1
|
Han X, Xing L, Hong Y, Zhang X, Hao B, Lu JY, Huang M, Wang Z, Ma S, Zhan G, Li T, Hao X, Tao Y, Li G, Zhou S, Zheng Z, Shao W, Zeng Y, Ma D, Zhang W, Xie Z, Deng H, Yan J, Deng W, Shen X. Nuclear RNA homeostasis promotes systems-level coordination of cell fate and senescence. Cell Stem Cell 2024; 31:694-716.e11. [PMID: 38631356 DOI: 10.1016/j.stem.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/01/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Understanding cellular coordination remains a challenge despite knowledge of individual pathways. The RNA exosome, targeting a wide range of RNA substrates, is often downregulated in cellular senescence. Utilizing an auxin-inducible system, we observed that RNA exosome depletion in embryonic stem cells significantly affects the transcriptome and proteome, causing pluripotency loss and pre-senescence onset. Mechanistically, exosome depletion triggers acute nuclear RNA aggregation, disrupting nuclear RNA-protein equilibrium. This disturbance limits nuclear protein availability and hinders polymerase initiation and engagement, reducing gene transcription. Concurrently, it promptly disrupts nucleolar transcription, ribosomal processes, and nuclear exporting, resulting in a translational shutdown. Prolonged exosome depletion induces nuclear structural changes resembling senescent cells, including aberrant chromatin compaction, chromocenter disassembly, and intensified heterochromatic foci. These effects suggest that the dynamic turnover of nuclear RNA orchestrates crosstalk between essential processes to optimize cellular function. Disruptions in nuclear RNA homeostasis result in systemic functional decline, altering the cell state and promoting senescence.
Collapse
Affiliation(s)
- Xue Han
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Linqing Xing
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yantao Hong
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xuechun Zhang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Hao
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - J Yuyang Lu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Mengyuan Huang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zuhui Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shaoqian Ma
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Ge Zhan
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaowen Hao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yibing Tao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Guanwen Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Shuqin Zhou
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zheng Zheng
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Wen Shao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yitian Zeng
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Dacheng Ma
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiangwei Yan
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wulan Deng
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaohua Shen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
2
|
Battey E, Levy Y, Pollock RD, Pugh JN, Close GL, Kalakoutis M, Lazarus NR, Harridge SDR, Ochala J, Stroud MJ. Muscle fibre size and myonuclear positioning in trained and aged humans. Exp Physiol 2024; 109:549-561. [PMID: 38461483 PMCID: PMC10988734 DOI: 10.1113/ep091567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024]
Abstract
Changes in myonuclear architecture and positioning are associated with exercise adaptations and ageing. However, data on the positioning and number of myonuclei following exercise are inconsistent. Additionally, whether myonuclear domains (MNDs; i.e., the theoretical volume of cytoplasm within which a myonucleus is responsible for transcribing DNA) and myonuclear positioning are altered with age remains unclear. The aim of this investigation was to investigate relationships between age and activity status and myonuclear domains and positioning. Vastus lateralis muscle biopsies from younger endurance-trained (YT) and older endurance-trained (OT) individuals were compared with age-matched untrained counterparts (YU and OU; OU samples were acquired during surgical operation). Serial, optical z-slices were acquired throughout isolated muscle fibres and analysed to give three-dimensional coordinates for myonuclei and muscle fibre dimensions. The mean cross-sectional area (CSA) of muscle fibres from OU individuals was 33%-53% smaller compared with the other groups. The number of nuclei relative to fibre CSA was 90% greater in OU compared with YU muscle fibres. Additionally, scaling of MND volume with fibre size was altered in older untrained individuals. The myonuclear arrangement, in contrast, was similar across groups. Fibre CSA and most myonuclear parameters were significantly associated with age in untrained individuals, but not in trained individuals. These data indicate that regular endurance exercise throughout the lifespan might better preserve the size of muscle fibres in older age and maintain the relationship between fibre size and MND volumes. Inactivity, however, might result in reduced muscle fibre size and altered myonuclear parameters.
