1
|
Yu Z, Fu Q, Qiu T, Yang C, Lu M, Peng Q, Yang J, Hu Z. Role of Rab10 in cocaine-induced behavioral effects is associated with GABAB receptor membrane expression in the nucleus accumbens. Front Pharmacol 2024; 15:1496657. [PMID: 39669198 PMCID: PMC11635607 DOI: 10.3389/fphar.2024.1496657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Aim Previous studies have demonstrated that Ras-related GTP-binding protein Rab10 (Rab10) plays a role in psychostimulant-induced behavioral effects. In this study, we showed that Rab10 in the nucleus accumbens (NAc) of male animals affects the development of cocaine-induced behavioral effects, which are associated with the plasma membrane expression of the GABAB heteroreceptor (GABABR). Methods We performed flow cytometry, immunoendocytosis, pHluorin activity analysis, electrophysiology analysis, and open-field testing to explore the role of Rab10 in modulating the membrane expression and function of GABABR and its regulatory effect on cocaine-induced behavioral effects. Results Transcriptomics analysis showed that Rab10 was elevated following acute cocaine treatment. Membrane levels of Rab10 increased within day 1 of the cocaine treatment, subsequently decreasing at later time points. Rab10 deficiency in NAc regions significantly increased cocaine-inhibited membrane GABABR levels and inhibited cocaine-induced hyperlocomotion and behavioral sensitization. In addition, GAD 67 + -expressing neurons from NAc regions treated with cocaine revealed a significant decrease in Rab10 membrane expression. Furthermore, NAc neuron-specific Rab10 knockout resulted in a significant increase in the cocaine-inhibited membrane expression of GABABR, along with increased miniature inhibitory postsynaptic current (mIPSC) amplitude and attenuation of baclofen-amplified Ca2+ influx. Conclusion These results uncover a new mechanism in which Rab10-GABABR signaling may serve as a potential pathway for regulating cocaine-induced behavioral effects.
Collapse
Affiliation(s)
- Zhuoxuan Yu
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Fu
- Department of Respiration, Department Two, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Tianyun Qiu
- Department of Clinical Laboratory, Wuhan Hankou Hospital, Wuhan, Hubei, China
| | - Caidi Yang
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Mingfen Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qinghua Peng
- Department of Anesthesiology, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Yang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhenzhen Hu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Bakhtazad A, Kabbaj M, Garmabi B, Joghataei MT. The role of CART peptide in learning and memory: A potential therapeutic target in memory-related disorders. Peptides 2024; 181:171298. [PMID: 39317295 DOI: 10.1016/j.peptides.2024.171298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Cocaine and amphetamine-regulated transcript (CART) mRNA and peptide are vastly expressed in both cortical and subcortical brain areas and are involved in critical cognitive functions. CART peptide (CARTp), described in reward-related brain structures, regulates drug-induced learning and memory, and its role appears specific to psychostimulants. However, many other drugs of abuse, such as alcohol, opiates, nicotine, and caffeine, have been shown to alter the expression levels of CART mRNA and peptides in brain structures directly or indirectly associated with learning and memory processes. However, the number of studies demonstrating the contribution of CARTp in learning and memory is still minimal. Notably, the exact cellular and molecular mechanisms underlying CARTp effects are still unknown. The discoveries that CARTp effects are mediated through a putative G-protein coupled receptor and activation of cellular signaling cascades via NMDA receptor-coupled ERK have enhanced our knowledge about the action of this neuropeptide and allowed us to comprehend better CARTp exact cellular/molecular mechanisms that could mediate drug-induced changes in learning and memory functions. Unfortunately, these efforts have been impeded by the lack of suitable and specific CARTp receptor antagonists. In this review, following a short introduction about CARTp, we report on current knowledge about CART's roles in learning and memory processes and its recently described role in memory-related neurological disorders. We will also discuss the importance of further investigating how CARTp interacts with its receptor(s) and other neurotransmitter systems to influence learning and memory functions. This topic is sure to intrigue and motivate further exploration in the field of neuroscience.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, United States; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, United States
| | - Behzad Garmabi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Wang Y, Wang Z, Peng Z, Feng L, Tian W, Zhang S, Cao L, Li J, Yang L, Xu Y, Gao Y, Liu J, Yan J, Ma X, Sun W, Guo L, Li X, Shen Y, Qi Z. Cocaine and amphetamine-regulated transcript improves myocardial ischemia-reperfusion injury through PI3K/AKT signalling pathway. Clin Exp Pharmacol Physiol 2024; 51:e13904. [PMID: 38923060 DOI: 10.1111/1440-1681.13904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/13/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a common clinic scenario that occurs in the context of reperfusion therapy for acute myocardial infarction. It has been shown that cocaine and amphetamine-regulated transcript (CART) can ameliorate cerebral ischemia-reperfusion (I/R) injury, but the effect of CART on MIRI has not been studied yet. Here, we revealed that CART protected the heart during I/R process by inhibiting apoptosis and excessive autophagy, indicating that CART would be a potential drug candidate for the treatment of MIRI. Further analysis showed that CART upregulated the activation of phospho-AKT, leading to downregulation of lactate dehydrogenase (LDH) release, apoptosis, oxidative stress and excessive autophagy after I/R, which was inhibited by PI3K inhibitor, LY294002. Collectively, CART attenuated MIRI through inhibition of cardiomyocytes apoptosis and excessive autophagy, and the protective effect was dependent on PI3K/AKT signalling pathway.
