1
|
Yu D, Zhu K, Li M, Zhang F, Yang Y, Lu C, Zhong S, Qin C, Lan Y, Yu J, Petersen JD, Jiang J, Liang H, Ye L, Liang B. The origin, dissemination, and molecular networks of HIV-1 CRF65_cpx strain in Hainan Island, China. BMC Infect Dis 2024; 24:269. [PMID: 38424479 PMCID: PMC10905908 DOI: 10.1186/s12879-024-09101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND HIV-1 CRF65_cpx strain carries drug-resistant mutations, which raises concerns about its potential for causing virologic failure. The CRF65_cpx ranks as the fourth most prevalent on Hainan Island, China. However, the origin and molecular epidemiology of CRF65_cpx strains in this area remain unclear. This study aims to estimate the spatial origins and dissemination patterns of HIV-1 CRF65_cpx in this specific region. METHODS Between 2018 and 2021, a total of 58 pol sequences of the CRF65_cpx were collected from HIV-positive patients on Hainan Island. The available CRF65_cpx pol sequences from public databases were compiled. The HIV-TRACE tool was used to construct transmission networks. The evolutionary history of the introduction and dissemination of HIV-1 CRF65_cpx on Hainan Island were analyzed using phylogenetic analysis and the Bayesian coalescent-based approach. RESULTS Among the 58 participants, 89.66% were men who have sex with men (MSM). The median age was 25 years, and 43.10% of the individuals had a college degree or above. The results indicated that 39 (67.24%) sequences were interconnected within a single transmission network. A consistent expansion was evident from 2019 to 2021, with an incremental annual addition of four sequences into the networks. Phylodynamic analyses showed that the CRF65_cpx on Hainan Island originated from Beijing (Bayes factor, BF = 17.4), with transmission among MSM on Hainan Island in 2013.2 (95%HPD: 2012.4, 2019.5), subsequently leading to an outbreak. Haikou was the local center of the CRF65_cpx epidemic. This strain propagated from Haikou to other locations, including Sanya (BF > 1000), Danzhou (BF = 299.3), Chengmai (BF = 27.0) and Tunchang (BF = 16.3). The analyses of the viral migration patterns between age subgroups and risk subgroups revealed that the viral migration directions were from "25-40 years old" to "17-24 years old" (BF = 14.6) and to "over 40 years old" (BF = 17.6), and from MSM to heterosexuals (BF > 1000) on Hainan Island. CONCLUSION Our analyses elucidate the transmission dynamics of CRF65_cpx strain on Hainan Island. Haikou is identified as the potential hotspot for CRF65_cpx transmission, with middle-aged MSM identified as the key population. These findings suggest that targeted interventions in hotspots and key populations may be more effective in controlling the HIV epidemic.
Collapse
Affiliation(s)
- Dee Yu
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
- International School of Public Health and One Health, Hainan Medical University, 3 Xueyuan Road, Haikou, 571199, China
| | - Kaokao Zhu
- Prevention and Treatment Department, the Fifth People's Hospital of Hainan Province, 3 Xueyuan Road, Haikou, 570102, China
| | - Mu Li
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Fei Zhang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Yuan Yang
- Guangxi Engineering Center for Organoids and Organ-on-chips of Highly Pathogenic Microbial Infections & Biosafety laboratory, Life Science Institute, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Chunyun Lu
- International School of Public Health and One Health, Hainan Medical University, 3 Xueyuan Road, Haikou, 571199, China
| | - Shanmei Zhong
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Cai Qin
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Yanan Lan
- Guangxi medical university oncology school, 22 Shuangyong Road, Nanning, 530021, China
| | - Jipeng Yu
- The First Clinical Medical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Jindong Ding Petersen
- International School of Public Health and One Health, Hainan Medical University, 3 Xueyuan Road, Haikou, 571199, China
- Research Unit for General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Research Unit for General Practice, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
- Guangxi Engineering Center for Organoids and Organ-on-chips of Highly Pathogenic Microbial Infections & Biosafety laboratory, Life Science Institute, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
- Guangxi Engineering Center for Organoids and Organ-on-chips of Highly Pathogenic Microbial Infections & Biosafety laboratory, Life Science Institute, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
- Guangxi Engineering Center for Organoids and Organ-on-chips of Highly Pathogenic Microbial Infections & Biosafety laboratory, Life Science Institute, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| | - Bingyu Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