Collapse
Affiliation(s)
- Edmund Battey
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and SciencesKing's College LondonLondonUK
- Department of Biomedical Sciences, Faculty of Medical and Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Yotam Levy
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Ross D. Pollock
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Jamie N. Pugh
- School of Sport and Exercise Sciences, Tom Reilly Building, Byrom StreetLiverpool John Moores UniversityLiverpoolUK
| | - Graeme L. Close
- School of Sport and Exercise Sciences, Tom Reilly Building, Byrom StreetLiverpool John Moores UniversityLiverpoolUK
| | - Michaeljohn Kalakoutis
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Norman R. Lazarus
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Stephen D. R. Harridge
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Julien Ochala
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
- Department of Biomedical Sciences, Faculty of Medical and Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Matthew J. Stroud
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and SciencesKing's College LondonLondonUK
| |
Collapse
|
3
|
Guglielmi V, Cheli M, Tonin P, Vattemi G. Sporadic Inclusion Body Myositis at the Crossroads between Muscle Degeneration, Inflammation, and Aging. Int J Mol Sci 2024; 25:2742. [PMID: 38473988 PMCID: PMC10932328 DOI: 10.3390/ijms25052742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Sporadic inclusion body myositis (sIBM) is the most common muscle disease of older people and is clinically characterized by slowly progressive asymmetrical muscle weakness, predominantly affecting the quadriceps, deep finger flexors, and foot extensors. At present, there are no enduring treatments for this relentless disease that eventually leads to severe disability and wheelchair dependency. Although sIBM is considered a rare muscle disorder, its prevalence is certainly higher as the disease is often undiagnosed or misdiagnosed. The histopathological phenotype of sIBM muscle biopsy includes muscle fiber degeneration and endomysial lymphocytic infiltrates that mainly consist of cytotoxic CD8+ T cells surrounding nonnecrotic muscle fibers expressing MHCI. Muscle fiber degeneration is characterized by vacuolization and the accumulation of congophilic misfolded multi-protein aggregates, mainly in their non-vacuolated cytoplasm. Many players have been identified in sIBM pathogenesis, including environmental factors, autoimmunity, abnormalities of protein transcription and processing, the accumulation of several toxic proteins, the impairment of autophagy and the ubiquitin-proteasome system, oxidative and nitrative stress, endoplasmic reticulum stress, myonuclear degeneration, and mitochondrial dysfunction. Aging has also been proposed as a contributor to the disease. However, the interplay between these processes and the primary event that leads to the coexistence of autoimmune and degenerative changes is still under debate. Here, we outline our current understanding of disease pathogenesis, focusing on degenerative mechanisms, and discuss the possible involvement of aging.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Cellular and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marta Cheli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| |
Collapse
|
4
|
Cisterna B, Malatesta M. Molecular and Structural Alterations of Skeletal Muscle Tissue Nuclei during Aging. Int J Mol Sci 2024; 25:1833. [PMID: 38339110 PMCID: PMC10855217 DOI: 10.3390/ijms25031833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Aging is accompanied by a progressive loss of skeletal muscle mass and strength. The mechanisms underlying this phenomenon are certainly multifactorial and still remain to be fully elucidated. Changes in the cell nucleus structure and function have been considered among the possible contributing causes. This review offers an overview of the current knowledge on skeletal muscle nuclei in aging, focusing on the impairment of nuclear pathways potentially involved in age-related muscle decline. In skeletal muscle two types of cells are present: fiber cells, constituting the contractile muscle mass and containing hundreds of myonuclei, and the satellite cells, i.e., the myogenic mononuclear stem cells occurring at the periphery of the fibers and responsible for muscle growth and repair. Research conducted on different experimental models and with different methodological approaches demonstrated that both the myonuclei and satellite cell nuclei of aged skeletal muscles undergo several structural and molecular alterations, affecting chromatin organization, gene expression, and transcriptional and post-transcriptional activities. These alterations play a key role in the impairment of muscle fiber homeostasis and regeneration, thus contributing to the age-related decrease in skeletal muscle mass and function.
Collapse
Affiliation(s)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy;
| |
Collapse
|
5
|
Inguscio CR, Lacavalla MA, Cisterna B, Zancanaro C, Malatesta M. Physical Training Chronically Stimulates the Motor Neuron Cell Nucleus in the Ts65Dn Mouse, a Model of Down Syndrome. Cells 2023; 12:1488. [PMID: 37296609 PMCID: PMC10252427 DOI: 10.3390/cells12111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Down syndrome (DS) is a genetically-based disease based on the trisomy of chromosome 21 (Hsa21). DS is characterized by intellectual disability in association with several pathological traits among which early aging and altered motor coordination are prominent. Physical training or passive exercise were found to be useful in counteracting motor impairment in DS subjects. In this study we used the Ts65Dn mouse, a widely accepted animal model of DS, to investigate the ultrastructural architecture of the medullary motor neuron cell nucleus taken as marker of the cell functional state. Using transmission electron microscopy, ultrastructural morphometry, and immunocytochemistry we carried out a detailed investigation of possible trisomy-related alteration(s) of nuclear constituents, which are known to vary their amount and distribution as a function of nuclear activity, as well as the effect of adapted physical training upon them. Results demonstrated that trisomy per se affects nuclear constituents to a limited extent; however, adapted physical training is able to chronically stimulate pre-mRNA transcription and processing activity in motor neuron nuclei of trisomic mice, although to a lesser extent than in their euploid mates. These findings are a step towards understanding the mechanisms underlying the positive effect of physical activity in DS.
Collapse
Affiliation(s)
| | | | | | - Carlo Zancanaro
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (C.R.I.); (M.A.L.); (B.C.); (M.M.)
| | | |
Collapse
|
6
|
Casali C, Siciliani S, Zannino L, Biggiogera M. Histochemistry for nucleic acid research: 60 years in the European Journal of Histochemistry. Eur J Histochem 2022; 66:3409. [PMID: 35441834 PMCID: PMC9044459 DOI: 10.4081/ejh.2022.3409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Since the discovery of DNA structure in 1953, the deoxyribonucleic acid has always been playing a central role in biological research. As physical and ordered nucleotides sequence, it stands at the base of genes existence. Furthermore, beside this 2-dimensional sequence, DNA is characterized by a 3D structural and functional organization, which is of interest for the scientific community due to multiple levels of expression regulation, of interaction with other biomolecules, and much more. Analogously, the nucleic acid counterpart of DNA, RNA, represents a central issue in research, because of its fundamental role in gene expression and regulation, and for the DNA-RNA interplay. Because of their importance, DNA and RNA have always been mentioned and studied in several publications, and the European Journal of Histochemistry is no exception. Here, we review and discuss the papers published in the last 60 years of this Journal, focusing on its contribution in deepening the knowledge about this topic and analysing papers that reflect the interest this Journal always granted to the world of DNA and RNA.
