shown among the isolates may complicate the antimicrobial therapy.
Collapse
Affiliation(s)
- Neelam Rawat
- Department of Veterinary Public Health and Epidemiology, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Maansi
- Department of Veterinary Public Health and Epidemiology, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Deepak Kumar
- Department of Veterinary Public Health and Epidemiology, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - A K Upadhyay
- Department of Veterinary Public Health and Epidemiology, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
25
|
Persad AK, LeJeune J. A Review of Current Research and Knowledge Gaps in the Epidemiology of Shiga Toxin-Producing Escherichia coli and Salmonella spp. in Trinidad and Tobago. Vet Sci 2018; 5:E42. [PMID: 29673213 PMCID: PMC6024509 DOI: 10.3390/vetsci5020042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/22/2023] Open
Abstract
Salmonella and Shiga toxin-producing Escherichia coli are two of the main causes of foodborne disease globally, and while they have been implicated as possible causes of foodborne disease within the Caribbean region, the actual incidence is unknown. Trinidad and Tobago, one of the larger countries in the Caribbean, has an estimated annual foodborne disease burden of over 100,000 cases and, similar to other countries, the etiology of most of these cases is unknown. Both pathogens can reside as part of the normal gastrointestinal microflora of many wild and domestic animals, with animals acting as reservoirs, spillover hosts, or dead-end hosts. Carriage in animal species can be asymptomatic or, in the case of Salmonella in particular, there may be clinical manifestation in animals, which resemble the disease seen in humans. In this review, we will focus on the epidemiology of these two foodborne pathogens in Trinidad and Tobago and identify any knowledge gaps in the published literature. The filling of this critical knowledge void is essential for the development and implementation of appropriate mechanisms to reduce the dissemination and transmission of these pathogens, not only in Trinidad and Tobago, but also in the wider Caribbean.
Collapse
Affiliation(s)
- Anil K Persad
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Eric Williams Medical Sciences Complex, Mount Hope, Trinidad and Tobago.
| | - Jeffrey LeJeune
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA.
| |
Collapse
|
26
|
Alves MBR, Fonseca BB, Melo RT, Mendonça EP, Nalevaiko PC, Girão LC, Monteiro GP, Silva PL, Rossi DA. Feed can be a source of Campylobacter jejuni infection in broilers. Br Poult Sci 2016; 58:46-49. [DOI: 10.1080/00071668.2016.1258691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- M. B. R. Alves
- Laboratório de Biotecnologia Animal Aplicada, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - B. B. Fonseca
- Laboratório de Biotecnologia Animal Aplicada, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - R. T. Melo
- Laboratório de Biotecnologia Animal Aplicada, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - E. P. Mendonça
- Laboratório de Biotecnologia Animal Aplicada, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - P. C. Nalevaiko
- Laboratório de Biotecnologia Animal Aplicada, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - L. C. Girão
- Laboratório de Biotecnologia Animal Aplicada, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - G. P. Monteiro
- Laboratório de Biotecnologia Animal Aplicada, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - P. L. Silva
- Laboratório de Biotecnologia Animal Aplicada, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - D. A. Rossi
- Laboratório de Biotecnologia Animal Aplicada, Universidade Federal de Uberlândia, Uberlândia, Brasil
| |
Collapse
|
27
|
Guerra MMM, de Almeida AM, Willingham AL. An overview of food safety and bacterial foodborne zoonoses in food production animals in the Caribbean region. Trop Anim Health Prod 2016; 48:1095-108. [PMID: 27215411 PMCID: PMC4943981 DOI: 10.1007/s11250-016-1082-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/09/2016] [Indexed: 11/26/2022]
Abstract
Foodborne diseases (FBDs) in the Caribbean have a high economic burden. Public health and tourism concerns rise along with the increasing number of cases and outbreaks registered over the last 20 years. Salmonella spp., Shigella spp., and Campylobacter spp. are the main bacteria associated with these incidents. In spite of undertaking limited surveillance on FBD in the region, records related to bacterial foodborne zoonoses in food-producing animals and their associated epidemiologic significance are poorly documented, giving rise to concerns about the importance of the livestock, food animal product sectors, and consumption patterns. In this review, we report the available published literature over the last 20 years on selected bacterial foodborne zoonoses in the Caribbean region and also address other food safety-related aspects (e.g., FBD food attribution, importance, surveillance), mainly aiming at recognizing data gaps and identifying possible research approaches in the animal health sector.
