1
|
Dai Y, Cheng Y, Ge R, Chen K, Yang L. Exercise-induced adaptation of neurons in the vertebrate locomotor system. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:160-171. [PMID: 37914153 PMCID: PMC10980905 DOI: 10.1016/j.jshs.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 11/03/2023]
Abstract
Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli. In particular, how these neurons respond to physical exercise has long been an area of active research. Studies of the vertebrate locomotor system's adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise. In this brief review, we highlight recent results and insights from the field with a focus on the following mechanisms: (a) alterations in neuronal excitability during acute exercise; (b) alterations in neuronal excitability after chronic exercise; (c) exercise-induced changes in neuronal membrane properties via modulation of ion channel activity; (d) exercise-enhanced dendritic plasticity; and (e) exercise-induced alterations in neuronal gene expression and protein synthesis. Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise.
Collapse
Affiliation(s)
- Yue Dai
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China.
| | - Yi Cheng
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| | - Renkai Ge
- School of Physical Education and Health Care, East China Jiaotong University, Nanchang 330013, China
| | - Ke Chen
- Key Laboratory of High Confidence Software Technologies of Ministry of Education, School of Computer Science, Peking University, Beijing 100871, China
| | - Liming Yang
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| |
Collapse
|
2
|
Dellavia CPB, Begnoni G, Zerosi C, Guenza G, Khomchyna N, Rosati R, Musto F, Pellegrini G. Neuromuscular Stability of Dental Occlusion in Patients Treated with Aligners and Fixed Orthodontic Appliance: A Preliminary Electromyographical Longitudinal Case-Control Study. Diagnostics (Basel) 2022; 12:diagnostics12092131. [PMID: 36140532 PMCID: PMC9498023 DOI: 10.3390/diagnostics12092131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to evaluate if, after treatment with aligners (ALIGN) and fixed orthodontic appliance (FOA), alterations of the neuromuscular activity may occur and if differences in these changes can be detected between the two treatments. Sixteen healthy patients (7 FOA, 9 ALIGN) with class I or class II molar relation were recruited. Standardized surface electromyography (ssEMG) was used to evaluate the activity of the masticatory muscles (masseters-MM and temporalis-TM) before the beginning of the orthodontic treatment (T1), at the end (T2), and 3 months (T3) after the end of the treatment. Intragroup (within timepoints) and intergroup differences were statistically analyzed. At T1, the mean values of each ssEMG index were within the normal range in both groups. At T2, the FOA group showed larger differential recruitment of the MM than TA muscles with a value slightly over the normal range. All the indexes were normalized at T3, and no differences emerged between groups. In the FOA group, the index of MM symmetrical contraction increased significantly at T3 compared to T1 and T2. In the ALIGN group, no significant changes were observed between each timepoint. In FOA subjects, a slight alteration of the muscular activity appeared immediately after bracket removal and this alteration normalized after 3 months of rescue. In subjects treated with aligners, no significant alteration of the muscular activity was assessed.
Collapse
Affiliation(s)
- Claudia Paola Bruna Dellavia
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy
| | - Giacomo Begnoni
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy
- Correspondence: ; Tel.: +39-02-02503-15405
| | - Cristiana Zerosi
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy
- Independent Researcher, Via Matteo Bandello, 6, 20123 Milan, Italy
| | - Guia Guenza
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy
| | - Natalie Khomchyna
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy
| | - Riccardo Rosati
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy
| | - Federica Musto
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy
| | - Gaia Pellegrini
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy
| |
Collapse
|
3
|
Coletti C, Acosta GF, Keslacy S, Coletti D. Exercise-mediated reinnervation of skeletal muscle in elderly people: An update. Eur J Transl Myol 2022; 32. [PMID: 35234025 PMCID: PMC8992679 DOI: 10.4081/ejtm.2022.10416] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
Sarcopenia is defined by the loss of muscle mass and function. In aging sarcopenia is due to mild chronic inflammation but also to fiber-intrinsic defects, such as mitochondrial dysfunction. Age-related sarcopenia is associated with physical disability and lowered quality of life. In addition to skeletal muscle, the nervous tissue is also affected in elderly people. With aging, type 2 fast fibers preferentially undergo denervation and are reinnervated by slow-twitch motor neurons. They spread forming new neuro-muscular junctions with the denervated fibers: the result is an increased proportion of slow fibers that group together since they are associated in the same motor unit. Grouping and fiber type shifting are indeed major histological features of aging skeletal muscle. Exercise has been proposed as an intervention for age-related sarcopenia due to its numerous beneficial effects on muscle mechanical and biochemical features. In 2013, a precursor study in humans was published in the European Journal of Translation Myology (formerly known as Basic and Applied Myology), highlighting the occurrence of reinnervation in the musculature of aged, exercise-trained individuals as compared to the matching control. This paper, entitled «Reinnervation of Vastus lateralis is increased significantly in seniors (70-years old) with a lifelong history of high-level exercise», is now being reprinted for the second issue of the «Ejtm Seminal Paper Series». In this short review we discuss those results in the light of the most recent advances confirming the occurrence of exercise-mediated reinnervation, ultimately preserving muscle structure and function in elderly people who exercise.
Collapse
Affiliation(s)
- Claudia Coletti
- School of Kinesiology, Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA.
| | - Gilberto F Acosta
- School of Kinesiology, Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA.
| | - Stefan Keslacy
- School of Kinesiology, Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA.
| | - Dario Coletti
- DAHFMO - Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy; Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France; Interuniversity institute of Myology, Ro.