Collapse
Affiliation(s)
- Claudio Casali
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia.
| | - Stella Siciliani
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia.
| | - Lorena Zannino
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia.
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia.
| |
Collapse
|
7
|
Lofaro FD, Cisterna B, Lacavalla MA, Boschi F, Malatesta M, Quaglino D, Zancanaro C, Boraldi F. Age-Related Changes in the Matrisome of the Mouse Skeletal Muscle. Int J Mol Sci 2021; 22:10564. [PMID: 34638903 PMCID: PMC8508832 DOI: 10.3390/ijms221910564] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Aging is characterized by a progressive decline of skeletal muscle (SM) mass and strength which may lead to sarcopenia in older persons. To date, a limited number of studies have been performed in the old SM looking at the whole, complex network of the extracellular matrix (i.e., matrisome) and its aging-associated changes. In this study, skeletal muscle proteins were isolated from whole gastrocnemius muscles of adult (12 mo.) and old (24 mo.) mice using three sequential extractions, each one analyzed by liquid chromatography with tandem mass spectrometry. Muscle sections were investigated using fluorescence- and transmission electron microscopy. This study provided the first characterization of the matrisome in the old SM demonstrating several statistically significantly increased matrisome proteins in the old vs. adult SM. Several proteomic findings were confirmed and expanded by morphological data. The current findings shed new light on the mutually cooperative interplay between cells and the extracellular environment in the aging SM. These data open the door for a better understanding of the mechanisms modulating myocellular behavior in aging (e.g., by altering mechano-sensing stimuli as well as signaling pathways) and their contribution to age-dependent muscle dysfunction.
Collapse
Affiliation(s)
- Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, I-44100 Modena, Italy; (F.D.L.); (D.Q.)
| | - Barbara Cisterna
- Department of Neurological and Movement Sciences, University of Verona, I-37100 Verona, Italy; (B.C.); (M.A.L.); (M.M.)
| | - Maria Assunta Lacavalla
- Department of Neurological and Movement Sciences, University of Verona, I-37100 Verona, Italy; (B.C.); (M.A.L.); (M.M.)
| | - Federico Boschi
- Department of Computer Science, University of Verona, I-37100 Verona, Italy;
| | - Manuela Malatesta
- Department of Neurological and Movement Sciences, University of Verona, I-37100 Verona, Italy; (B.C.); (M.A.L.); (M.M.)
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, I-44100 Modena, Italy; (F.D.L.); (D.Q.)
| | - Carlo Zancanaro
- Department of Neurological and Movement Sciences, University of Verona, I-37100 Verona, Italy; (B.C.); (M.A.L.); (M.M.)
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, I-44100 Modena, Italy; (F.D.L.); (D.Q.)
| |
Collapse
|
8
|
Solovyeva EM, Ibebunjo C, Utzinger S, Eash JK, Dunbar A, Naumann U, Zhang Y, Serluca FC, Demirci S, Oberhauser B, Black F, Rausch M, Hoersch S, Meyer AS. New insights into molecular changes in skeletal muscle aging and disease: Differential alternative splicing and senescence. Mech Ageing Dev 2021; 197:111510. [PMID: 34019916 DOI: 10.1016/j.mad.2021.111510] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023]
Abstract
Progressive loss of muscle mass and function due to muscle fiber atrophy and loss in the elderly and chronically ill is now defined as sarcopenia. It is a major contributor to loss of independence, disability, need of long-term care as well as overall mortality. Sarcopenia is a heterogenous disease and underlying mechanisms are not completely understood. Here, we newly identified and used Tmem158, alongside Cdkn1a, as relevant senescence and denervation markers (SDMs), associated with muscle fiber atrophy. Subsequent application of laser capture microdissection (LCM) and RNA analyses revealed age- and disease-associated differences in gene expression and alternative splicing patterns in a rodent sarcopenia model. Of note, genes exhibiting such differential alternative splicing (DAS) are mainly involved in the contractile function of the muscle. Many of these splicing events are also found in a mouse model for myotonic dystrophy type 1 (DM1), underscoring the premature aging phenotype of this disease. We propose to add differential alternative splicing to the hallmarks of aging.
Collapse
Affiliation(s)
- Elizaveta M Solovyeva
- NIBR Informatics, 4056, Basel, Switzerland; V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia; Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, 141701, Russia
| | | | - Stephan Utzinger
- Novartis Institute for Biomedical Research (NIBR), Musculoskeletal Diseases, 4056, Basel, Switzerland
| | - John K Eash
- NIBR, Musculoskeletal Diseases, Cambridge, MA, 02139, USA
| | - Andrew Dunbar
- NIBR, Analytical Sciences and Imaging, 4056, Basel, Switzerland
| | - Ulrike Naumann
- NIBR, Chemical Biology & Therapeutics, 4056, Basel, Switzerland
| | - Yunyu Zhang
- NIBR, Musculoskeletal Diseases, Cambridge, MA, 02139, USA
| | | | - Sabrina Demirci
- Novartis Institute for Biomedical Research (NIBR), Musculoskeletal Diseases, 4056, Basel, Switzerland
| | | | - Frederique Black
- NIBR, Cardiovascular & Metabolic Diseases, Cambridge, MA02139, USA
| | - Martin Rausch
- NIBR, Analytical Sciences and Imaging, 4056, Basel, Switzerland
| | | | - Angelika S Meyer
- Novartis Institute for Biomedical Research (NIBR), Musculoskeletal Diseases, 4056, Basel, Switzerland.