Collapse
Affiliation(s)
- Yachen Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
| | - Ziwei Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- NanKai University Eye Institute, Tianjin, China
| | - Zeyan Peng
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Lifeng Feng
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Wencong Tian
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Shengzheng Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Lei Cao
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Jing Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Liang Yang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Yang Xu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Yang Gao
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Jie Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Jie Yan
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Xiaodong Ma
- Fifth People's Hospital of Dongying, Shandong, China
| | - Wangchun Sun
- Fifth People's Hospital of Dongying, Shandong, China
| | - Lihong Guo
- Shengli Oilfield Central Hospital Gastrointestinal Disease Research Institute, Shandong, China
| | - Xuan Li
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
| | - Yanna Shen
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- NanKai University Eye Institute, Tianjin, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
- Shengli Oilfield Central Hospital Gastrointestinal Disease Research Institute, Shandong, China
- Xinjiang Production and Construction Corps Hospital, Xinjiang, China
| |
Collapse
|
4
|
Schafer RM, Giancotti LA, Davis DJ, Larrea IG, Farr SA, Salvemini D. Behavioral characterization of G-protein-coupled receptor 160 knockout mice. Pain 2024; 165:1361-1371. [PMID: 38198232 PMCID: PMC11090760 DOI: 10.1097/j.pain.0000000000003136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/23/2023] [Indexed: 01/12/2024]
Abstract
ABSTRACT Neuropathic pain is a devastating condition where current therapeutics offer little to no pain relief. Novel nonnarcotic therapeutic targets are needed to address this growing medical problem. Our work identified the G-protein-coupled receptor 160 (GPR160) as a potential target for therapeutic intervention. However, the lack of small-molecule ligands for GPR160 hampers our understanding of its role in health and disease. To address this void, we generated a global Gpr160 knockout (KO) mouse using CRISPR-Cas9 genome editing technology to validate the contributions of GPR160 in nociceptive behaviors in mice. Gpr160 KO mice are healthy and fertile, with no observable physical abnormalities. Gpr160 KO mice fail to develop behavioral hypersensitivities in a model of neuropathic pain caused by constriction of the sciatic nerve. On the other hand, responses of Gpr160 KO mice in the hot-plate and tail-flick assays are not affected. We recently deorphanized GPR160 and identified cocaine- and amphetamine-regulated transcript peptide (CARTp) as a potential ligand. Using Gpr160 KO mice, we now report that the development of behavioral hypersensitivities after intrathecal or intraplantar injections of CARTp are dependent on GPR160. Cocaine- and amphetamine-regulated transcript peptide plays a role in various affective behaviors, such as anxiety, depression, and cognition. There are no differences in learning, memory, and anxiety between Gpr160 KO mice and their age-matched and sex-matched control floxed mice. Results from these studies support the pronociceptive roles of CARTp/GPR160 and GPR160 as a potential therapeutic target for treatment of neuropathic pain.