- Guangxi Engineering Center for Organoids and Organ-on-chips of Highly Pathogenic Microbial Infections & Biosafety laboratory, Life Science Institute, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| |
Collapse
|
2
|
Gabrielaite M, Bennedbæk M, Rasmussen MS, Kan V, Furrer H, Flisiak R, Losso M, Lundgren JD, Marvig RL. Deep-sequencing of viral genomes from a large and diverse cohort of treatment-naive HIV-infected persons shows associations between intrahost genetic diversity and viral load. PLoS Comput Biol 2023; 19:e1010756. [PMID: 36595537 PMCID: PMC9838853 DOI: 10.1371/journal.pcbi.1010756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2023] [Accepted: 11/23/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Infection with human immunodeficiency virus type 1 (HIV) typically results from transmission of a small and genetically uniform viral population. Following transmission, the virus population becomes more diverse because of recombination and acquired mutations through genetic drift and selection. Viral intrahost genetic diversity remains a major obstacle to the cure of HIV; however, the association between intrahost diversity and disease progression markers has not been investigated in large and diverse cohorts for which the majority of the genome has been deep-sequenced. Viral load (VL) is a key progression marker and understanding of its relationship to viral intrahost genetic diversity could help design future strategies for HIV monitoring and treatment. METHODS We analysed deep-sequenced viral genomes from 2,650 treatment-naive HIV-infected persons to measure the intrahost genetic diversity of 2,447 genomic codon positions as calculated by Shannon entropy. We tested for associations between VL and amino acid (AA) entropy accounting for sex, age, race, duration of infection, and HIV population structure. RESULTS We confirmed that the intrahost genetic diversity is highest in the env gene. Furthermore, we showed that mean Shannon entropy is significantly associated with VL, especially in infections of >24 months duration. We identified 16 significant associations between VL (p-value<2.0x10-5) and Shannon entropy at AA positions which in our association analysis explained 13% of the variance in VL. Finally, equivalent analysis based on variation in HIV consensus sequences explained only 2% of VL variance. CONCLUSIONS Our results elucidate that viral intrahost genetic diversity is associated with VL and could be used as a better disease progression marker than HIV consensus sequence variants, especially in infections of longer duration. We emphasize that viral intrahost diversity should be considered when studying viral genomes and infection outcomes. TRIAL REGISTRATION Samples included in this study were derived from participants who consented in the clinical trial, START (NCT00867048) (23), run by the International Network for Strategic Initiatives in Global HIV Trials (INSIGHT). All the participant sites are listed here: http://www.insight-trials.org/start/my_phpscript/participating.php?by=site.
Collapse
Affiliation(s)
- Migle Gabrielaite
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
- * E-mail: (MG); (MB)
| | - Marc Bennedbæk
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (MG); (MB)
| | - Malthe Sebro Rasmussen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
- Section of Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Virginia Kan
- Veterans Affairs Medical Center and The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States of America
| | - Hansjakob Furrer
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland
| | - Marcelo Losso
- Hospital General De Agudos J M Ramos Mejía, Buenos Aires, Argentina
| | - Jens D. Lundgren
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Rasmus L. Marvig
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
3
|
Hendricks CM, Cash MN, Tagliamonte MS, Riva A, Brander C, Llano A, Salemi M, Stevenson M, Mavian C. Discordance between HIV-1 Population in Plasma at Rebound after Structured Treatment Interruption and Archived Provirus Population in Peripheral Blood Mononuclear Cells. Microbiol Spectr 2022; 10:e0135322. [PMID: 35699458 PMCID: PMC9431602 DOI: 10.1128/spectrum.01353-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/07/2022] [Indexed: 11/20/2022] Open
Abstract