| |
Collapse
|
4
|
Liu J, Wang Z, Shen D, Yang X, Liu M, Cui L. Split phenomenon of antagonistic muscle groups in amyotrophic lateral sclerosis: relative preservation of flexor muscles. Neurol Res 2020; 43:372-380. [PMID: 33372862 DOI: 10.1080/01616412.2020.1866354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective: In addition to the split hand sign, other split phenomena of different muscles also exist in amyotrophic lateral sclerosis (ALS). We analyzed the incidence of split phenomena in multiple antagonistic muscle groups in ALS patients and explored whether clinical factors affected their occurrence.Methods: 618 ALS patients were included from a single ALS center. Muscle strength in upper and lower limbs was evaluated using the modified Medical Research Council (MRC) scoring system (range from 1 to 13). Split phenomena between different antagonistic muscle groups were summarized, and the correlations with clinical factors were analyzed.Results: Split phenomena were detected in 22.3% antagonistic muscles for flexion and extension of the elbow, 11.9% for the wrist, 23.9% for fingers, 18.2% for the ankle, and 14.7% for toes. These manifestations were characterized by preferential wasting of the elbow, wrist, and finger extensor muscles compared with the flexor muscles, and the ankle and toe dorsiflexor muscles compared with the plantar flexor muscles. The presence of muscle wasting was more common when the muscle strength was stronger than a modified MRC grade 6. No definite correlation was found between split phenomena and clinical factors, including age-at-onset, gender, disease duration, the region of onset, and pyramidal tract damage.Discussion: Split phenomena of antagonistic muscle groups widely exist in ALS patients. No definitive and consistent clinical factors were observed that affected the occurrence of these phenomena.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhili Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xunzhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Neurosciences Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Wilkinson DJ, Rodriguez-Blanco G, Dunn WB, Phillips BE, Williams JP, Greenhaff PL, Smith K, Gallagher IJ, Atherton PJ. Untargeted metabolomics for uncovering biological markers of human skeletal muscle ageing. Aging (Albany NY) 2020; 12:12517-12533. [PMID: 32580166 PMCID: PMC7377844 DOI: 10.18632/aging.103513] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Ageing compromises skeletal muscle mass and function through poorly defined molecular aetiology. Here we have used untargeted metabolomics using UHPLC-MS to profile muscle tissue from young (n=10, 25±4y), middle aged (n=18, 50±4y) and older (n=18, 70±3y) men and women (50:50). Random Forest was used to prioritise metabolite features most informative in stratifying older age, with potential biological context examined using the prize-collecting Steiner forest algorithm embedded in the PIUMet software, to identify metabolic pathways likely perturbed in ageing. This approach was able to filter a large dataset of several thousand metabolites down to subnetworks of age important metabolites. Identified networks included the common age-associated metabolites such as androgens, (poly)amines/amino acids and lipid metabolites, in addition to some potentially novel ageing related markers such as dihydrothymine and imidazolone-5-proprionic acid. The present study reveals that this approach is a potentially useful tool to identify processes underlying human tissue ageing, and could therefore be utilised in future studies to investigate the links between age predictive metabolites and common biomarkers linked to health and disease across age.
Collapse
Affiliation(s)
- Daniel J Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Giovanny Rodriguez-Blanco
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, Birmingham, UK.,Beatson Institute for Cancer Research, Glasgow, UK
| | - Warwick B Dunn
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, Birmingham, UK
| | - Bethan E Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - John P Williams
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Paul L Greenhaff
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Kenneth Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Iain J Gallagher
- University of Stirling, Faculty of Health Sciences and Sport, Stirling, UK
| | - Philip J Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| |
Collapse
|
6
|
Mohamed AA. Can Proprioceptive Training Enhance Fatigability and Decrease Progression Rate of Sarcopenia in Seniors? A Novel Approach. Curr Rheumatol Rev 2020; 17:58-67. [PMID: 32348231 DOI: 10.2174/1573397116666200429113226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 01/03/2023]
Abstract
Sarcopenia is a common condition in older adults, which causes the frequent occurrence of muscle fatigue. Muscle fatigue commonly develops among seniors. Muscle fatigue is a type of physical fatigue that occurs due to either motor or sensory dysfunctions. Current interventions developed to decrease the occurrence of muscle fatigue, which include either increasing rest periods or subdividing large tasks into small ones. The effectiveness of these interventions is highly contradicted. Recently, researchers discovered that mechanoreceptors are the main receptors of muscle fatigue, however, no clinical study investigated the effect of performing proprioceptive training to enhance the mechanoreceptors and decrease the occurrence of muscle fatigue. Performing proprioceptive training could improve muscle fatigue by improving its sensory part. The function of mechanoreceptors might consequently enhance fatigue and decrease the progression rate of sarcopenia. Thus, this review was conducted to suggest a novel approach of treatment to enhance fatigue and decrease Sarcopenia in seniors. This might be accomplished through increasing the firing rate of α- motor neurons, increasing the amount of Ca2+ ions in the neuromuscular junction, slowing the progression rate of Sarcopenia, and correcting movement deviations, which commonly occur with muscle fatigue in seniors. In conclusion, proprioceptive training could play an effective role in decreasing the progression rate of sarcopenia and enhancing the fatigability among seniors.
Collapse
Affiliation(s)
- Ayman A Mohamed
- Department of Physiotherapy and Rehabilitation, School of Health Sciences, Istanbul Gelisim University, Istanbul, Turkey
| |
Collapse
|
7
|
Carraro U. Thirty years of translational research in Mobility Medicine: Collection of abstracts of the 2020 Padua Muscle Days. Eur J Transl Myol 2020; 30:8826. [PMID: 32499887 PMCID: PMC7254447 DOI: 10.4081/ejtm.2019.8826] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
More than half a century of skeletal muscle research is continuing at Padua University (Italy) under the auspices of the Interdepartmental Research Centre of Myology (CIR-Myo), the European Journal of Translational Myology (EJTM) and recently also with the support of the A&CM-C Foundation for Translational Myology, Padova, Italy. The Volume 30(1), 2020 of the EJTM opens with the collection of abstracts for the conference "2020 Padua Muscle Days: Mobility Medicine 30 years of Translational Research". This is an international conference that will be held between March 18-21, 2020 in Euganei Hills and Padova in Italy. The abstracts are excellent examples of translational research and of the multidimensional approaches that are needed to classify and manage (in both the acute and chronic phases) diseases of Mobility that span from neurologic, metabolic and traumatic syndromes to the biological process of aging. One of the typical aim of Physical Medicine and Rehabilitation is indeed to reduce pain and increase mobility enough to enable impaired persons to walk freely, garden, and drive again. The excellent contents of this Collection of Abstracts reflect the high scientific caliber of researchers and clinicians who are eager to present their results at the PaduaMuscleDays. A series of EJTM Communications will also add to this preliminary evidence.