Collapse
Affiliation(s)
| | - Andre M de Almeida
- Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts and Nevis.
| | - Arve Lee Willingham
- Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts and Nevis
| |
Collapse
|
28
|
Tessier C, Parama Atiana L, Lagadec E, Le Minter G, Denis M, Cardinale E. Wild fauna as a carrier of Salmonella in Reunion Island: Impact on pig farms. Acta Trop 2016; 158:6-12. [PMID: 26829358 DOI: 10.1016/j.actatropica.2016.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/24/2016] [Accepted: 01/26/2016] [Indexed: 12/19/2022]
Abstract
Salmonellosis is an economic burden to the livestock industry in Reunion Island. In this study, we wanted to improve our understanding of Salmonella epidemiology by studying the wild fauna of Reunion Island. We assessed Salmonella diversity in small non-flying mammals, birds and cockroaches in order to evaluate their potential role in the epidemiology of Salmonella. A total of 268 samples were collected from cockroaches, small mammals and birds. The bacteriological analyses revealed that 11.7% of non-flying mammals and 25% of cockroaches tested were Salmonella infected; two wild bird species were also detected positive. The 128 Salmonella isolates were distributed in fifteen serotypes and the most predominant were S. 4,[5],12:i:- (21.9% of positive samples) followed by S. Enteritidis (15.6%), S. Typhimurium (15.6%), S. Infantis (12.5%) and S. Weltevreden (12.5%). A total of 27 XbaI profiles were identified using pulsed-field gel electrophoresis. Comparison of these Salmonella strains with our collection of Salmonella isolated from pigs and pig farm environments at the same period revealed 14 strains in common between wild fauna and pigs, especially for cockroaches. Our results suggest that wild fauna of Reunion Island could be infected by strains of Salmonella also isolated from pigs or pig environment. They may play a role in both persistence and spreading of Salmonella and therefore, could be a source of infection in pig farms. Pest control against cockroaches could be a helpful tool in the reduction of Salmonella infection of pigs, limiting contacts between wild fauna and both pigs and pig environment. Special attention should be paid to S. 4,[5],12:i:- since it was predominant in Reunion Island's wild fauna and pigs and was the third most frequently reported serotype in human salmonellosis in Europe.
Collapse
|
29
|
Kosoy M, Khlyap L, Cosson JF, Morand S. Aboriginal and invasive rats of genus Rattus as hosts of infectious agents. Vector Borne Zoonotic Dis 2015; 15:3-12. [PMID: 25629775 DOI: 10.1089/vbz.2014.1629] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
From the perspective of ecology of zoonotic pathogens, the role of the Old World rats of the genus Rattus is exceptional. The review analyzes specific characteristics of rats that contribute to their important role in hosting pathogens, such as host-pathogen relations and rates of rat-borne infections, taxonomy, ecology, and essential factors. Specifically the review addresses recent taxonomic revisions within the genus Rattus that resulted from applications of new genetic tools in understanding relationships between the Old World rats and the infectious agents that they carry. Among the numerous species within the genus Rattus, only three species-the Norway rat (R. norvegicus), the black or roof rat (R. rattus), and the Asian black rat (R. tanezumi)-have colonized urban ecosystems globally for a historically long period of time. The fourth invasive species, R. exulans, is limited to tropical Asia-Pacific areas. One of the points highlighted in this review is the necessity to discriminate the roles played by rats as pathogen reservoirs within the land of their original diversification and in regions where only one or few rat species were introduced during the recent human history.