Antiretroviral therapy (ART) can sustain the suppression of plasma viremia to below detection levels. Infected individuals undergoing a treatment interruption exhibit rapid viral rebound in plasma viremia which is fueled by cellular reservoirs such as CD4+ T cells, myeloid cells, and potentially uncharacterized cellular sources. Interrogating the populations of viruses found during analytical treatment interruption (ATI) can give insights into the biologically competent reservoirs that persist under effective ART as well as the nature of the cellular reservoirs that enable viral persistence under ART. We interrogated plasma viremia from four rare cases of individuals undergoing sequential ATIs. We performed next-generation sequencing (NGS) on cell-associated viral DNA and cell-free virus to understand the interrelationship between sequential ATIs as well as the relationship between viral genomes in circulating peripheral blood mononuclear cells (PBMCs) and RNA from rebound plasma. We observed population differences between viral populations recrudescing at sequential ATIs as well as divergence between viral sequences in plasma and those in PBMCs. This indicated that viruses in PBMCs were not a major source of post-ATI viremia and highlights the role of anatomic reservoirs in post-ATI viremia and viral persistence. IMPORTANCE Even with effective ART, HIV-1 persists at undetectable levels and rebounds in individuals who stop treatment. Cellular and anatomical reservoirs ignite viral rebound upon treatment interruption, remaining one of the key obstacles for HIV-1 cure. To further examine HIV-1 persistence, a better understanding of the distinct populations that fuel viral rebound is necessary to identify and target reservoirs and the eradication of HIV-1. This study investigates the populations of viruses found from proviral genomes from PBMCs and plasma at rebound from a unique cohort of individuals who underwent multiple rounds of treatment interruption. Using NGS, we characterized the subtypes of viral sequences and found divergence in viral populations between plasma and PBMCs at each rebound, suggesting that distinct viral populations appear at each treatment interruption.
Collapse
Affiliation(s)
- Chynna M. Hendricks
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Melanie N. Cash
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Massimiliano S. Tagliamonte
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Alberto Riva
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | | | - Anuska Llano
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Mario Stevenson
- Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Division of Infectious Diseases, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Carla Mavian
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Kemp SA, Charles OJ, Derache A, Smidt W, Martin DP, Iwuji C, Adamson J, Govender K, de Oliveira T, Dabis F, Pillay D, Goldstein RA, Gupta RK. HIV-1 Evolutionary Dynamics under Nonsuppressive Antiretroviral Therapy. mBio 2022; 13:e0026922. [PMID: 35446121 PMCID: PMC9239331 DOI: 10.1128/mbio.00269-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022] Open
Abstract
Prolonged virologic failure on 2nd-line protease inhibitor (PI)-based antiretroviral therapy (ART) without emergence of major protease mutations is well recognized and provides an opportunity to study within-host evolution in long-term viremic individuals. Using next-generation sequencing and in silico haplotype reconstruction, we analyzed whole-genome sequences from longitudinal plasma samples of eight chronically infected HIV-1-positive individuals failing 2nd-line regimens from the French National Agency for AIDS and Viral Hepatitis Research (ANRS) 12249 Treatment as Prevention (TasP) trial. On nonsuppressive ART, there were large fluctuations in synonymous and nonsynonymous variant frequencies despite stable viremia. Reconstructed haplotypes provided evidence for selective sweeps during periods of partial adherence, and viral haplotype competition, during periods of low drug exposure. Drug resistance mutations in reverse transcriptase (RT) were used as markers of viral haplotypes in the reservoir, and their distribution over time indicated recombination. We independently observed linkage disequilibrium decay, indicative of recombination. These data highlight dramatic changes in virus population structure that occur during stable viremia under nonsuppressive ART. IMPORTANCE HIV-1 infections are most commonly initiated with a single founder virus and are characterized by extensive inter- and intraparticipant genetic diversity. However, existing literature on HIV-1 intrahost population dynamics is largely limited to untreated infections, predominantly in subtype B-infected individuals. The manuscript characterizes viral population dynamics in long-term viremic treatment-experienced individuals, which has not been previously characterized. These data are particularly relevant for understanding HIV dynamics but can also be applied to other RNA viruses. With this unique data set we propose that the virus is highly unstable, and we have found compelling evidence of HIV-1 within-host viral diversification, recombination, and haplotype competition during nonsuppressive ART.