Collapse
Affiliation(s)
- Ugo Carraro
- Interdepartmental Research Centre of Myology (CIR-Myo), Department of Biomedical Sciences, University of Padova, Italy
- A&C M-C Foundation for Translational Myology, Padova, Italy
| |
Collapse
|
8
|
Sonjak V, Jacob K, Morais JA, Rivera-Zengotita M, Spendiff S, Spake C, Taivassalo T, Chevalier S, Hepple RT. Fidelity of muscle fibre reinnervation modulates ageing muscle impact in elderly women. J Physiol 2019; 597:5009-5023. [PMID: 31368533 DOI: 10.1113/jp278261] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS Susceptibility to age-related muscle atrophy relates to the degree of muscle denervation and the capacity of successful reinnervation. However, the specific role of denervation as a determinant of the severity of muscle aging between populations with low versus high physical function has not been addressed. We show that prefrail/frail elderly women exhibited marked features of muscle denervation, whereas world class octogenarian female master athletes showed attenuated indices of denervation and greater reinnervation capacity. These findings suggest that the difference in age-related muscle impact between low- and high-functioning elderly women is the robustness of the response to denervation of myofibers. ABSTRACT Ageing muscle degeneration is a key contributor to physical frailty; however, the factors responsible for exacerbated vs. muted ageing muscle impact are largely unknown. Based upon evidence that susceptibility to neurogenic impact is an important determinant of the severity of ageing muscle degeneration, we aimed to determine the presence and extent of denervation in pre-frail/frail elderly (FE, 77.9 ± 6.2 years) women compared to young physically inactive (YI, 24.0 ± 3.5 years) females, and contrast these findings to high-functioning world class octogenarian female masters athletes (MA, 80.9 ± 6.6 years). Muscle biopsies from vastus lateralis muscle were obtained from all three groups to assess denervation-related morphological and transcriptional markers. The FE group displayed marked grouping of slow fibres, accumulation of very small myofibres, a severe reduction in type IIa/I size ratio, highly variable inter-subject accumulation of neural cell adhesion molecule (NCAM)-positive myofibres, and an accumulation of pyknotic nuclei, indicative of recurring cycles of denervation/reinnervation and persistent denervation. The MA group exhibited a smaller decline in type IIa/I size ratio and fewer pyknotic nuclei, accompanied by a higher degree of type I fibre grouping and larger fibre group size, suggesting a greater reinnervation of denervated fibres. Consistent with this interpretation, MA had higher mRNA levels of the reinnervation-promoting cytokine fibroblast growth factor binding protein 1 (FGFBP1) than FE. Our results indicate that the muscle of FE women has significant neurogenic atrophy, whereas MA muscle exhibit superior reinnervation capacity, suggesting that the difference in age-related muscle impact between low- and high-functioning elderly women is the robustness of the response to denervation of myofibres.
Collapse
Affiliation(s)
- Vita Sonjak
- Department of Kinesiology & Physical Education, McGill University, 475 Pine Avenue West, Montreal, Quebec, H2W1S4, Canada.,Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, Quebec, H4A3J1, Canada
| | - Kathryn Jacob
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, Quebec, H4A3J1, Canada
| | - José A Morais
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, Quebec, H4A3J1, Canada.,Division of Geriatric Medicine, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G1A4, Canada.,School of Human Nutrition, McGill University, 21111 Lakeshore Dr, Saint-Anne-de-Bellevue, Quebec, H9X3L9, Canada
| | - Marie Rivera-Zengotita
- Department of Pathology Immunology and Laboratory Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| | - Sally Spendiff
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, 401 Smyth Rd, Ottawa, Canada
| | - Carole Spake
- Medical School, Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Tanja Taivassalo
- Department of Physiology and Functional Genomics, University of Florida, 1600 SW Archer Rd, Gainesville, FL, 32603, USA
| | - Stéphanie Chevalier
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, Quebec, H4A3J1, Canada.,Division of Geriatric Medicine, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G1A4, Canada.,School of Human Nutrition, McGill University, 21111 Lakeshore Dr, Saint-Anne-de-Bellevue, Quebec, H9X3L9, Canada
| | - Russell T Hepple
- Department of Physiology and Functional Genomics, University of Florida, 1600 SW Archer Rd, Gainesville, FL, 32603, USA.,Department of Physical Therapy, University of Florida, 1225 Center Drive, Gainesville, FL, 32610, USA
| |
Collapse
|
9
|
Button DC, Kalmar JM. Understanding exercise-dependent plasticity of motoneurons using intracellular and intramuscular approaches. Appl Physiol Nutr Metab 2019; 44:1125-1133. [PMID: 31075205 DOI: 10.1139/apnm-2018-0862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spinal motoneurons (MN) exhibit exercise-dependent adaptations to increased activity, such as exercise and locomotion, as well as decreased activity associated with disuse, spinal cord injury, and aging. The development of several experimental approaches, in both human and animal models, has contributed significantly to our understanding of this plasticity. The purpose of this review is to summarize how intracellular recordings in an animal model and motor unit recordings in a human model have, together, contributed to our current understanding of exercise-dependent MN plasticity. These approaches and techniques will allow neuroscientists to continue to advance our understanding of MN physiology and the plasticity of the "final common path" of the motor system, and to design experiments to answer the critical questions that are emerging in this field.
Collapse
Affiliation(s)
- Duane C Button
- School of Human Kinetics and Recreation and BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Jayne M Kalmar
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
10
|
Stecco C, Caro RD. 2019 Ejtm Special on Muscle Fascia. Eur J Transl Myol 2019; 29:8060. [PMID: 31019664 PMCID: PMC6460217 DOI: 10.4081/ejtm.2019.8060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023] Open
Abstract
For many years the fasciae have been considered by the anatomists only as a "white envelope for the muscles", that is generally removed in anatomical tables, to recognize muscle nerves and vessels. This is one of the reasons that different descriptions of the fasciae exist. On the other hand, in the last years the fasciae and their properties are becoming of central importance to clinicians practicing in various conventional and alternative therapies. The results from the worldwide research activities constitute a body of significant and important data, but this clinical interest is not supported by in-depth comprehension to how integrate the new knowledge about fasciae with the classical biomechanical models based on muscles, tendons and bones. To close this gap an Ejtm Special on "Muscle Fascia" will be published September 30, 2019, but the typescripts will be added to the Ejtm Early Release list as soon as all authors will approve their Epub papers. Deadline for original articles and reviews is June 1st, 2019, but the Editors hope that authors submit their typescripts much earlier.