| |
Collapse
|
9
|
Age-dependent changes in nuclear-cytoplasmic signaling in skeletal muscle. Exp Gerontol 2021; 150:111338. [PMID: 33862137 DOI: 10.1016/j.exger.2021.111338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/28/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
Mechanical forces are conducted through myofibers and into nuclei to regulate muscle development, hypertrophy, and homeostasis. We hypothesized that nuclei in aged muscle have changes in the nuclear envelope and associated proteins, resulting in altered markers of mechano-signaling. METHODS YAP/TAZ protein expression and gene expression of downstream targets, Ankrd1 and Cyr61, were evaluated as mechanotransduction indicators. Expression of proteins in the nuclear lamina and the nuclear pore complex (NPC) were assessed, and nuclear morphology was characterized by electron microscopy. Nuclear envelope permeability was assessed by uptake of 70 kDa fluorescent dextran. RESULTS Nuclear changes with aging included a relative decrease of lamin β1 and Nup107, and a relative increase in Nup93, which could underlie the aberrant nuclear morphology, increased nuclear leakiness, and elevated YAP/TAZ signaling. CONCLUSION Aged muscles have hyperactive nuclear-cytoplasmic signaling, indicative of altered nuclear mechanotransduction. These data highlight a possible role for the nucleus in aging-related aberrant mechano-sensing.
Collapse
|
10
|
Snijders T, Holwerda AM, van Loon LJC, Verdijk LB. Myonuclear content and domain size in small versus larger muscle fibres in response to 12 weeks of resistance exercise training in older adults. Acta Physiol (Oxf) 2021; 231:e13599. [PMID: 33314750 PMCID: PMC8047909 DOI: 10.1111/apha.13599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
AIM To assess the relation between muscle fibre hypertrophy and myonuclear accretion in relatively small and large muscle fibre size clusters following prolonged resistance exercise training in older adults. METHODS Muscle biopsies were collected before and after 12 weeks of resistance exercise training in 40 healthy, older men (70 ± 3 years). All muscle fibres were ordered by size and categorized in four muscle fibre size clusters: 'Small': 2000-3999 µm2 , 'Moderate': 4000-5999 µm2 , 'Large': 6000-7999 µm2 and 'Largest': 8000-9999 µm2 . Changes in muscle fibre size cluster distribution were related to changes in muscle fibre size, myonuclear content and myonuclear domain size. RESULTS With training, the percentage of muscle fibres decreased in the Small (from 23 ± 12 to 17 ± 14%, P < .01) and increased in the Largest (from 11 ± 8 to 15 ± 10%, P < .01) muscle fibre size clusters. The decline in the percentage of Small muscle fibres was accompanied by an increase in overall myonuclear domain size (r = -.466, P = .002) and myonuclear content (r = -.390, P = .013). In contrast, the increase in the percentage of the Largest muscle fibres was accompanied by an overall increase in myonuclear content (r = .616, P < .001), but not in domain size. CONCLUSION Prolonged resistance-type exercise training induces a decline in the percentage of small as well as an increase in the percentage of the largest muscle fibres in older adults. Whereas the change in the percentage of small fibres is best predicted by an increase in overall myonuclear domain size, the change in the percentage of the largest fibres is associated with an overall increase in myonuclear content.
Collapse
Affiliation(s)
- Tim Snijders
- Human BiologySchool of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Andy M. Holwerda
- Human BiologySchool of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Luc J. C. van Loon
- Human BiologySchool of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Lex B. Verdijk
- Human BiologySchool of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
11
|
Lacavalla MA, Cisterna B, Zancanaro C, Malatesta M. Ultrastructural immunocytochemistry shows impairment of RNA pathways in skeletal muscle nuclei of old mice: A link to sarcopenia? Eur J Histochem 2021; 65:3229. [PMID: 33764019 PMCID: PMC8033527 DOI: 10.4081/ejh.2021.3229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
During aging, skeletal muscle is affected by sarcopenia, a progressive decline in muscle mass, strength and endurance that leads to loss of function and disability. Cell nucleus dysfunction is a possible factor contributing to sarcopenia because aging-associated alterations in mRNA and rRNA transcription/maturation machinery have been shown in several cell types including muscle cells. In this study, the distribution and density of key molecular factors involved in RNA pathways namely, nuclear actin (a motor protein and regulator of RNA transcription), 5-methyl cytosine (an epigenetic regulator of gene transcription), and ribonuclease A (an RNA degrading enzyme) were compared in different nuclear compartments of late adult and old mice myonuclei by means of ultrastructural immunocytochemistry. In all nuclear compartments, an age-related decrease of nuclear actin suggested altered chromatin structuring and impaired nucleus-to-cytoplasm transport of both mRNA and ribosomal subunits, while a decrease of 5-methyl cytosine and ribonuclease A in the nucleoli of old mice indicated an age-dependent loss of rRNA genes. These findings provide novel experimental evidence that, in the aging skeletal muscle, nuclear RNA pathways undergo impairment, likely hindering protein synthesis and contributing to the onset and progression of sarcopenia.