Collapse
Affiliation(s)
- Steven A. Kemp
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
| | - Oscar J. Charles
- Division of Infection & Immunity, University College London, London, United Kingdom
| | - Anne Derache
- Africa Health Research Institute, Durban, South Africa
| | - Werner Smidt
- Africa Health Research Institute, Durban, South Africa
| | - Darren P. Martin
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Collins Iwuji
- Africa Health Research Institute, Durban, South Africa
- Research Department of Infection and Population Health, University College London, United Kingdom
| | - John Adamson
- Africa Health Research Institute, Durban, South Africa
| | | | - Tulio de Oliveira
- Africa Health Research Institute, Durban, South Africa
- KRISP - KwaZulu-Natal Research and Innovation Sequencing Platform, UKZN, Durban, South Africa
| | - Francois Dabis
- INSERM U1219-Centre Inserm Bordeaux Population Health, Université de Bordeaux, France
- Université de Bordeaux, ISPED, Centre INSERM U1219-Bordeaux Population Health, France
| | - Deenan Pillay
- Division of Infection & Immunity, University College London, London, United Kingdom
| | - Richard A. Goldstein
- Division of Infection & Immunity, University College London, London, United Kingdom
| | - Ravindra K. Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
- Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
5
|
Pathak AK, Mishra GP, Uppili B, Walia S, Fatihi S, Abbas T, Banu S, Ghosh A, Kanampalliwar A, Jha A, Fatma S, Aggarwal S, Dhar MS, Marwal R, Radhakrishnan VS, Ponnusamy K, Kabra S, Rakshit P, Bhoyar RC, Jain A, Divakar MK, Imran M, Faruq M, Sowpati DT, Thukral L, Raghav SK, Mukerji M. Spatio-temporal dynamics of intra-host variability in SARS-CoV-2 genomes. Nucleic Acids Res 2022; 50:1551-1561. [PMID: 35048970 PMCID: PMC8860616 DOI: 10.1093/nar/gkab1297] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
During the course of the COVID-19 pandemic, large-scale genome sequencing of SARS-CoV-2 has been useful in tracking its spread and in identifying variants of concern (VOC). Viral and host factors could contribute to variability within a host that can be captured in next-generation sequencing reads as intra-host single nucleotide variations (iSNVs). Analysing 1347 samples collected till June 2020, we recorded 16 410 iSNV sites throughout the SARS-CoV-2 genome. We found ∼42% of the iSNV sites to be reported as SNVs by 30 September 2020 in consensus sequences submitted to GISAID, which increased to ∼80% by 30th June 2021. Following this, analysis of another set of 1774 samples sequenced in India between November 2020 and May 2021 revealed that majority of the Delta (B.1.617.2) and Kappa (B.1.617.1) lineage-defining variations appeared as iSNVs before getting fixed in the population. Besides, mutations in RdRp as well as RNA-editing by APOBEC and ADAR deaminases seem to contribute to the differential prevalence of iSNVs in hosts. We also observe hyper-variability at functionally critical residues in Spike protein that could alter the antigenicity and may contribute to immune escape. Thus, tracking and functional annotation of iSNVs in ongoing genome surveillance programs could be important for early identification of potential variants of concern and actionable interventions.