Collapse
Affiliation(s)
- Carla Stecco
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Raffaele De Caro
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
| |
Collapse
|
11
|
McArdle A, Pollock N, Staunton CA, Jackson MJ. Aberrant redox signalling and stress response in age-related muscle decline: Role in inter- and intra-cellular signalling. Free Radic Biol Med 2019; 132:50-57. [PMID: 30508577 PMCID: PMC6709668 DOI: 10.1016/j.freeradbiomed.2018.11.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022]
Abstract
Age-associated frailty is predominantly due to loss of muscle mass and function. The loss of muscle mass is also associated with a greater loss of muscle strength, suggesting that the remaining muscle fibres are weaker than those of adults. The mechanisms by which muscle is lost with age are unclear, but in this review we aim to pull together various strands of evidence to explain how muscle contractions support proteostasis in non-muscle tissues, particularly focussed on the production and potential transfer of Heat Shock Proteins (HSPs) and how this may fail during ageing, Furthermore we will identify logical approaches, based on this hypothesis, by which muscle loss in ageing may be reduced. Skeletal muscle generates superoxide and nitric oxide at rest and this generation is increased by contractile activity. In adults, this increased generation of reactive oxygen and nitrogen species (RONS) activate redox-sensitive transcription factors such as nuclear factor κB (NFκB), activator protein-1 (AP1) and heat shock factor 1 (HSF1), resulting in increases in cytoprotective proteins such as the superoxide dismutases, catalase and heat shock proteins that prevent oxidative damage to tissues and facilitate remodelling and proteostasis in both an intra- and inter-cellular manner. During ageing, the ability of skeletal muscle from aged organisms to respond to an increase in ROS generation by increased expression of cytoprotective proteins through activation of redox-sensitive transcription factors is severely attenuated. This age-related lack of physiological adaptations to the ROS induced by contractile activity appears to contribute to a loss of ROS homeostasis, increased oxidative damage and age-related dysfunction in skeletal muscle and potentially other tissues.
Collapse
Affiliation(s)
- Anne McArdle
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, University of Liverpool, L7 8TX, United Kingdom.
| | - Natalie Pollock
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, University of Liverpool, L7 8TX, United Kingdom
| | - Caroline A Staunton
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, University of Liverpool, L7 8TX, United Kingdom
| | - Malcolm J Jackson
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, University of Liverpool, L7 8TX, United Kingdom
| |
Collapse
|
12
|
Carraro U. 2019Spring PaduaMuscleDays: Translational Myology and Mobility Medicine. Eur J Transl Myol 2019; 29:8105. [PMID: 31019665 PMCID: PMC6460213 DOI: 10.4081/ejtm.2019.8105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
A half-century tradition of skeletal muscles studies, started with a research on fever, is continuing under the auspices of the Interdepartmental Research Centre of Myology (CIR-Myo), Department of Biomedical Sciences, University of Padova, Italy, the A&C M-C Foundation for Translational Myology, Padova, Italy and the European Journal of Translational Myology (EJTM). This year an EJTM Special will be dedicated to Muscle Fascia, an under looked topic, which merits more attention. Furthermore, this year the 2019SpringPaduaMuscleDays: Translational Myology and Mobility Medicine, an International Conference, was held March 28-30, 2019 in Euganei Hills and Padova (Italy). The abstracts of the 2019SpPMD, that are reported in the Myology News of EJTM 29(1), 2019, are excellent examples of translational research. Their excellent contents are at the level needed for approval by Ethical Committees, International Granting Agencies, and Editors of international journals, thanks to the high scientific profiles of researchers and clinicians who are eager to present their results at the PaduaMuscleDays.
Collapse
Affiliation(s)
- Ugo Carraro
- Interdepartmental Research Centre of Myology (CIR-Myo), Department of Biomedical Sciences, University of Padova, Italy
- A&C M-C Foundation for Translational Myology, Padova, Italy
| |
Collapse
|
13
|
Giuriati W, Ravara B, Porzionato A, Albertin G, Stecco C, Macchi V, De Caro R, Martinello T, Gomiero C, Patruno M, Coletti D, Zampieri S, Nori A. Muscle spindles of the rat sternomastoid muscle. Eur J Transl Myol 2018; 28:7904. [PMID: 30662700 PMCID: PMC6317131 DOI: 10.4081/ejtm.2018.7904] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 01/09/2023] Open
Abstract
The sternomastoid (SM) muscle in rodents presents a peculiar distribution of fiber types
with a steep gradient from the ventral, superficial, white portion to the dorsal, deep,
red region, where muscle spindles are restricted. Cross section of the medial longitudinal
third of the rat SM contains around 10,000 muscle fibers with a mean diameter of
51.28±12.62 (μm +/- SD). Transverse sections stained by Succinate Dehydrogenase
(SDH) reaction clearly presents two distinct regions: the dorsal deep red portion
encompassing a 40% cross section area contains a high percentage of packed SDH-positive
muscle fibers, and the ventral superficial region which contains mainly SDH-negative
muscle fibers. Indeed, the ventral superficial region of the rat SM muscle contains mainly
fast 2B muscle fibers. These acidic ATPase pH 4.3-negative and SDH-negative 2B muscle
fibers are the largest of the SM muscle, while the acidic ATPase pH 4.3-positive and
SDH-positive Type 1 muscle fibers are the smallest. Here we show that in thin transverse
cryosections only 2 or 3 muscle spindle are observed in the central part of the dorsal
deep red portion of the SM muscle. Azan Mallory stained sections allow at the same time to
count the spindles and to evaluate aging fibrosis of the skeletal muscle tissue. Though
restricted in the muscle red region, SM spindles are embedded in perimysium, whose changes
may influence their reflex activity. Our findings confirm that any comparisons of changes
in number and percentage of muscle spindles and muscle fibers of the rat SM muscle will
require morphometry of the whole muscle cross-section. Muscle biopsies of SM muscle from
large mammals will only provide partial data on the size of the different types of muscle
fibers biased by sampling. Nonetheless, histology of muscle tissue continue to provide
practical and low-cost quantitative data to follow-up translational studies in rodents and
beyond.
Collapse
Affiliation(s)
- Walter Giuriati
- Department of Biomedical Sciences, Interdepartmental Research Institute of Myology, University of Padova, Padova, Italy
| | - Barbara Ravara
- Department of Biomedical Sciences, Interdepartmental Research Institute of Myology, University of Padova, Padova, Italy.,A&C M-C Foundation for Translational Myology, Padova, Italy
| | - Andrea Porzionato
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Giovanna Albertin
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Carla Stecco
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Veronica Macchi
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Raffaele De Caro
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Tiziana Martinello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Chiara Gomiero
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Dario Coletti
- Sorbonne Universités, UPMC Univversté Paris 06 (CNRS, UMR 8256, INSERM ERL U1164), Institut Biologie Paris-Seine, Paris, France.,Department. of Anatomy, Histology, Forensic Medicine & Orthopaedics, School of Medicine Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, 00185 Rome, Italy
| | - Sandra Zampieri
- Department of Biomedical Sciences, Interdepartmental Research Institute of Myology, University of Padova, Padova, Italy.,A&C M-C Foundation for Translational Myology, Padova, Italy.,Physiko- und Rheumatherapie, St. Poelten, Austria
| | - Alessandra Nori
- Department of Biomedical Sciences, Interdepartmental Research Institute of Myology, University of Padova, Padova, Italy
| |
Collapse
|
14
|
Taylor MJ, Fornusek C, Ruys AJ. The duty cycle in Functional Electrical Stimulation research. Part II: Duty cycle multiplicity and domain reporting. Eur J Transl Myol 2018; 28:7733. [PMID: 30662696 PMCID: PMC6317134 DOI: 10.4081/ejtm.2018.7733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022] Open
Abstract
In part I of this review, we introduced the duty cycle as a fundamental parameter in controlling the effect of electrical stimulation pulse trains on muscle structural and functional properties with special emphasis on fatigue. Following on from a survey of the literature, we discuss here the relative ability of intermittent and continuous stimulation to fatigue muscle. In addition, pertinent literature is explored on a more deeper level, highlighting contentions regarding the duty cycle across studies. In response to literature inconsistencies, we propose frameworks upon which the duty cycle parameter may be specified. We present the idea of domain reporting for the duty cycle, and illustrate with practical examples. In addition we dig further into the literature and present a set of notations that have been used by different researchers to report the duty cycle. We also propose the idea of the duty cycle multiple, which together with domain reporting, will help researchers understand more precisely duty cycles of electrical stimulation. As a case study, we also show how the duty cycle has been looked at by researchers in the context of pressure sore attenuation in patients. Together with part I, it is hoped that the frameworks suggested provide a complete picture of how duty cycle has been discussed across the literature, and gives researchers a more trans-theoretical basis upon which they may report the duty cycle in their studies. This may also lead to a more precise specification of electrical stimulation protocols used in patients.