Collapse
Affiliation(s)
- Michael Kosoy
- 1 Centers for Disease Control and Prevention , Division of Vector-Borne Diseases, Fort Collins, Colorado
| | | | | | | |
Collapse
|
30
|
Hodzic E. Lyme Borreliosis: Is there a preexisting (natural) variation in antimicrobial susceptibility among Borrelia burgdorferi strains? Bosn J Basic Med Sci 2015; 15:1-13. [PMID: 26295288 DOI: 10.17305/bjbms.2015.594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 12/31/2022] Open
Abstract
The development of antibiotics changed the world of medicine and has saved countless human and animal lives. Bacterial resistance/tolerance to antibiotics have spread silently across the world and has emerged as a major public health concern. The recent emergence of pan-resistant bacteria can overcome virtually any antibiotic and poses a major problem for their successful control. Selection for antibiotic resistance may take place where an antibiotic is present: in the skin, gut, and other tissues of humans and animals and in the environment. Borrelia burgdorferi, the etiological agents of Lyme borreliosis, evades host immunity and establishes persistent infections in its mammalian hosts. The persistent infection poses a challenge to the effective antibiotic treatment, as demonstrated in various animal models. An increasingly heterogeneous subpopulation of replicatively attenuated spirochetes arises following treatment, and these persistent antimicrobial tolerant/resistant spirochetes are non-cultivable. The non-cultivable spirochetes resurge in multiple tissues at 12 months after treatment, with B. burgdorferi-specific DNA copy levels nearly equivalent to those found in shame-treated experimental animals. These attenuated spirochetes remain viable, but divide slowly, thereby being tolerant to antibiotics. Despite the continued non-cultivable state, RNA transcription of multiple B. burgdorferi genes was detected in host tissues, spirochetes were acquired by xenodiagnostic ticks, and spirochetal forms could be visualized within ticks and mouse tissues. A number of host cytokines were up- or down-regulated in tissues of both shame- and antibiotic-treated mice in the absence of histopathology, indicating a lack of host response to the presence of antimicrobial tolerant/resistant spirochetes.
Collapse
Affiliation(s)
- Emir Hodzic
- Real-Time PCR Research & Diagnostics Core Facility, School of Veterinary Medicine, University of California, Davis.
| |
Collapse
|
31
|
Mbehang Nguema PP, Tsuchida S, Ushida K. Bacteria culturing and isolation under field conditions of Moukalaba-Doudou National Park, Gabon, and preliminary survey on bacteria carrying antibiotic resistance genes. TROPICS 2015. [DOI: 10.3759/tropics.23.165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Sayaka Tsuchida
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| | - Kazunari Ushida
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| |
Collapse
|
32
|
Detection of zoonotic pathogens and characterization of novel viruses carried by commensal Rattus norvegicus in New York City. mBio 2014; 5:e01933-14. [PMID: 25316698 PMCID: PMC4205793 DOI: 10.1128/mbio.01933-14] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Norway rats (Rattus norvegicus) are globally distributed and concentrate in urban environments, where they live and feed in closer proximity to human populations than most other mammals. Despite the potential role of rats as reservoirs of zoonotic diseases, the microbial diversity present in urban rat populations remains unexplored. In this study, we used targeted molecular assays to detect known bacterial, viral, and protozoan human pathogens and unbiased high-throughput sequencing to identify novel viruses related to agents of human disease in commensal Norway rats in New York City. We found that these rats are infected with bacterial pathogens known to cause acute or mild gastroenteritis in people, including atypical enteropathogenic Escherichia coli, Clostridium difficile, and Salmonella enterica, as well as infectious agents that have been associated with undifferentiated febrile illnesses, including Bartonella spp., Streptobacillus moniliformis, Leptospira interrogans, and Seoul hantavirus. We also identified a wide range of known and novel viruses from groups that contain important human pathogens, including sapoviruses, cardioviruses, kobuviruses, parechoviruses, rotaviruses, and hepaciviruses. The two novel hepaciviruses discovered in this study replicate in the liver of Norway rats and may have utility in establishing a small animal model of human hepatitis C virus infection. The results of this study demonstrate the diversity of microbes carried by commensal rodent species and highlight the need for improved pathogen surveillance and disease monitoring in urban environments. The observation that most emerging infectious diseases of humans originate in animal reservoirs has led to wide-scale microbial surveillance and discovery programs in wildlife, particularly in the developing world. Strikingly, less attention has been focused on commensal animals like rats, despite their abundance in urban centers and close proximity to human populations. To begin to explore the zoonotic disease risk posed by urban rat populations, we trapped and surveyed Norway rats collected in New York City over a 1-year period. This analysis revealed a striking diversity of known pathogens and novel viruses in our study population, including multiple agents associated with acute gastroenteritis or febrile illnesses in people. Our findings indicate that urban rats are reservoirs for a vast diversity of microbes that may affect human health and indicate a need for increased surveillance and awareness of the disease risks associated with urban rodent infestation.