Collapse
Affiliation(s)
- Ankit K Pathak
- CSIR - Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | | | - Bharathram Uppili
- CSIR - Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Safal Walia
- Institute of Life Sciences (ILS), Bhubaneswar, Odisha, India
| | - Saman Fatihi
- CSIR - Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tahseen Abbas
- CSIR - Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sofia Banu
- CSIR - Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, Telangana, India
| | - Arup Ghosh
- Institute of Life Sciences (ILS), Bhubaneswar, Odisha, India
| | | | - Atimukta Jha
- Institute of Life Sciences (ILS), Bhubaneswar, Odisha, India
| | - Sana Fatma
- Institute of Life Sciences (ILS), Bhubaneswar, Odisha, India
| | - Shifu Aggarwal
- Institute of Life Sciences (ILS), Bhubaneswar, Odisha, India
| | - Mahesh Shanker Dhar
- Biotechnology Division, National Centre for Disease Control (NCDC), New Delhi, India
| | - Robin Marwal
- Biotechnology Division, National Centre for Disease Control (NCDC), New Delhi, India
| | | | - Kalaiarasan Ponnusamy
- Biotechnology Division, National Centre for Disease Control (NCDC), New Delhi, India
| | - Sandhya Kabra
- Biotechnology Division, National Centre for Disease Control (NCDC), New Delhi, India
| | - Partha Rakshit
- Biotechnology Division, National Centre for Disease Control (NCDC), New Delhi, India
| | - Rahul C Bhoyar
- CSIR - Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Abhinav Jain
- CSIR - Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohit Kumar Divakar
- CSIR - Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohamed Imran
- CSIR - Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohammed Faruq
- CSIR - Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Divya Tej Sowpati
- CSIR - Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, Telangana, India
| | - Lipi Thukral
- CSIR - Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Sunil K Raghav
- Institute of Life Sciences (ILS), Bhubaneswar, Odisha, India
| | - Mitali Mukerji
- CSIR - Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Indian Institute of Technology (IIT), Jodhpur, India
| |
Collapse
|
6
|
Rife Magalis B, Autissier P, Williams KC, Chen X, Browne C, Salemi M. Predator-Prey Dynamics of Intra-Host Simian Immunodeficiency Virus Evolution Within the Untreated Host. Front Immunol 2021; 12:709962. [PMID: 34691023 PMCID: PMC8527182 DOI: 10.3389/fimmu.2021.709962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023] Open
Abstract
The dynamic nature of the SIV population during disease progression in the SIV/macaque model of AIDS and the factors responsible for its behavior have not been documented, largely owing to the lack of sufficient spatial and temporal sampling of both viral and host data from SIV-infected animals. In this study, we detail Bayesian coalescent inference of the changing collective intra-host viral effective population size (Ne ) from various tissues over the course of infection and its relationship with what we demonstrate is a continuously changing immune cell repertoire within the blood. Although the relative contribution of these factors varied among hosts and time points, the adaptive immune response best explained the overall periodic dynamic behavior of the effective virus population. Data exposing the nature of the relationship between the virus and immune cell populations revealed the plausibility of an eco-evolutionary mathematical model, which was able to mimic the large-scale oscillations in Ne through virus escape from relatively few, early immunodominant responses, followed by slower escape from several subdominant and weakened immune populations. The results of this study suggest that SIV diversity within the untreated host is governed by a predator-prey relationship, wherein differing phases of infection are the result of adaptation in response to varying immune responses. Previous investigations into viral population dynamics using sequence data have focused on single estimates of the effective viral population size (Ne ) or point estimates over sparse sampling data to provide insight into the precise impact of immune selection on virus adaptive behavior. Herein, we describe the use of the coalescent phylogenetic frame- work to estimate the relative changes in Ne over time in order to quantify the relationship with empirical data on the dynamic immune composition of the host. This relationship has allowed us to expand on earlier simulations to build a predator-prey model that explains the deterministic behavior of the virus over the course of disease progression. We show that sequential viral adaptation can occur in response to phases of varying immune pressure, providing a broader picture of the viral response throughout the entire course of progression to AIDS.
Collapse
Affiliation(s)
- Brittany Rife Magalis
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Patrick Autissier
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | | | - Xinguang Chen
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
| | - Cameron Browne
- Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Sonti S, Sharma AL, Tyagi M. HIV-1 persistence in the CNS: Mechanisms of latency, pathogenesis and an update on eradication strategies. Virus Res 2021; 303:198523. [PMID: 34314771 DOI: 10.1016/j.virusres.2021.198523] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022]
Abstract
Despite four decades of research into the human immunodeficiency virus (HIV-1), a successful strategy to eradicate the virus post-infection is lacking. The major reason for this is the persistence of the virus in certain anatomical reservoirs where it can become latent and remain quiescent for as long as the cellular reservoir is alive. The Central Nervous System (CNS), in particular, is an intriguing anatomical compartment that is tightly regulated by the blood-brain barrier. Targeting the CNS viral reservoir is a major challenge owing to the decreased permeability of drugs into the CNS and the cellular microenvironment that facilitates the compartmentalization and evolution of the virus. Therefore, despite effective antiretroviral (ARV) treatment, virus persists in the CNS, and leads to neurological and neurocognitive deficits. To date, viral eradication strategies fail to eliminate the virus from the CNS. To facilitate the improvement of the existing elimination strategies, as well as the development of potential therapeutic targets, the aim of this review is to provide an in-depth understanding of HIV latency in CNS and the onset of HIV-1 associated neurological disorders.