Collapse
Affiliation(s)
- Rachel M Schafer
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
| | - Luigino A Giancotti
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
| | - Daniel J Davis
- Animal Modeling Core, University of Missouri, Columbia, Missouri, USA
| | - Ivonne G Larrea
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
| | - Susan A Farr
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
- Department of Internal Medicine-Geriatrics, Saint Louis School of Medicine, St. Louis, MO, USA
- VA Medical Center, St Louis. MO 63106, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Mahdavi K, Zendehdel M, Zarei H. The role of central neurotransmitters in appetite regulation of broilers and layers: similarities and differences. Vet Res Commun 2024; 48:1313-1328. [PMID: 38286893 DOI: 10.1007/s11259-024-10312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
The importance of feeding as a vital physiological function, on the one hand, and the spread of complications induced by its disorder in humans and animals, on the other hand, have led to extensive research on its regulatory factors. Unfortunately, despite many studies focused on appetite, only limited experiments have been conducted on avian, and our knowledge of this species is scant. Considering this, the purpose of this review article is to examine the role of central neurotransmitters in regulating food consumption in broilers and layers and highlight the similarities and differences between these two strains. The methodology of this review study includes a comprehensive search of relevant literature on the topic using appropriate keywords in reliable electronic databases. Based on the findings, the central effect of most neurotransmitters on the feeding of broilers and laying chickens was similar, but in some cases, such as dopamine, ghrelin, nitric oxide, and agouti-related peptide, differences were observed. Also, the lack of conducting a study on the role of some neurotransmitters in one of the bird strains made it impossible to make an exact comparison. Finally, it seems that although there are general similarities in appetite regulatory mechanisms in meat and egg-type chickens, the long-term genetic selection appropriate to breeding goals (meat or egg production) has caused differences in the effect of some neurotransmitters. Undoubtedly, conducting future studies while completing the missing links can lead to a comprehensive understanding of this process and its manipulation according to the breeding purposes of chickens.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran.
| | - Hamed Zarei
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Tezcan ME, Uğur C, Can Ü, Uçak EF, Ekici F, Duymuş F, Korucu AT. Are decreased cocaine- and amphetamine regulated transcript and Agouti- related peptide levels associated Eating behavior in medication-free children with attention deficit and hyperactivity disorder? Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110907. [PMID: 38043633 DOI: 10.1016/j.pnpbp.2023.110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
This study aimed to investigate plasma levels of cocaine- and amphetamine-regulated transcript (CART), agouti-related protein (AgRP), cholecystokinin (CCK) and peptide YY (PYY) and their relationship with eating behaviors among children with attention deficit hyperactivity disorder (ADHD) and healthy controls. A total of 94 medication-free children with ADHD and 82 controls aged 8-14 years were included in this study. The Plasma levels of CART, AgRP, CCK and PYY were measured using enzyme-linked immunosorbent assay kits. The Children's Eating Behavior Questionnaire (CEBQ) was used to assess eating behaviors in children. CART and AgRP levels were found to be significantly lower in the ADHD group than in the control group, while CCK levels were found to be significantly higher in the ADHD group than in the control group. However, there was no significant difference in PYY levels between the groups. Compared to controls, those with ADHD demonstrated significantly higher scores on the CEBQ subscales of food responsiveness, emotional overeating, desire to drink, enjoyment of food, and food fussiness, and significantly lower scores on the slowness of eating subscale. CART was significantly correlated with emotional overeating and enjoyment of food scores, while AgRP was significantly correlated with emotional undereating scores. Covariance analysis was performed by controlling potential confounders such as body mass index, age and sex, and the results were found to be unchanged. It was concluded that CART, AgRP, and CCK may play a potential role in the pathogenesis of ADHD.
Collapse
Affiliation(s)
- Mustafa Esad Tezcan
- Department of Child and Adolescent Psychiatry, Konya City Hospital, Karatay-Konya, 42020, Turkey.