Collapse
Affiliation(s)
- Matthew J. Taylor
- Faculty of Engineering and IT, University of Sydney, Camperdown, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, Australia
| | - Ché Fornusek
- Faculty of Medicine and Health, University of Sydney, Lidcombe, Australia
| | - Andrew J. Ruys
- Faculty of Engineering and IT, University of Sydney, Camperdown, Australia
| |
Collapse
|
15
|
Sajer S, Guardiero GS, Scicchitano BM. Myokines in Home-Based Functional Electrical Stimulation-Induced Recovery of Skeletal Muscle in Elderly and Permanent Denervation. Eur J Transl Myol 2018; 28:7905. [PMID: 30662701 PMCID: PMC6317133 DOI: 10.4081/ejtm.2018.7905] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
Neuromuscular disorders, disuse, inadequate nutrition, metabolic diseases, cancer and aging produce muscle atrophy and this implies that there are different types of molecular triggers and signaling pathways for muscle wasting. Exercise and muscle contractions may counteract muscle atrophy by releasing a group of peptides, termed myokines, to protect the functionality and to enhance the exercise capacity of skeletal muscle. In this review, we are looking at the role of myokines in the recovery of permanent denervated and elderly skeletal muscle tissue. Since sub-clinical denervation events contribute to both atrophy and the decreased contractile speed of aged muscle, we saw a parallel to spinal cord injury and decided to look at both groups together. The muscle from lifelong active seniors has more muscle bulk and more slow fiber-type groupings than those of sedentary seniors, demonstrating that physical activity maintains slow motoneurons that reinnervate the transiently denervated muscle fibers. Furthermore, we summarized the evidence that muscle degeneration occur with irreversible Conus and Cauda Equina syndrome, a spinal cord injury in which the human leg muscles may be permanently disconnected from the peripheral nervous system. In these patients, suffering with an estreme case of muscle disuse, a complete loss of muscle fibers occurs within five to ten years after injury. Their recovered tetanic contractility, induced by home-based Functional Electrical Stimulation, can restore the muscle size and function in compliant Spinal Cord Injury patients, allowing them to perform electrical stimulation-supported stand-up training. Myokines are produced and released by muscle fibers under contraction and exert both local and systemic effects. Changes in patterns of myokine secretion, particularly of IGF-1 isoforms, occur in long-term Spinal Cord Injury persons and also in very aged people. Their modulation in Spinal Cord Injury and late aging are also key factors of home-based Functional Electrical Stimulation - mediated muscle recovery. Thus, Functional Electrical Stimulation should be prescribed in critical care units and nursing facilities, if persons are unable or reluctant to exercise. This will result in less frequent hospitalizations and a reduced burden on patients' families and public health services.
Collapse
Affiliation(s)
- Sascha Sajer
- Department of Physiko&Rheuma-Therapie, Institute for Physical Medicine, St. Pölten, Austria
| | - Giulio Sauro Guardiero
- A&C M-C Foundation for Translational Myology, Padova, Italy
- Interdepartmental Research Centre of Myology, University of Padova, Italy
| | - Bianca Maria Scicchitano
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
16
|
Paillard T. Muscle plasticity of aged subjects in response to electrical stimulation training and inversion and/or limitation of the sarcopenic process. Ageing Res Rev 2018; 46:1-13. [PMID: 29742451 DOI: 10.1016/j.arr.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 12/30/2022]
Abstract
This review addresses the possible structural and functional adaptations of the muscle function to neuromuscular electrical stimulation (NMES) training in frail and/or aged (without advanced chronic disease) subjects. Evidence suggests that the sarcopenic process and its structural and functional effects would be limited and/or reversed through NMES training using excito-motor currents (or direct currents). From a structural viewpoint, NMES helps reduce muscle atrophy. From a functional viewpoint, NMES enables the improvement of motor output (i.e., muscle strength), gait, balance and activities of daily living which enhances the quality of life of aged subjects. Muscle plasticity of aged subjects in response to NMES training turns out to be undeniable, although many mechanisms are not yet explained and deserve to be explore further. Mechanistic explanations as well as conceptual models are proposed to explain how muscle plasticity operates in aged subjects through NMES training. NMES could be seen as a clinically applicable training technique, safe and efficient among aged subjects and could be used more often as part of prevention of sarcopenia. Therapists and physical conditioners/trainers could exploit this new knowledge in their professional practice to improve life conditions (including the risk of fall) of frail and/or aged subjects.
Collapse
|
17
|
Carraro U. EJTM3 is also covering Mobility and Medicine at large, an update. Eur J Transl Myol 2018; 28:7814. [PMID: 30344982 PMCID: PMC6176385 DOI: 10.4081/ejtm.2018.7814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 09/08/2018] [Indexed: 01/13/2023] Open
Abstract
Since the first 2018 issue, the European Journal of Translational Myology expanded its authorship and readership from the strict topics of biology, physiology, diagnostic, management and rehabilitation of skeletal muscle to the more clinically relevant fields of human mobility to those of general medicine. This third issue opens with a review on Chronic Fatigue Syndrome, a very complex medical problem, as its other names testify (Myalgic Encephalomyelitis or Systemic Exertion Intolerance Disease). A more typical molecular myology original article follows (Increasing autophagy does not affect neurogenic muscle atrophy), but then several Rapid Reports cover different Medical Specialties fields, related or unrelated to neuromyology, mobility problems and their potential solutions. The Advisors of EJTM invite Authors to submit typescripts, taking into account that the journal is keen to publish high-level papers in the fields of Translational Myology, Mobility and Medicine at large.