Collapse
Affiliation(s)
- Shilpa Sonti
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
8
|
Knyazev S, Hughes L, Skums P, Zelikovsky A. Epidemiological data analysis of viral quasispecies in the next-generation sequencing era. Brief Bioinform 2021; 22:96-108. [PMID: 32568371 PMCID: PMC8485218 DOI: 10.1093/bib/bbaa101] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 01/04/2023] Open
Abstract
The unprecedented coverage offered by next-generation sequencing (NGS) technology has facilitated the assessment of the population complexity of intra-host RNA viral populations at an unprecedented level of detail. Consequently, analysis of NGS datasets could be used to extract and infer crucial epidemiological and biomedical information on the levels of both infected individuals and susceptible populations, thus enabling the development of more effective prevention strategies and antiviral therapeutics. Such information includes drug resistance, infection stage, transmission clusters and structures of transmission networks. However, NGS data require sophisticated analysis dealing with millions of error-prone short reads per patient. Prior to the NGS era, epidemiological and phylogenetic analyses were geared toward Sanger sequencing technology; now, they must be redesigned to handle the large-scale NGS datasets and properly model the evolution of heterogeneous rapidly mutating viral populations. Additionally, dedicated epidemiological surveillance systems require big data analytics to handle millions of reads obtained from thousands of patients for rapid outbreak investigation and management. We survey bioinformatics tools analyzing NGS data for (i) characterization of intra-host viral population complexity including single nucleotide variant and haplotype calling; (ii) downstream epidemiological analysis and inference of drug-resistant mutations, age of infection and linkage between patients; and (iii) data collection and analytics in surveillance systems for fast response and control of outbreaks.
Collapse
|
9
|
Correa-Fiz F, Franzo G, Llorens A, Huerta E, Sibila M, Kekarainen T, Segalés J. Porcine circovirus 2 (PCV2) population study in experimentally infected pigs developing PCV2-systemic disease or a subclinical infection. Sci Rep 2020; 10:17747. [PMID: 33082419 PMCID: PMC7576782 DOI: 10.1038/s41598-020-74627-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023] Open
Abstract
Porcine circovirus 2 (PCV2) is a single stranded DNA virus with one of the highest mutation rates among DNA viruses. This ability allows it to generate a cloud of mutants constantly providing new opportunities to adapt and evade the immune system. This pig pathogen is associated to many diseases, globally called porcine circovirus diseases (PCVD) and has been a threat to pig industry since its discovery in the early 90's. Although 11 ORFs have been predicted from its genome, only two main proteins have been deeply characterized, i.e. Rep and Cap. The structural Cap protein possesses the majority of the epitopic determinants of this non-enveloped virus. The evolution of PCV2 is affected by both natural and vaccine-induced immune responses, which enhances the genetic variability, especially in the most immunogenic Cap region. Intra-host variability has been also demonstrated in infected animals where long-lasting infections can take place. However, the association between this intra-host variability and pathogenesis has never been studied for this virus. Here, the within-host PCV2 variability was monitored over time by next generation sequencing during an experimental infection, demonstrating the presence of large heterogeneity. Remarkably, the level of quasispecies diversity, affecting particularly the Cap coding region, was statistically different depending on viremia levels and clinical signs detected after infection. Moreover, we proved the existence of hyper mutant subjects harboring a remarkably higher number of genetic variants. Altogether, these results suggest an interaction between genetic diversity, host immune system and disease severity.