Collapse
Affiliation(s)
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Carlo Zancanaro
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| |
Collapse
|
12
|
Malatesta M, Costanzo M, Cisterna B, Zancanaro C. Satellite Cells in Skeletal Muscle of the Hibernating Dormouse, a Natural Model of Quiescence and Re-Activation: Focus on the Cell Nucleus. Cells 2020; 9:cells9041050. [PMID: 32340154 PMCID: PMC7226265 DOI: 10.3390/cells9041050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Satellite cells (SCs) participate in skeletal muscle plasticity/regeneration. Activation of SCs implies that nuclear changes underpin a new functional status. In hibernating mammals, periods of reduced metabolic activity alternate with arousals and resumption of bodily functions, thereby leading to repeated cell deactivation and reactivation. In hibernation, muscle fibers are preserved despite long periods of immobilization. The structural and functional characteristics of SC nuclei during hibernation have not been investigated yet. Using ultrastructural and immunocytochemical analysis, we found that the SCs of the hibernating edible dormouse, Glis glis, did not show apoptosis or necrosis. Moreover, their nuclei were typical of quiescent cells, showing similar amounts and distributions of heterochromatin, pre-mRNA transcription and processing factors, as well as paired box protein 7 (Pax7) and the myogenic differentiation transcription factor D (MyoD), as in euthermia. However, the finding of accumulated perichromatin granules (i.e., sites of storage/transport of spliced pre-mRNA) in SC nuclei of hibernating dormice suggested slowing down of the nucleus-to-cytoplasm transport. We conclude that during hibernation, SC nuclei maintain similar transcription and splicing activity as in euthermia, indicating an unmodified status during immobilization and hypometabolism. Skeletal muscle preservation during hibernation is presumably not due to SC activation, but rather to the maintenance of some functional activity in myofibers that is able to counteract muscle wasting.
Collapse
Affiliation(s)
- Manuela Malatesta
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8 I-37134 Verona, Italy; (M.M.); (M.C.); (C.Z.)
| | - Manuela Costanzo
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8 I-37134 Verona, Italy; (M.M.); (M.C.); (C.Z.)
| | - Barbara Cisterna
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8 I-37134 Verona, Italy; (M.M.); (M.C.); (C.Z.)
- Correspondence:
| | - Carlo Zancanaro
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8 I-37134 Verona, Italy; (M.M.); (M.C.); (C.Z.)
| |
Collapse
|
13
|
Nuclear bodies reorganize during myogenesis in vitro and are differentially disrupted by expression of FSHD-associated DUX4. Skelet Muscle 2016; 6:42. [PMID: 27906075 PMCID: PMC5134237 DOI: 10.1186/s13395-016-0113-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022] Open
Abstract
Background Nuclear bodies, such as nucleoli, PML bodies, and SC35 speckles, are dynamic sub-nuclear structures that regulate multiple genetic and epigenetic processes. Additional regulation is provided by RNA/DNA handling proteins, notably TDP-43 and FUS, which have been linked to ALS pathology. Previous work showed that mouse cell line myotubes have fewer but larger nucleoli than myoblasts, and we had found that nuclear aggregation of TDP-43 in human myotubes was induced by expression of DUX4-FL, a transcription factor that is aberrantly expressed and causes pathology in facioscapulohumeral dystrophy (FSHD). However, questions remained about nuclear bodies in human myogenesis and in muscle disease. Methods We examined nucleoli, PML bodies, SC35 speckles, TDP-43, and FUS in myoblasts and myotubes derived from healthy donors and from patients with FSHD, laminin-alpha-2-deficiency (MDC1A), and alpha-sarcoglycan-deficiency (LGMD2D). We further examined how these nuclear bodies and proteins were affected by DUX4-FL expression. Results We found that nucleoli, PML bodies, and SC35 speckles reorganized during differentiation in vitro, with all three becoming less abundant in myotube vs. myoblast nuclei. In addition, though PML bodies did not change in size, both nucleoli and SC35 speckles were larger in myotube than myoblast nuclei. Similar patterns of nuclear body reorganization occurred in healthy control, MDC1A, and LGMD2D cultures, as well as in the large fraction of nuclei that did not show DUX4-FL expression in FSHD cultures. In contrast, nuclei that expressed endogenous or exogenous DUX4-FL, though retaining normal nucleoli, showed disrupted morphology of some PML bodies and most SC35 speckles and also co-aggregation of FUS with TDP-43. Conclusions Nucleoli, PML bodies, and SC35 speckles reorganize during human myotube formation in vitro. These nuclear body reorganizations are likely needed to carry out the distinct gene transcription and splicing patterns that are induced upon myotube formation. DUX4-FL-induced disruption of some PML bodies and most SC35 speckles, along with co-aggregation of TDP-43 and FUS, could contribute to pathogenesis in FSHD, perhaps by locally interfering with genetic and epigenetic regulation of gene expression in the small subset of nuclei that express high levels of DUX4-FL at any one time.