Collapse
Affiliation(s)
- Ugo Carraro
- Department of Biomedical Sciences, University of Padova, Italy
- A&C M-C Foundation for Translational Myology
| |
Collapse
|
18
|
Carraro U. Exciting perspectives for Translational Myology in the Abstracts of the 2018Spring PaduaMuscleDays: Giovanni Salviati Memorial - Chapter I - Foreword. Eur J Transl Myol 2018; 28:7363. [PMID: 29686822 PMCID: PMC5895991 DOI: 10.4081/ejtm.2018.7363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/15/2022] Open
Abstract
Myologists working in Padua (Italy) were able to continue a half-century tradition of studies of skeletal muscles, that started with a research on fever, specifically if and how skeletal muscle contribute to it by burning bacterial toxin. Beside main publications in high-impact-factor journals by Padua myologists, I hope to convince readers (and myself) of the relevance of the editing Basic and Applied Myology (BAM), retitled from 2010 European Journal of Translational Myology (EJTM), of the institution of the Interdepartmental Research Center of Myology of the University of Padova (CIR-Myo), and of a long series of International Conferences organized in Euganei Hills and Padova, that is, the PaduaMuscleDays. The 2018Spring PaduaMuscleDays (2018SpPMD), were held in Euganei Hills and Padua (Italy), in March 14-17, and were dedicated to Giovanni Salviati. The main event of the "Giovanni Salviati Memorial", was held in the Aula Guariento, Accademia Galileiana di Scienze, Lettere ed Arti of Padua to honor a beloved friend and excellent scientist 20 years after his premature passing. Using the words of Prof. Nicola Rizzuto, we all share his believe that Giovanni "will be remembered not only for his talent and originality as a biochemist, but also for his unassuming and humanistic personality, a rare quality in highly successful people like Giovanni. The best way to remember such a person is to gather pupils and colleagues, who shared with him the same scientific interests and ask them to discuss recent advances in their own fields, just as Giovanni have liked to do". Since Giovanni's friends sent many abstracts still influenced by their previous collaboration with him, all the Sessions of the 2018SpPMD reflect both to the research aims of Giovanni Salviati and the traditional topics of the PaduaMuscleDays, that is, basics and applications of physical, molecular and cellular strategies to maintain or recover functions of skeletal muscles. The translational researches summarized in the 2018SpPMD Abstracts are at the appropriate high level to attract approval of Ethical Committees, the interest of International Granting Agencies and approval for publication in top quality, international journals. This was true in the past, continues to be true in the present and will be true in the future. All 2018SpPMD Abstracts are indexed at the end of the Chapter IV.
Collapse
Affiliation(s)
- Ugo Carraro
- Laboratory of Translational Myology, Department of Biomedical Sciences, University of Padova.,A&C M-C Foundation for Translational Myology, Padova.,IRCCS Fondazione Ospedale San Camillo, Venezia-Lido, Italy
| |
Collapse
|
19
|
Carraro U. Exciting perspectives for Translational Myology in the Abstracts of the 2018Spring PaduaMuscleDays: Giovanni Salviati Memorial - Chapter III - Abstracts of March 16, 2018. Eur J Transl Myol 2018; 28:7365. [PMID: 30057727 PMCID: PMC6047881 DOI: 10.4081/ejtm.2018.7365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 11/23/2022] Open
Abstract
Myologists working in Padua (Italy) were able to continue a half-century tradition of studies of skeletal muscles, that started with a research on fever, specifically if and how skeletal muscle contribute to it by burning bacterial toxin. Beside main publications in high-impact-factor journals by Padua myologists, I hope to convince readers (and myself) of the relevance of the editing Basic and Applied Myology (BAM), retitled from 2010 European Journal of Translational Myology (EJTM), of the institution of the Interdepartmental Research Center of Myology of the University of Padova (CIR-Myo), and of a long series of International Conferences organized in Euganei Hills and Padova, that is, the PaduaMuscleDays. The 2018Spring PaduaMuscleDays (2018SpPMD), were held in Euganei Hills and Padua (Italy), in March 14-17, and were dedicated to Giovanni Salviati. The main event of the “Giovanni Salviati Memorial”, was held in the Aula Guariento, Accademia Galileiana di Scienze, Lettere ed Arti of Padua to honor a beloved friend and excellent scientist 20 years after his premature passing. Using the words of Prof. Nicola Rizzuto, we all share his believe that Giovanni “will be remembered not only for his talent and originality as a biochemist, but also for his unassuming and humanistic personality, a rare quality in highly successful people like Giovanni. The best way to remember such a person is to gather pupils and colleagues, who shared with him the same scientific interests and ask them to discuss recent advances in their own fields, just as Giovanni have liked to do”. Since Giovanni’s friends sent many abstracts still influenced by their previous collaboration with him, all the Sessions of the 2018SpPMD reflect both to the research aims of Giovanni Salviati and the traditional topics of the PaduaMuscleDays, that is, basics and applications of physical, molecular and cellular strategies to maintain or recover functions of skeletal muscles. The translational researches summarized in the 2018SpPMD Abstracts are at the appropriate high level to attract approval of Ethical Committees, the interest of International Granting Agencies and approval for publication in top quality, international journals. The abstracts of the March 16, 2018 Padua Muscle Day are listed in this chapter III. All 2018SpPMD Abstracts are indexed at the end of the Chapter IV.