| | - Cüneyt Uğur
- Department of Pediatrics, Konya City Health Application and Research, University of Health Sciences Turkey, Karatay-Konya, 42020, Turkey
| | - Ümmügülsüm Can
- Department of Medical Biochemistry, Konya City Health Application and Research, University of Health Sciences Turkey, Karatay-Konya, 42020, Turkey
| | - Ekrem Furkan Uçak
- Department of Psychiatry, Konya City Hospital, Karatay-Konya, 42020, Turkey
| | - Fatih Ekici
- Department of Psychiatry, Konya City Hospital, Karatay-Konya, 42020, Turkey
| | - Fahrettin Duymuş
- Department of Medical Genetics, Konya City Hospital, Karatay-Konya, 42020, Turkey
| | - Agah Tuğrul Korucu
- Faculty of Computer and Instructional Technologies, Necmettin Erbakan University, Meram-Konya, 42005, Turkey
| |
Collapse
|
7
|
Lu MF, Fu Q, Qiu TY, Yang JH, Peng QH, Hu ZZ. The CaMKII-dependent phosphorylation of GABA B receptors in the nucleus accumbens was involved in cocaine-induced behavioral sensitization in rats. CNS Neurosci Ther 2023; 29:1345-1356. [PMID: 36756679 PMCID: PMC10068462 DOI: 10.1111/cns.14107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Previous studies have established that the regulation of prolonged, distal neuronal inhibition by the GABAB heteroreceptor (GABAB R) is determined by its stability, and hence residence time, on the plasma membrane. AIMS Here, we show that GABAB R in the nucleus accumbens (NAc) of rats affects the development of cocaine-induced behavioral sensitization by mediating its perinucleus internalization and membrane expression. MATERIALS & METHODS By immunofluorescent labeling, flow cytometry analysis, Co-immunoprecipitation and open field test, we measured the role of Ca2+ /calmodulin-dependent protein kinase II (CaMKII) to the control of GABAB R membrane anchoring and cocaine induced-behavioral sensitization. RESULTS Repeated cocaine treatment in rats (15 mg/kg) significantly decreases membrane levels of GABAB1 R and GABAB2 R in the NAc after day 3, 5 and 7. The membrane fluorescence and protein levels of GABAB R was also decreased in NAc GAD67 + neurons post cocaine (1 μM) treatment after 5 min. Moreover, the majority of internalized GABAB1 Rs exhibited perinuclear localization, a decrease in GABAB1 R-pHluroin signals was observed in cocaine-treated NAc neurons. By contrast, membrane expression of phosphorylated CaMKII (pCaMKII) post cocaine treatment was significantly increased after day 1, 3, 5 and 7. Baclofen blocked the cocaine induced behavioral sensitization via inhibition of cocaine enhanced-pCaMKII-GABAB1 R interaction. CONCLUSION These findings reveal a new mechanism by which pCaMKII-GABAB R signaling can promote psychostimulant-induced behavioral sensitization.
Collapse
Affiliation(s)
- Ming F Lu
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Fu
- Department of Respiration, Department Two, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Tian Y Qiu
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Jian H Yang
- Department of Physiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Qing H Peng
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Zhen Z Hu
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Kozsurek M, Király K, Gyimesi K, Lukácsi E, Fekete C, Gereben B, Mohácsik P, Helyes Z, Bölcskei K, Tékus V, Pap K, Szűcs E, Benyhe S, Imre T, Szabó P, Gajtkó A, Holló K, Puskár Z. Unique, Specific CART Receptor-Independent Regulatory Mechanism of CART(55-102) Peptide in Spinal Nociceptive Transmission and Its Relation to Dipeptidyl-Peptidase 4 (DDP4). Int J Mol Sci 2023; 24:ijms24020918. [PMID: 36674439 PMCID: PMC9865214 DOI: 10.3390/ijms24020918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides are involved in several physiological and pathological processes, but their mechanism of action is unrevealed due to the lack of identified receptor(s). We provided evidence for the antihyperalgesic effect of CART(55-102) by inhibiting dipeptidyl-peptidase 4 (DPP4) in astrocytes and consequently reducing neuroinflammation in the rat spinal dorsal horn in a carrageenan-evoked inflammation model. Both naturally occurring CART(55-102) and CART(62-102) peptides are present in the spinal cord. CART(55-102) is not involved in acute nociception but regulates spinal pain transmission during peripheral inflammation. While the full-length peptide with a globular motif contributes to hyperalgesia, its N-terminal inhibits this process. Although the anti-hyperalgesic effects of CART(55-102), CART(55-76), and CART(62-76) are blocked by opioid receptor antagonists in our inflammatory models, but not in neuropathic Seltzer model, none of them bind to any opioid or G-protein coupled receptors. DPP4 interacts with Toll-like receptor 4 (TLR4) signalling in spinal astrocytes and enhances the TLR4-induced expression of interleukin-6 and tumour necrosis factor alpha contributing to inflammatory pain. Depending on the state of inflammation, CART(55-102) is processed in the spinal cord, resulting in the generation of biologically active isoleucine-proline-isoleucine (IPI) tripeptide, which inhibits DPP4, leading to significantly decreased glia-derived cytokine production and hyperalgesia.