Collapse
|
33
|
Abstract
ABSTRACT
Shiga toxin-producing
Escherichia coli
(STEC) strains have been detected in a wide diversity of mammals, birds, fish, and several insects. Carriage by most animals is asymptomatic, thus allowing for dissemination of the bacterium in the environment without detection. Replication of the organism may occur in the gastrointestinal tract of some animals, notably ruminants. Carriage may also be passive or transient, without significant amplification of bacterial numbers while in the animal host. Animals may be classified as reservoir species, spillover hosts, or dead-end hosts. This classification is based on the animal's ability to (i) transmit STEC to other animal species and (ii) maintain STEC infection in the absence of continuous exposure. Animal reservoirs are able to maintain STEC infections in the absence of continuous STEC exposure and transmit infection to other species. Spillover hosts, although capable of transmitting STEC to other animals, are unable to maintain infection in the absence of repeated exposure. The large diversity of reservoir and spillover host species and the survival of the organism in environmental niches result in complex pathways of transmission that are difficult to interrupt.
Collapse
|
34
|
Kajdacsi B, Costa F, Hyseni C, Porter F, Brown J, Rodrigues G, Farias H, Reis MG, Childs JE, Ko AI, Caccone A. Urban population genetics of slum-dwelling rats (Rattus norvegicus) in Salvador, Brazil. Mol Ecol 2013; 22:5056-70. [PMID: 24118116 PMCID: PMC3864905 DOI: 10.1111/mec.12455] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 01/25/2023]
Abstract
Throughout the developing world, urban centres with sprawling slum settlements are rapidly expanding and invading previously forested ecosystems. Slum communities are characterized by untended refuse, open sewers and overgrown vegetation, which promote rodent infestation. Norway rats (Rattus norvegicus) are reservoirs for epidemic transmission of many zoonotic pathogens of public health importance. Understanding the population ecology of R. norvegicus is essential to formulate effective rodent control strategies, as this knowledge aids estimation of the temporal stability and spatial connectivity of populations. We screened for genetic variation, characterized the population genetic structure and evaluated the extent and patterns of gene flow in the urban landscape using 17 microsatellite loci in 146 rats from nine sites in the city of Salvador, Brazil. These sites were divided between three neighbourhoods within the city spaced an average of 2.7 km apart. Surprisingly, we detected very little relatedness among animals trapped at the same site and found high levels of genetic diversity, as well as structuring across small geographical distances. Most F(ST) comparisons among sites were statistically significant, including sites <400 m apart. Bayesian analyses grouped the samples in three genetic clusters, each associated with distinct sampling sites from different neighbourhoods or valleys within neighbourhoods. These data indicate the existence of complex genetic structure in R. norvegicus in Salvador, linked to the heterogeneous urban landscape. Future rodent control measures need to take into account the spatial and temporal linkage of rat populations in Salvador, as revealed by genetic data, to develop informed eradication strategies.