Collapse
|
14
|
Cisterna B, Giagnacovo M, Costanzo M, Fattoretti P, Zancanaro C, Pellicciari C, Malatesta M. Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice. J Anat 2016; 228:771-83. [PMID: 26739770 DOI: 10.1111/joa.12429] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 01/02/2023] Open
Abstract
During ageing, a progressive loss of skeletal muscle mass and a decrease in muscle strength and endurance take place, in the condition termed sarcopenia. The mechanisms of sarcopenia are complex and still unclear; however, it is known that muscle atrophy is associated with a decline in the number and/or efficiency of satellite cells, the main contributors to muscle regeneration. Physical exercise proved beneficial in sarcopenia; however, knowledge of the effect of adapted physical exercise on the myogenic properties of satellite cells in aged muscles is limited. In this study the amount and activation state of satellite cells as well as their proliferation and differentiation potential were assessed in situ by morphology, morphometry and immunocytochemistry at light and transmission electron microscopy on 28-month-old mice submitted to adapted aerobic physical exercise on a treadmill. Sedentary age-matched mice served as controls, and sedentary adult mice were used as a reference for an unperturbed control at an age when the capability of muscle regeneration is still high. The effect of physical exercise in aged muscles was further analysed by comparing the myogenic potential of satellite cells isolated from old running and old sedentary mice using an in vitro system that allows observation of the differentiation process under controlled experimental conditions. The results of this ex vivo and in vitro study demonstrated that adapted physical exercise increases the number and activation of satellite cells as well as their capability to differentiate into structurally and functionally correct myotubes (even though the age-related impairment in myotube formation is not fully reversed): this evidence further supports adapted physical exercise as a powerful, non-pharmacological approach to counteract sarcopenia and the age-related deterioration of satellite cell capabilities even at very advanced age.
Collapse
Affiliation(s)
- Barbara Cisterna
- Department of Neurological and Movement Sciences, Anatomy and Histology Section, University of Verona, Verona, Italy
| | - Marzia Giagnacovo
- Department of Animal Biology, Laboratory of Cell Biology, University of Pavia, Pavia, Italy
| | - Manuela Costanzo
- Department of Neurological and Movement Sciences, Anatomy and Histology Section, University of Verona, Verona, Italy
| | - Patrizia Fattoretti
- Cellular Bioenergetics Laboratory, Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| | - Carlo Zancanaro
- Department of Neurological and Movement Sciences, Anatomy and Histology Section, University of Verona, Verona, Italy
| | - Carlo Pellicciari
- Department of Animal Biology, Laboratory of Cell Biology, University of Pavia, Pavia, Italy
| | - Manuela Malatesta
- Department of Neurological and Movement Sciences, Anatomy and Histology Section, University of Verona, Verona, Italy
| |
Collapse
|
15
|
Doles JD, Olwin BB. Muscle stem cells on the edge. Curr Opin Genet Dev 2015; 34:24-8. [DOI: 10.1016/j.gde.2015.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/04/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
|
16
|
Muscle Quality in Aging: a Multi-Dimensional Approach to Muscle Functioning with Applications for Treatment. Sports Med 2015; 45:641-58. [DOI: 10.1007/s40279-015-0305-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Zhang T, Birbrair A, Wang ZM, Taylor J, Messi ML, Delbono O. Troponin T nuclear localization and its role in aging skeletal muscle. AGE (DORDRECHT, NETHERLANDS) 2013; 35:353-370. [PMID: 22189912 PMCID: PMC3592954 DOI: 10.1007/s11357-011-9368-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/08/2011] [Indexed: 05/31/2023]
Abstract
Troponin T (TnT) is known to mediate the interaction between Tn complex and tropomyosin (Tm), which is essential for calcium-activated striated muscle contraction. This regulatory function takes place in the myoplasm, where TnT binds Tm. However, recent findings of troponin I and Tm nuclear translocation in Drosophila and mammalian cells imply other roles for the Tn-Tm complex. We hypothesized that TnT plays a nonclassical role through nuclear translocation. Immunoblotting with different antibodies targeting the NH2- or COOH-terminal region uncovered a pool of fast skeletal muscle TnT3 localized in the nuclear fraction of mouse skeletal muscle as either an intact or fragmented protein. Construction of TnT3-DsRed fusion proteins led to the further observation that TnT3 fragments are closely related to nucleolus and RNA polymerase activity, suggesting a role for TnT3 in regulating transcription. Functionally, overexpression of TnT3 fragments produced significant defects in nuclear shape and caused high levels of apoptosis. Interestingly, nuclear TnT3 and its fragments were highly regulated by aging, thus creating a possible link between the deleterious effects of TnT3 and sarcopenia. We propose that changes in nuclear TnT3 and its fragments cause the number of myonuclei to decrease with age, contributing to muscle damage and wasting.