Collapse
Affiliation(s)
- Márk Kozsurek
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Klára Gyimesi
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary
- Department of Anaesthesiology, Uzsoki Hospital, H-1145 Budapest, Hungary
| | - Erika Lukácsi
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Balázs Gereben
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
| | - Petra Mohácsik
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- Chronic Pain Research Group, Eötvös Loránd Research Network, H-7624 Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Hungary
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Károly Pap
- Department of Orthopaedics and Traumatology, Uzsoki Hospital, H-1145 Budapest, Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary
| | - Tímea Imre
- MS Metabolomics Laboratory, Instrumentation Centre, Research Centre for Natural Sciences, Eötvös Loránd Research Network, H-1117 Budapest, Hungary
| | - Pál Szabó
- MS Metabolomics Laboratory, Instrumentation Centre, Research Centre for Natural Sciences, Eötvös Loránd Research Network, H-1117 Budapest, Hungary
| | - Andrea Gajtkó
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztina Holló
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zita Puskár
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary
- Correspondence:
| |
Collapse
|
9
|
Kołosowska K, Lehner M, Skórzewska A, Gawryluk A, Tomczuk F, Sobolewska A, Turzyńska D, Liguz-Lęcznar M, Bednarska-Makaruk M, Maciejak P, Wisłowska-Stanek A. Molecular pattern of a decrease in the rewarding effect of cocaine after an escalating-dose drug regimen. Pharmacol Rep 2023; 75:85-98. [PMID: 36586075 PMCID: PMC9889529 DOI: 10.1007/s43440-022-00443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Long-term cocaine exposure leads to dysregulation of the reward system and initiates processes that ultimately weaken its rewarding effects. Here, we studied the influence of an escalating-dose cocaine regimen on drug-associated appetitive behavior after a withdrawal period, along with corresponding molecular changes in plasma and the prefrontal cortex (PFC). METHODS We applied a 5 day escalating-dose cocaine regimen in rats. We assessed anxiety-like behavior at the beginning of the withdrawal period in the elevated plus maze (EPM) test. The reinforcement properties of cocaine were evaluated in the Conditioned Place Preference (CPP) test along with ultrasonic vocalization (USV) in the appetitive range in a drug-associated context. We assessed corticosterone, proopiomelanocortin (POMC), β-endorphin, CART 55-102 levels in plasma (by ELISA), along with mRNA levels for D2 dopaminergic receptor (D2R), κ-receptor (KOR), orexin 1 receptor (OX1R), CART 55-102, and potential markers of cocaine abuse: miRNA-124 and miRNA-137 levels in the PFC (by PCR). RESULTS Rats subjected to the escalating-dose cocaine binge regimen spent less time in the cocaine-paired compartment, and presented a lower number of appetitive USV episodes. These changes were accompanied by a decrease in corticosterone and CART levels, an increase in POMC and β-endorphin levels in plasma, and an increase in the mRNA for D2R and miRNA-124 levels, but a decrease in the mRNA levels for KOR, OX1R, and CART 55-102 in the PFC. CONCLUSIONS The presented data reflect a part of a bigger picture of a multilevel interplay between neurotransmitter systems and neuromodulators underlying processes associated with cocaine abuse.
Collapse
Affiliation(s)
- Karolina Kołosowska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Małgorzata Lehner
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Skórzewska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Aleksandra Gawryluk
- grid.419305.a0000 0001 1943 2944Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Filip Tomczuk
- grid.418955.40000 0001 2237 2890Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Danuta Turzyńska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Monika Liguz-Lęcznar
- grid.419305.a0000 0001 1943 2944Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Małgorzata Bednarska-Makaruk
- grid.418955.40000 0001 2237 2890Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Piotr Maciejak
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Aleksandra Wisłowska-Stanek
- grid.13339.3b0000000113287408Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology (CePT), 1B Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
10
|
Yang X, Wang C, Yang L, Zheng Q, Liu Q, Wawryk NJP, Li XF. Neurotoxicity and transcriptome changes in embryonic zebrafish induced by halobenzoquinone exposure. J Environ Sci (China) 2022; 117:129-140. [PMID: 35725065 DOI: 10.1016/j.jes.2022.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) with a widespread presence in drinking water that exhibit much higher cytotoxicity than regulated DBPs. However, the developmental neurotoxicity of HBQs has not been studied in vivo. In this work, we studied the neurotoxicity of HBQs on zebrafish embryos, after exposure to varying concentrations (0-8 µmol/L) of three HBQs, 2,5-dichloro-1,4-benzoquinone (2,5-DCBQ), 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), and 2,5-dibromo-1,4-benzoquinone (2,5-DBBQ) for 4 to 120 hr post fertilization (hpf). HBQ exposure significantly decreased the locomotor activity of larvae, accompanied by significant reduction of neurotransmitters (dopamine and γ-aminobutyric acid) and acetylcholinesterase activity. Furthermore, the expression of genes involved in neuronal morphogenesis (gfap, α1-tubulin, mbp, and syn-2α) were downregulated by 4.4-, 5.2-, 3.0-, and 4.5-fold in the 5 µmol/L 2,5-DCBQ group and 2.0-, 1.6-, 2.1-, and 2.3-fold in the 5 µmol/L 2,5-DBBQ group, respectively. Transcriptomic analysis revealed that HBQ exposure affected the signaling pathways of neural development. This study demonstrates the significant neurotoxicity of HBQs in embryonic zebrafish and provides molecular evidence for understanding the potential mechanisms of HBQ neurotoxicity.