Collapse
Affiliation(s)
- Ugo Carraro
- Laboratory of Translational Myology, Department of Biomedical Sciences, University of Padova.,A&C M-C Foundation for Translational Myology, Padova.,IRCCS Fondazione Ospedale San Camillo, Venezia-Lido, Italy
| |
Collapse
|
20
|
Carraro U. Exciting perspectives for Translational Myology in the Abstracts of the 2018Spring PaduaMuscleDays: Giovanni Salviati Memorial - Chapter IV - Abstracts of March 17, 2018. Eur J Transl Myol 2018; 28:7366. [PMID: 30057728 PMCID: PMC6047882 DOI: 10.4081/ejtm.2018.7366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 02/08/2023] Open
Abstract
Myologists working in Padua (Italy) were able to continue a half-century tradition of studies of skeletal muscles, that started with a research on fever, specifically if and how skeletal muscle contribute to it by burning bacterial toxin. Beside main publications in high-impact-factor journals by Padua myologists, I hope to convince readers (and myself) of the relevance of the editing Basic and Applied Myology (BAM), retitled from 2010 European Journal of Translational Myology (EJTM), of the institution of the Interdepartmental Research Center of Myology of the University of Padova (CIR-Myo), and of a long series of International Conferences organized in Euganei Hills and Padova, that is, the PaduaMuscleDays. The 2018Spring PaduaMuscleDays (2018SpPMD), were held in Euganei Hills and Padua (Italy), in March 14-17, and were dedicated to Giovanni Salviati. The main event of the “Giovanni Salviati Memorial”, was held in the Aula Guariento, Accademia Galileiana di Scienze, Lettere ed Arti of Padua to honor a beloved friend and excellent scientist 20 years after his premature passing. Using the words of Prof. Nicola Rizzuto, we all share his believe that Giovanni “will be remembered not only for his talent and originality as a biochemist, but also for his unassuming and humanistic personality, a rare quality in highly successful people like Giovanni. The best way to remember such a person is to gather pupils and colleagues, who shared with him the same scientific interests and ask them to discuss recent advances in their own fields, just as Giovanni have liked to do”. Since Giovanni’s friends sent many abstracts still influenced by their previous collaboration with him, all the Sessions of the 2018SpPMD reflect both to the research aims of Giovanni Salviati and the traditional topics of the PaduaMuscleDays, that is, basics and applications of physical, molecular and cellular strategies to maintain or recover functions of skeletal muscles. The translational researches summarized in the 2018SpPMD Abstracts are at the appropriate high level to attract endorsement of Ethical Committees, the interest of International Granting Agencies and approval for publication in top quality international journals. The abstracts of the presentations of the March 16, 2018 Padua Muscle Day and those of the remaining Posters are listed in this chapter IV. The Author Index of the 2018Spring PaduaMuscleDays follows at page 78.
Collapse
Affiliation(s)
- Ugo Carraro
- Laboratory of Translational Myology, Department of Biomedical Sciences, University of Padova.,A&C M-C Foundation for Translational Myology, Padova.,IRCCS Fondazione Ospedale San Camillo, Venezia-Lido, Italy
| |
Collapse
|
21
|
Merico A, Cavinato M, Gregorio C, Lacatena A, Gioia E, Piccione F, Angelini C. Effects of combined endurance and resistance training in Amyotrophic Lateral Sclerosis: A pilot, randomized, controlled study. Eur J Transl Myol 2018; 28:7278. [PMID: 29686818 PMCID: PMC5895987 DOI: 10.4081/ejtm.2018.7278] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/11/2022] Open
Abstract
Based on available evidence, muscle strengthening and cardiovascular exercises can help maintain function and not adversely affect the progression of disease in patients with ALS. However, this evidence is not sufficiently detailed to recommend a specific exercise prescription. The purpose of this project was to assess clinical outcomes of a combined exercise programme to increase knowledge of rehabilitation in ALS patients. 38 ALS patients were assigned randomly to two groups: one group underwent a specific exercise programme (ALS-EP) based on a moderate aerobic workout and isometric contractions, and the second group followed a standard neuromotor rehabilitation treatment. Objective evaluation consisted of cardiovascular measures, muscle strength and fatigue. Some positive effects of physical activity on ALS patients were found. Among the benefits, an overall improvement of functional independence in all patients, independently of the type of exercise conducted was seen. In addition, improvements in muscle power, oxygen consumption and fatigue were specifically observed in the ALS-EP group, all hallmarks of a training effect for the specific exercises. In conclusion, moderate intensity exercise is beneficial in ALS, helping in avoiding deconditioning and muscle atrophy resulting from progressive inactivity.
Collapse
Affiliation(s)
- Antonio Merico
- Neurorehabilitation Department, San Camillo Hospital Foundation, Institute of Care and Research, Venice. Italy
| | - Marianna Cavinato
- Neurorehabilitation Department, San Camillo Hospital Foundation, Institute of Care and Research, Venice. Italy
| | - Caterina Gregorio
- Department of Economic, mathematical and statistical sciences, University of Trieste, Italy
| | | | - Elisabetta Gioia
- Rehabilitation Department, Unità Locale Socio-Sanitaria Serenissima, Venice, Italy
| | - Francesco Piccione
- Neurorehabilitation Department, San Camillo Hospital Foundation, Institute of Care and Research, Venice. Italy
| | - Corrado Angelini
- Neurorehabilitation Department, San Camillo Hospital Foundation, Institute of Care and Research, Venice. Italy
| |
Collapse
|
22
|
Carraro U, Gava K, Baba A, Marcante A, Piccione F. To Contrast and Reverse Skeletal Muscle Atrophy by Full-Body In-Bed Gym, a Mandatory Lifestyle for Older Olds and Borderline Mobility-Impaired Persons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:549-560. [PMID: 30390269 DOI: 10.1007/978-981-13-1435-3_25] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Older olds, that is octogenarians, spend small amounts of time for daily physical activity, contributing to aggravate their independence limitations up to force them to bed and to more and more frequent hospitalizations. All progressive muscle contractile impairments, including advanced age-related muscle power decline, need permanent management. Inspired by the proven capability to recover skeletal muscle contractility and strength by home-based functional electrical stimulation and guided by common sense, we suggested to older olds a 15-30 min daily routine of 12 easy and safe physical exercises. Since persons can do many of them in bed (full-body in-bed gym), hospitalized elderly can continue this kind of light training that is an extension of the well-established cardiovascular-ventilation rehabilitation before and after admission. Monitoring arterial blood pressure before and after the daily routine demonstrates that peripheral resistance decreases in a few minutes by the functional hyperemia of the trained body muscles. Continued regularly, full-body in-bed gym helps to maintain the independence of frail older people and may reduce the risks of serious consequences of accidental falls.
Collapse
Affiliation(s)
- Ugo Carraro
- Interdepartmental Research Center of Myology (CIR-Myo), Department of Biomedical Science, University of Padova, Padova, Italy. .,A&C M-C Foundation for Translational Myology, Padova, Italy. .,IRCCS Fondazione Ospedale San Camillo, Venezia-Lido, Italy.
| | | | - Alfonc Baba
- IRCCS Fondazione Ospedale San Camillo, Venezia-Lido, Italy
| | | | | |
Collapse
|
23
|
Sajer S. Mobility disorders and pain, interrelations that need new research concepts and advanced clinical commitments. Eur J Transl Myol 2017; 27:7179. [PMID: 29299226 PMCID: PMC5745518 DOI: 10.4081/ejtm.2017.7179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
This Perspective will discuss topics recently suggested by Prof. Helmut Kern, Vienna, Austria, to advance the research activities of his team, that is: Topic A, 10 years post RISE; Topic B, New research for new solutions on old research questions; Topic C, Working groups on nerve regeneration, training-parameters of seniors in different ages, muscle adaptation; and studies of connective tissue and cartilage. This Perspective summarizes some of the basic concepts and of the evidence-based tools for developing further translational research activities. Clinically relevant results will ask for continuous interests of Basic and Applied Myologists and for the support during the next five to ten years of public and private granting agencies. All together, they will end in protocols, devices and multidisciplinary managements for persons suffering with muscle denervation, neuromuscular-related or non-related pain and for the increasing population of old, older and oldest senior citizens in Europe and beyond.