Collapse
Affiliation(s)
- Tan Zhang
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Alexander Birbrair
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
- />Neuroscience Program, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Zhong-Min Wang
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Jackson Taylor
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
- />Neuroscience Program, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - María Laura Messi
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Osvaldo Delbono
- />Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
- />Neuroscience Program, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
18
|
Malatesta M, Giagnacovo M, Cardani R, Meola G, Pellicciari C. Human myoblasts from skeletal muscle biopsies: in vitro culture preparations for morphological and cytochemical analyses at light and electron microscopy. Methods Mol Biol 2013; 976:67-79. [PMID: 23400435 DOI: 10.1007/978-1-62703-317-6_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We describe protocols for the isolation of satellite cells from human muscle biopsies, for the in vitro culture of proliferating and differentiating myoblasts, and for the preparation of cell samples suitable for morphological and cytochemical analyses at light and electron microscopy. The procedures described are especially appropriate for processing small muscle biopsies, and allow obtaining myoblast/myotube monolayers on glass coverslips, thus preserving good cell morphology and immunoreactivity for protein markers of myoblast proliferation, differentiation, and senescence.These cell preparations are suitable for cytochemical, immunocytochemical, and FISH procedures at light microscopy, and can be observed not only in bright field, phase contrast, and differential interference contrast but also in fluorescence (which can hardly be used for cells grown on conventional plastic surfaces, which generally exhibit intense autofluorescence). In their ultrastructural cytochemical application, the protocols are intended for post-embedding techniques, by which ultrathin sections from a single sample may be used for detecting a wide variety of molecular markers.
Collapse
Affiliation(s)
- Manuela Malatesta
- Sezione di Anatomia e Istologia, Dipartimento di Scienze Neurologiche, Neuropsicologiche, Morfologiche e Motorie, University of Verona, Verona, Italy.
| | | | | | | | | |
Collapse
|
19
|
Feng X, Todd T, Lintzenich CR, Ding J, Carr JJ, Ge Y, Browne JD, Kritchevsky SB, Butler SG. Aging-related geniohyoid muscle atrophy is related to aspiration status in healthy older adults. J Gerontol A Biol Sci Med Sci 2012; 68:853-60. [PMID: 23112114 DOI: 10.1093/gerona/gls225] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Age-related muscle weakness due to atrophy and fatty infiltration in orofacial muscles may be related to swallowing deficits in older adults. An important component of safe swallowing is the geniohyoid (GH) muscle, which helps elevate and stabilize the hyoid bone, thus protecting the airway. This study aimed to explore whether aging and aspiration in older adults were related to GH muscle atrophy and fatty infiltration. METHOD Eighty computed tomography scans of the head and neck from 40 healthy older (average age 78 years) and 40 younger adults (average age 32 years) were analyzed. Twenty aspirators and 20 nonaspirators from the 40 older adults had been identified previously. Two-dimensional views in the sagittal and coronal planes were used to measure the GH cross-sectional area and fatty infiltration. RESULTS GH cross-sectional area was larger in men than in women (p < .05). Decreased cross-sectional area was associated with aging (p < .05), and cross-sectional area was significantly smaller in aspirators compared with nonaspirators, but only among the older men (p < .01). Increasing fatty infiltration was associated with aging in the middle (p < .05) and posterior (p < .01) portions of the GH muscle. There was no significant difference in fatty infiltration of the GH muscle among aspirators and nonaspirators. CONCLUSION GH muscle atrophy was associated with aging and aspiration. Fatty infiltration in the GH muscle was increased with aging but not related to aspiration status. These findings suggest that GH muscle atrophy may be a component of decreased swallowing safety and aspiration in older adults and warrants further investigation.
Collapse
Affiliation(s)
- Xin Feng
- Department of Otolaryngology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lattanzi G, Marmiroli S, Facchini A, Maraldi NM. Nuclear damages and oxidative stress: new perspectives for laminopathies. Eur J Histochem 2012; 56:e45. [PMID: 23361241 PMCID: PMC3567764 DOI: 10.4081/ejh.2012.e45] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 10/11/2012] [Accepted: 10/09/2012] [Indexed: 01/27/2023] Open
Abstract
Mutations in genes encoding nuclear envelope proteins, particularly LMNA encoding the A-type lamins, cause a broad range of diverse diseases, referred to as laminopathies. The astonishing variety of diseased phenotypes suggests that different mechanisms could be involved in the pathogenesis of laminopathies. In this review we will focus mainly on two of these pathogenic mechanisms: the nuclear damages affecting the chromatin organization, and the oxidative stress causing un-repairable DNA damages. Alteration in the nuclear profile and in chromatin organization, which are particularly impressive in systemic laminopathies whose cells undergo premature senescence, are mainly due to accumulation of unprocessed prelamin A. The toxic effect of these molecular species, which interfere with chromatin-associated proteins, transcription factors, and signaling pathways, could be reduced by drugs which reduce their farnesylation and/or stability. In particular, inhibitors of farnesyl transferase (FTIs), have been proved to be active in rescuing the altered cellular phenotype, and statins, also in association with other drugs, have been included into pilot clinical trials. The identification of a mechanism that accounts for accumulation of un-repairable DNA damage due to reactive oxygen species (ROS) generation in laminopathic cells, similar to that found in other muscular dystrophies (MDs) caused by altered expression of extracellular matrix (ECM) components, suggests that anti-oxidant therapeutic strategies might prove beneficial to laminopathic patients.