Collapse
Affiliation(s)
- Xue Yang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Chang Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| | - Lihua Yang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Qi Zheng
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Qiongyu Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Nicholas J P Wawryk
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
11
|
Job MO, Kuhar MJ. Commentary: GPR160 De-Orphanization Reveals Critical Roles in Neuropathic Pain in Rodents (Finally, a Receptor for CART Peptide). ADVANCES IN DRUG AND ALCOHOL RESEARCH 2021; 1:10012. [PMID: 38410642 PMCID: PMC10896429 DOI: 10.3389/adar.2021.10012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/26/2021] [Indexed: 02/28/2024]
Affiliation(s)
- Martin O Job
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Michael J Kuhar
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
12
|
Fonseca F, Mestre-Pintó JI, Gómez-Gómez À, Martinez-Sanvisens D, Rodríguez-Minguela R, Papaseit E, Pérez-Mañá C, Langohr K, Valverde O, Pozo ÓJ, Farré M, Torrens M. The Tryptophan System in Cocaine-Induced Depression. J Clin Med 2020; 9:jcm9124103. [PMID: 33352710 PMCID: PMC7766966 DOI: 10.3390/jcm9124103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Major depression disorder (MDD) is the most prevalent psychiatric comorbid condition in cocaine use disorder (CUD). The comorbid MDD might be primary-MDD (CUD-primary-MDD) or cocaine-induced MDD (CUD-induced-MDD), and their accurate diagnoses and treatment is a challenge for improving prognoses. This study aimed to assess the tryptophan/serotonin (Trp/5-HT) system with the acute tryptophan depletion test (ATD), and the kynurenine pathway in subjects with CUD-primary-MDD, CUD-induced-MDD, MDD and healthy controls. The ATD was performed with a randomized, double-blind, crossover, and placebo-controlled design. Markers of enzymatic activity of indoleamine 2,3-dioxygenase/tryptophan 2,3-dioxygenase, kynurenine aminotransferase (KAT) and kynureninase were also established. Following ATD, we observed a decrease in Trp levels in all groups. Comparison between CUD-induced-MDD and MDD revealed significant differences in 5-HT plasma concentrations (512 + 332 ng/mL vs. 107 + 127 ng/mL, p = 0.039) and the Kyn/5-HT ratio (11 + 15 vs. 112 + 136; p = 0.012), whereas there were no differences between CUD-primary-MDD and MDD. Effect size coefficients show a gradient for all targeted markers (d range 0.72-1.67). Results suggest different pathogenesis for CUD-induced-MDD, with lower participation of the tryptophan system, probably more related to other neurotransmitter pathways and accordingly suggesting the need for a different pharmacological treatment approach.
Collapse
Affiliation(s)
- Francina Fonseca
- Addiction Research Group (GRAd), Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (F.F.); (R.R.-M.)
- Institut de Neuropsiquiatria i Addiccions, Hospital del Mar, 08003 Barcelona, Spain;
- Department of Psychiatry and Department of Pharmacology, School of Medicine, Universitat Autònoma de Barcelona (UAB), 08290 Cerdanyola del Vallès, Spain; (E.P.); (C.P.-M.); (M.F.)
| | - Joan-Ignasi Mestre-Pintó
- Addiction Research Group (GRAd), Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (F.F.); (R.R.-M.)