Collapse
Affiliation(s)
- Sascha Sajer
- Physiko- und Rheumatherapie, St. Poelten, Austria
| |
Collapse
|
24
|
Carraro U. From the Padua Muscle Days, the Basic and Applied Myology and the European Journal of Translational Myology to the A&CM Carraro Foundation for Translational Myology. Eur J Transl Myol 2017; 27:7085. [PMID: 29118960 PMCID: PMC5656804 DOI: 10.4081/ejtm.2017.7085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 12/18/2022] Open
Abstract
As a young researched I had the option to work on skeletal muscle at the University of Padova, Italy. Introduced to the study of muscle denervation/reinnervation, I started a project on long term denervated muscle that still is my primary interest and took me from rodents’ models of chronic muscle denervation to human spinal cord injury-related muscle denervation and its managements. On the way, I organized a series of conferences in Euganei Hills, Padua, Italy and an international journal, the Basic and Applied Myology. From 2010 this journal changed name to European Journal of Translational Myology, whose contents are focused on Myology, though they have important implications in aging, several neurological disorders and cancer cachexia. A relatively large community of Basic Biologists, Clinicians and Biomedical Technologists (usually meeting separately in very different specialty Conferences) recognized the need of a Meeting Series focused on Translational Myology. Thus the Padua Muscle Days (PMD) started more than 25 years ago. The next events of the PMD Series will be in Autumn 2017 an one-day Seminar on Easy Aging and a three-day event: The 2017 Fall Padua Experts’ Meeting. During the 2018Spring PMD, the Giovanni Salviati Memorial will be organized to honor a beloved friend and excellent scientist, who abruptly disappeared twenty years ago at the peak of his research activities. Many friends and still-active pupils accepted invitation and will provide the backbone of the Program of the 2018Spring PaduaMuscleDay to be held, March 14-16, 2018 in Euganei Hills and Padua (Italy). All these events will be sponsored by the Interdepartmental Research Centre of Myology of the University of Padova and by the A&CM Carraro Foundation for Translational Myology.
Collapse
Affiliation(s)
- Ugo Carraro
- A&CM Carraro Foundation for Translational Myology, Padova, Italy.
| |
Collapse
|
25
|
Abstract
The second 2017 issue of EJTM volume 27 contains the collection of abstracts from the 2017Spring PaduaMuscleDays conference, that was held March 23-25 in Montegrotto, Euganei Hills, Padova, Italy. In addition to a brief history of the Padova Myology Meetings held during the last 30 years, the present and the future of the PaduaMuscleDays conference are discussed with special reference to new media and the options they offer to spread to a larger audience the results of the many workshops held in the Hotel Augustus conference hall and in the Aula Guariento of the Accademia Galileiana di Scienze, Lettere ed Arti, one of the hidden treasures of the medioeval Padua, Italy. Preliminary announcements of the 2017 and 2018 events, in particular of the Giovanni Salviati Memorial, will follow.
Collapse
Affiliation(s)
- Ugo Carraro
- IRCCS Fondazione Ospedale San Camillo, Venezia, Italy
| |
Collapse
|
26
|
Kern H, Hofer C, Loefler S, Zampieri S, Gargiulo P, Baba A, Marcante A, Piccione F, Pond A, Carraro U. Atrophy, ultra-structural disorders, severe atrophy and degeneration of denervated human muscle in SCI and Aging. Implications for their recovery by Functional Electrical Stimulation, updated 2017. Neurol Res 2017; 39:660-666. [PMID: 28403681 DOI: 10.1080/01616412.2017.1314906] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Long-term lower motor neuron denervation of skeletal muscle is known to result in degeneration of muscle with replacement by adipose and fibrotic tissues. However, long-term survival of a subset of skeletal myofibers also occurs. METHODS We performed transverse and longitudinal studies of patients with spinal cord injury (SCI), patients specifically complete Conus and Cauda Equina Syndrome and also of active and sedentary seniors which included analyses of muscle biopsies from the quadriceps m. RESULTS Surprisingly, we discovered that human denervated myofibers survive years of denervation after full and irreversible disconnection from their motor neurons. We found that atrophic myofibers could be rescued by home-based Functional Electrical Stimulation (h-bFES), using purpose developed stimulators and electrodes. Although denervated myofibers quickly lose the ability to sustain high-frequency contractions, they respond to very long impulses that are able to allow for re-emergence of tetanic contractions. A description of the early muscle changes in humans are hampered by a paucity of patients suffering complete Conus and Cauda Equina Syndrome, but the cohort enrolled in the EU RISE Project has shown that even five years after SCI, severe atrophic myofibers with a peculiar cluster reorganization of myonuclei are present in human muscles and respond to h-bFES. CONCLUSIONS Human myofibers survive permanent denervation longer than generally accepted and they respond to h-bFES beyond the stage of simple atrophy. Furthermore, long-term denervation/reinnervation events occur in elderly people and are part of the mechanisms responsible for muscle aging and again h-bFES was beneficial in delaying aging decay.
Collapse
Affiliation(s)
- Helmut Kern
- a Physiko- und Rheumatherapie , St. Poelten , Austria
| | - Cristian Hofer
- b Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation , Vienna , Austria
| | | | - Sandra Zampieri
- a Physiko- und Rheumatherapie , St. Poelten , Austria.,c Department of Biomedical Sciences , University of Padova , Padova , Italy
| | - Paolo Gargiulo
- d Instutute for Biomedical and Neural Engineering/Biomedical Technology Centre , Reykjavik University and Landspitali , Reykjavik , Iceland
| | - Alfonc Baba
- e IRCCS Fondazione Ospedale San Camillo , Venice , Italy
| | | | | | - Amber Pond
- f Anatomy Department , Southern Illinois University School of Medicine , Carbondale , IL , USA
| | - Ugo Carraro
- e IRCCS Fondazione Ospedale San Camillo , Venice , Italy
| |
Collapse
|