Collapse
Affiliation(s)
- G Lattanzi
- Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | | | | | | |
Collapse
|
21
|
The impact of mRNA turnover and translation on age-related muscle loss. Ageing Res Rev 2012; 11:432-41. [PMID: 22687959 DOI: 10.1016/j.arr.2012.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/25/2012] [Accepted: 05/31/2012] [Indexed: 12/21/2022]
Abstract
The deterioration of skeletal muscle that develops slowly with age, termed sarcopenia, often leads to disability and mortality in the elderly population. As the proportion of elderly citizens continues to increase due to the dramatic rise in life expectancy, there are rising concerns about the healthcare cost and social burden of caring for geriatric patients. Thus, there is a growing need to understand the underlying mechanisms of sarcopenic muscle loss so that more efficacious therapies may be developed. Building evidence suggests that the onset of age-related muscle loss is linked to the age-related changes in gene expression that occur during sarcopenia. In recent work, the posttranscriptional regulation of gene expression by RNA-binding proteins (RBPs) and microRNA (miRNA) involved in the turnover and translation of mRNA were shown as key players believed to be involved in the induction of muscle wasting. Furthermore, posttranscriptional regulation may also be linked to the reduced ability of muscle satellite cells to contribute to muscle mass during ageing, a key contributing factor to sarcopenic progression. Here we highlight how the activation of pathways such as the p38 MAPK and the phosphoinositide 3-kinase (PI3K) pathways alter the ability of RBPs to regulate the expression of their target mRNAs encoding proteins involved in cell cycle (p21 and p16), as well as myogenesis (Pax7, myogenin and MyoD). Further investigation into the role of RBPs and miRNA during sarcopenia may provide new insights into the development and progression of this disorder, which may lead to the development of new treatment options for elderly patients suffering from sarcopenia.
Collapse
|
22
|
Malatesta M, Fattoretti P, Giagnacovo M, Pellicciari C, Zancanaro C. Physical training modulates structural and functional features of cell nuclei in type II myofibers of old mice. Rejuvenation Res 2011; 14:543-52. [PMID: 21978085 DOI: 10.1089/rej.2011.1175] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aging is associated with a progressive loss of muscle mass, strength, and function, a condition known as sarcopenia, which represents an important risk factor for physical disability in elderly. The mechanisms leading to sarcopenia are still largely unknown, and no specific therapy is presently available to counteract its onset or progress. Many studies have stressed the importance of physical exercise as an effective approach to prevent/limit the age-related muscle mass loss. This study investigated the effects of physical training on pre-mRNA pathways in quadriceps and gastrocnemius muscles of old mice by ultrastructural cytochemistry: Structural and in situ molecular features of myonuclei and satellite cell nuclei of type II fibers were compared in exercised versus sedentary old mice, using adult individuals as control. Our results demonstrated that in myonuclei of old mice physical exercise stimulates pre-mRNA transcription, splicing, and export to the cytoplasm, likely increasing muscle protein turnover. In satellite cells, the effect of physical exercise seems to be limited to the reactivation of some factors involved in the transcriptional and splicing apparatus without increasing RNA production, probably making these quiescent cells more responsive to activating stimuli.
Collapse
Affiliation(s)
- Manuela Malatesta
- Department of Neurological, Neuropsychological, Morphological and Motor Sciences, Anatomy and Histology Section, University of Verona, Verona, Italy.
| | | | | | | | | |
Collapse
|
23
|
Malatesta M, Giagnacovo M, Cardani R, Meola G, Pellicciari C. RNA processing is altered in skeletal muscle nuclei of patients affected by myotonic dystrophy. Histochem Cell Biol 2011; 135:419-25. [PMID: 21387185 DOI: 10.1007/s00418-011-0797-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2011] [Indexed: 01/07/2023]
Abstract
Myotonic dystrophies (DMs) are characterised by highly variable clinical manifestations consisting of muscle weakness and atrophy, and a wide spectrum of extramuscular manifestations. In both DM1 and DM2 forms, expanded nucleotide sequences cause the accumulation of mutant transcripts in the nucleus, thus deregulating the function of some RNA-binding proteins and providing a plausible explanation for the multifactorial phenotype of DM patients. However, at the skeletal muscle level, no mechanistic explanation for the muscle wasting has so far been proposed. We therefore performed a study in situ by immunoelectron microscopy on biceps brachii biopsies from DM1, DM2 and healthy subjects, providing the first ultrastructural evidence on the distribution of some nuclear ribonucleoprotein (RNP)-containing structures and molecular factors involved in pre-mRNA transcription and maturation in dystrophic myonuclei. Our results demonstrated an accumulation of splicing and cleavage factors in myonuclei of both DM1 and DM2 patients, suggesting an impairment of post-transcriptional pre-mRNA pathways. The transcription of the expanded sequences in DM myonuclei would therefore hamper functionality of the whole splicing machinery, slowing down the intranuclear molecular trafficking; this would reduce the capability of myonuclei to respond to anabolic stimuli thus contributing to muscle wasting.
Collapse
Affiliation(s)
- Manuela Malatesta
- Dipartimento di Scienze Neurologiche, Neuropsicologiche, Morfologiche e Motorie, Sezione di Anatomia e Istologia, Università di Verona, Verona, Italy
| | | | | | | | | |
Collapse
|
24
|
van der Meer SF, Jaspers RT, Jones DA, Degens H. Time-course of changes in the myonuclear domain during denervation in young-adult and old rat gastrocnemius muscle. Muscle Nerve 2011; 43:212-22. [DOI: 10.1002/mus.21822] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|