- Department of Experimental and Health Sciences (CEXS), Universitat Pompeu Fabra, 08002 Barcelona, Spain;
- Correspondence: (J.-I.M.-P.); (M.T.); Tel.: +34-932483175 (M.T.)
| | - Àlex Gómez-Gómez
- Department of Experimental and Health Sciences (CEXS), Universitat Pompeu Fabra, 08002 Barcelona, Spain;
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Research Programme, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (K.L.); (Ó.J.P.)
| | | | - Rocío Rodríguez-Minguela
- Addiction Research Group (GRAd), Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (F.F.); (R.R.-M.)
| | - Esther Papaseit
- Department of Psychiatry and Department of Pharmacology, School of Medicine, Universitat Autònoma de Barcelona (UAB), 08290 Cerdanyola del Vallès, Spain; (E.P.); (C.P.-M.); (M.F.)
- Clinical Pharmacology Department, Hospital Universitari Germans Trias i Pujol (IGTP), 08003 Badalona, Spain
| | - Clara Pérez-Mañá
- Department of Psychiatry and Department of Pharmacology, School of Medicine, Universitat Autònoma de Barcelona (UAB), 08290 Cerdanyola del Vallès, Spain; (E.P.); (C.P.-M.); (M.F.)
- Clinical Pharmacology Department, Hospital Universitari Germans Trias i Pujol (IGTP), 08003 Badalona, Spain
| | - Klaus Langohr
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Research Programme, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (K.L.); (Ó.J.P.)
- Department of Statistics and Operations Research, Universitat Politècnica de Barcelona Barcelonatech, 08034 Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08002 Barcelona, Spain;
- Neurobiology of Behaviour Research Group, Neuroscience Research Programme, Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
| | - Óscar J. Pozo
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Research Programme, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (K.L.); (Ó.J.P.)
| | - Magí Farré
- Department of Psychiatry and Department of Pharmacology, School of Medicine, Universitat Autònoma de Barcelona (UAB), 08290 Cerdanyola del Vallès, Spain; (E.P.); (C.P.-M.); (M.F.)
- Clinical Pharmacology Department, Hospital Universitari Germans Trias i Pujol (IGTP), 08003 Badalona, Spain
| | - Marta Torrens
- Addiction Research Group (GRAd), Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (F.F.); (R.R.-M.)
- Institut de Neuropsiquiatria i Addiccions, Hospital del Mar, 08003 Barcelona, Spain;
- Department of Psychiatry and Department of Pharmacology, School of Medicine, Universitat Autònoma de Barcelona (UAB), 08290 Cerdanyola del Vallès, Spain; (E.P.); (C.P.-M.); (M.F.)
- Correspondence: (J.-I.M.-P.); (M.T.); Tel.: +34-932483175 (M.T.)
| | | |
Collapse
|
13
|
Song N, Du J, Gao Y, Yang S. Epitranscriptome of the ventral tegmental area in a deep brain-stimulated chronic unpredictable mild stress mouse model. Transl Neurosci 2020; 11:402-418. [PMID: 33343932 PMCID: PMC7724003 DOI: 10.1515/tnsci-2020-0146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Deep brain stimulation (DBS) applied to the nucleus accumbens (NAc) alleviates the depressive symptoms of major depressive disorders. We investigated the mechanism of this effect by assessing gene expression and RNA methylation changes in the ventral tegmental area (VTA) following NAc-DBS in a chronic unpredictable mild stress (CUMS) mouse model of depression. Gene expression and N 6-methyladenosine (m6A) levels in the VTA were measured in mice subjected to CUMS and then DBS, and transcriptome-wide m6A changes were profiled using immunoprecipitated methylated RNAs with microarrays, prior to gene ontology analysis. The expression levels of genes linked to neurotransmitter receptors, transporters, transcription factors, neuronal activities, synaptic functions, and mitogen-activated protein kinase and dopamine signaling were upregulated in the VTA upon NAc-DBS. Furthermore, m6A modifications included both hypermethylation and hypomethylation, and changes were positively correlated with the upregulation of some genes. Moreover, the effects of CUMS on gene expression and m6A-mRNA modification were reversed by DBS for some genes. Interestingly, while the expression of certain genes was not changed by DBS, long-term stimulation did alter their m6A modifications. NAc-DBS-induced modifications are correlated largely with upregulation but sometimes downregulation of genes in CUMS mice. Our findings improve the current understanding of the molecular mechanisms underlying DBS effects on depression.