Collapse
Affiliation(s)
- Brittney Kajdacsi
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT, USA
| | - Federico Costa
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT, USA
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
| | - Chaz Hyseni
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT, USA
| | - Fleur Porter
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT, USA
| | - Julia Brown
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT, USA
| | - Gorete Rodrigues
- Centro de Controle de Zoonoses, Secretaria Municipal de Saúde, Ministério da Saúde, Salvador, Brazil
| | - Helena Farias
- Centro de Controle de Zoonoses, Secretaria Municipal de Saúde, Ministério da Saúde, Salvador, Brazil
| | - Mitermeyer G. Reis
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
| | - James E. Childs
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT, USA
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT, USA
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT, USA
| |
Collapse
|
35
|
Julien CK, Bernadette G, Stephane KK, Stephane KK, Forget KG, Hortense FK, Agathe F, Mireille D. Emergence of Campylobacter spp. in grasscutter (Thryonomys swinderianus, Temminck, 1827). ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2013. [DOI: 10.1016/s2222-1808(13)60076-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Himsworth CG, Parsons KL, Jardine C, Patrick DM. Rats, Cities, People, and Pathogens: A Systematic Review and Narrative Synthesis of Literature Regarding the Ecology of Rat-Associated Zoonoses in Urban Centers. Vector Borne Zoonotic Dis 2013; 13:349-59. [DOI: 10.1089/vbz.2012.1195] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chelsea G. Himsworth
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- Animal Health Centre, British Columbia Ministry of Agriculture, Abbotsford, British Columbia, Canada
| | - Kirbee L. Parsons
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Claire Jardine
- Department of Pathobiology, Univeristy of Guelph, Guelph, Ontario, Canada
| | - David M. Patrick
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Cantas L, Shah SQA, Cavaco LM, Manaia CM, Walsh F, Popowska M, Garelick H, Bürgmann H, Sørum H. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol 2013; 4:96. [PMID: 23675371 PMCID: PMC3653125 DOI: 10.3389/fmicb.2013.00096] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/04/2013] [Indexed: 01/14/2023] Open
Abstract
The discovery and introduction of antimicrobial agents to clinical medicine was one of the greatest medical triumphs of the 20th century that revolutionized the treatment of bacterial infections. However, the gradual emergence of populations of antimicrobial-resistant pathogenic bacteria resulting from use, misuse, and abuse of antimicrobials has today become a major global health concern. Antimicrobial resistance (AMR) genes have been suggested to originate from environmental bacteria, as clinically relevant resistance genes have been detected on the chromosome of environmental bacteria. As only a few new antimicrobials have been developed in the last decade, the further evolution of resistance poses a serious threat to public health. Urgent measures are required not only to minimize the use of antimicrobials for prophylactic and therapeutic purposes but also to look for alternative strategies for the control of bacterial infections. This review examines the global picture of antimicrobial resistance, factors that favor its spread, strategies, and limitations for its control and the need for continuous training of all stake-holders i.e., medical, veterinary, public health, and other relevant professionals as well as human consumers, in the appropriate use of antimicrobial drugs.
Collapse
Affiliation(s)
- L Cantas
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Guenther S, Bethe A, Fruth A, Semmler T, Ulrich RG, Wieler LH, Ewers C. Frequent combination of antimicrobial multiresistance and extraintestinal pathogenicity in Escherichia coli isolates from urban rats (Rattus norvegicus) in Berlin, Germany. PLoS One 2012. [PMID: 23189197 PMCID: PMC3506595 DOI: 10.1371/journal.pone.0050331] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Urban rats present a global public health concern as they are considered a reservoir and vector of zoonotic pathogens, including Escherichia coli. In view of the increasing emergence of antimicrobial resistant E. coli strains and the on-going discussion about environmental reservoirs, we intended to analyse whether urban rats might be a potential source of putatively zoonotic E. coli combining resistance and virulence. For that, we took fecal samples from 87 brown rats (Rattus norvegicus) and tested at least three E. coli colonies from each animal. Thirty two of these E. coli strains were pre-selected from a total of 211 non-duplicate isolates based on their phenotypic resistance to at least three antimicrobial classes, thus fulfilling the definition of multiresistance. As determined by multilocus sequence typing (MLST), these 32 strains belonged to 24 different sequence types (STs), indicating a high phylogenetic diversity. We identified STs, which frequently occur among extraintestinal pathogenic E. coli (ExPEC), such as STs 95, 131, 70, 428, and 127. Also, the detection of a number of typical virulence genes confirmed that the rats tested carried ExPEC-like strains. In particular, the finding of an Extended-spectrum beta-lactamase (ESBL)-producing strain which belongs to a highly virulent, so far mainly human- and avian-restricted ExPEC lineage (ST95), which expresses a serogroup linked with invasive strains (O18:NM:K1), and finally, which produces an ESBL-type frequently identified among human strains (CTX-M-9), pointed towards the important role, urban rats might play in the transmission of multiresistant and virulent E. coli strains. Indeed, using a chicken infection model, this strain showed a high in vivo pathogenicity. Imagining the high numbers of urban rats living worldwide, the way to the transmission of putatively zoonotic, multiresistant, and virulent strains might not be far ahead. The unforeseeable consequences of such an emerging public health threat need careful consideration in the future.
Collapse
Affiliation(s)
- Sebastian Guenther
- Freie Universität Berlin, Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|