Collapse
Affiliation(s)
- Nan Song
- Center of Military Brain Science, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences (AMMS), The Academy of Military Sciences, No. 27 Taiping Road, Haidian District, Beijing, China, 100850
| | - Jun Du
- Center of Military Brain Science, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences (AMMS), The Academy of Military Sciences, No. 27 Taiping Road, Haidian District, Beijing, China, 100850
| | - Yan Gao
- Center of Military Brain Science, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences (AMMS), The Academy of Military Sciences, No. 27 Taiping Road, Haidian District, Beijing, China, 100850
| | - Shenglian Yang
- Center of Military Brain Science, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences (AMMS), The Academy of Military Sciences, No. 27 Taiping Road, Haidian District, Beijing, China, 100850
| |
Collapse
|
14
|
Blackburn TP. Depressive disorders: Treatment failures and poor prognosis over the last 50 years. Pharmacol Res Perspect 2019; 7:e00472. [PMID: 31065377 PMCID: PMC6498411 DOI: 10.1002/prp2.472] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/11/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Depression like many diseases is pleiotropic but unlike cancer and Alzheimer's disease for example, is still largely stigmatized and falls into the dark shadows of human illness. The failure of depression to be in the spotlight for successful treatment options is inherent in the complexity of the disease(s), flawed clinical diagnosis, overgeneralization of the illness, inadequate and biased clinical trial design, restrictive and biased inclusion/exclusion criteria, lack of approved/robust biomarkers, expensive imaging technology along with few advances in neurobiological hypotheses in decades. Clinical trial studies summitted to the regulatory agencies (FDA/EMA) for approval, have continually failed to show significant differences between active and placebo. For decades, we have acknowledged this failure, despite vigorous debated by all stakeholders to provide adequate answers to this escalating problem, with only a few new antidepressants approved in the last 20 years with equivocal efficacy, little improvement in side effects or onset of efficacy. It is also clear that funding and initiatives for mental illness lags far behind other life-treating diseases. Thus, it is no surprise we have not achieved much success in the last 50 years in treating depression, but we are accountable for the many failures and suboptimal treatment. This review will therefore critically address where we have failed and how future advances in medical science offers a glimmer of light for the patient and aid our future understanding of the neurobiology and pathophysiology of the disease, enabling transformative therapies for the treatment of depressive disorders.
Collapse
|
15
|
The role of neurotrophic factors in manic-, anxious- and depressive-like behaviors induced by amphetamine sensitization: Implications to the animal model of bipolar disorder. J Affect Disord 2019; 245:1106-1113. [PMID: 30699853 DOI: 10.1016/j.jad.2018.10.370] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/26/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bipolar disorder (BD) and substance use disorders share common symptoms, such as behavioral sensitization. Amphetamine-induced behavioral sensitization can serve as an animal model of BD. Neurotrophic factors have an important role in BD pathophysiology. This study evaluated the effects of amphetamine sensitization on behavior and neurotrophic factor levels in the brains of rats. METHODS Wistar rats received daily intraperitoneal (i.p) injections of dextroamphetamine (d-AMPH) 2 mg/kg or saline for 14 days. After seven days of withdrawal, the animals were challenged with d-AMPH (0.5 mg/kg, i.p) and locomotor behavior was assessed. In a second protocol, rats were similarly treated with d-AMPH (2 mg/kg, i.p) for 14 days. After withdrawal, without d-AMPH challenge, depressive- and anxiety-like behaviors were evaluated through forced swimming test and elevated plus maze. Levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (NT-3), neurotrophin 4/5 (NT-4/5) and glial-derived neurotrophic factor (GDNF) were evaluated in the frontal cortex, hippocampus, and striatum. RESULTS D-AMPH for 14 days augmented locomotor sensitization to a lower dose of d-AMPH (0.5 mg/kg) after the withdrawal. d-AMPH withdrawal induced depressive- and anxious-like behaviors. BDNF, NGF, and GDNF levels were decreased, while NT-3 and NT-4 levels were increased in brains after d-AMPH sensitization. LIMITATIONS Although d-AMPH induces manic-like behavior, the mechanisms underlying these effects can also be related to phenotypes of drug abuse. CONCLUSIONS Together, vulnerability to mania-like behavior following d-AMPH challenge and extensive neurotrophic alterations, suggest amphetamine-induced behavioral sensitization is a good model of BD pathophysiology.
Collapse
|