Collapse
Affiliation(s)
- Florencia Correa-Fiz
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain. .,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, PD, Italy
| | - Anna Llorens
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Eva Huerta
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Marina Sibila
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Tuija Kekarainen
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,Kuopio Center for Gene and Cell Therapy, Microkatu 1, Kuopio, Finland
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Spain
| |
Collapse
|
10
|
Jones JE, Le Sage V, Lakdawala SS. Viral and host heterogeneity and their effects on the viral life cycle. Nat Rev Microbiol 2020; 19:272-282. [PMID: 33024309 PMCID: PMC7537587 DOI: 10.1038/s41579-020-00449-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
Traditionally, the viral replication cycle is envisioned as a single, well-defined loop with four major steps: attachment and entry into a target cell, replication of the viral genome, maturation of viral proteins and genome packaging into infectious progeny, and egress and dissemination to the next target cell. However, for many viruses, a growing body of evidence points towards extreme heterogeneity in each of these steps. In this Review, we reassess the major steps of the viral replication cycle by highlighting recent advances that show considerable variability during viral infection. First, we discuss heterogeneity in entry receptors, followed by a discussion on error-prone and low-fidelity polymerases and their impact on viral diversity. Next, we cover the implications of heterogeneity in genome packaging and assembly on virion morphology. Last, we explore alternative egress mechanisms, including tunnelling nanotubes and host microvesicles. In summary, we discuss the implications of viral phenotypic, morphological and genetic heterogeneity on pathogenesis and medicine. This Review highlights common themes and unique features that give nuance to the viral replication cycle.
Collapse
Affiliation(s)
- Jennifer E Jones
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
de Carvalho Lima EN, Lima RSA, Arif MS, Piqueira JRC, Diaz RS. Evolutive Temporal Footprint of an HIV-1 Envelope Protein in an Epidemiologically Linked Cluster. Open AIDS J 2020. [DOI: 10.2174/1874613602014010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
The C2V3C3 region of gp 120, encoded by the HIV-1 envelope gene (env), is an important antigenic target, a key determinant for viral evolution and essential for determining epitopes for vaccines.
Methods:
The relationships among genetic sequence diversity, selective pressure, constraints on HIV-1 envelope protein were explored and also correlated this analysis with information entropy; hypermutation; HIV tropism; CD4+ T cell counts or HIV viral load. A total of 179 HIV-1 C2V3C3 sequences derived from cell-free plasma were used, determined from serial samples, in four epidemiologically linked individuals (one infected blood donor, two transfusion recipients and a sexual partner infected by one of the recipients) over a maximum period of 8 years. This study is important because it considers the analysis of patterns in genomic sequences, without drugs and over time.
Results:
A temporal relationship among information entropy, hypermutation, tropism switch, viral load, and CD4+ T cell count was determined. Changes in information entropy were time-dependent, and an increase in entropy was observed in the C2V3C3 region at amino acids G313 and F317-I320 (related to the GPGR-motif and coreceptor tropism), and at amino acids A281 in C2 and A346 in C3, related to immune escape.
Conclusion:
The increase of information entropy over time was correlated with hypermutation and the emergence of nonR5- strains, which are both associated with more variable genomes.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Within-host diversity complicates transmission models because it recognizes that between-host virus phylogenies are not identical to the transmission history among the infected hosts. This review presents the biological and theoretical foundations for recent development in this field, and shows that modern phylodynamic methods are capable of inferring realistic transmission histories from HIV sequence data. RECENT FINDINGS Transmission of single or multiple genetic variants from a donor's HIV population results in donor-recipient phylogenies with combinations of monophyletic, paraphyletic, and polyphyletic patterns. Large-scale simulations and analyses of many real HIV datasets have established that transmission direction, directness, or common source often can be inferred based on HIV sequence data. Phylodynamic reconstruction of HIV transmissions that include within-host HIV diversity have recently been established and made available in several software packages. SUMMARY Phylodynamic methods that include realistic features of HIV genetic diversification have come of age, significantly improving inference of key epidemiological parameters. This opens the door to more accurate surveillance and better-informed prevention campaigns.
Collapse
|
13
|
Miura S, Tamura K, Tao Q, Huuki LA, Kosakovsky Pond SL, Priest J, Deng J, Kumar S. A new method for inferring timetrees from temporally sampled molecular sequences. PLoS Comput Biol 2020; 16:e1007046. [PMID: 31951607 PMCID: PMC7018096 DOI: 10.1371/journal.pcbi.1007046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 02/13/2020] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Pathogen timetrees are phylogenies scaled to time. They reveal the temporal history of a pathogen spread through the populations as captured in the evolutionary history of strains. These timetrees are inferred by using molecular sequences of pathogenic strains sampled at different times. That is, temporally sampled sequences enable the inference of sequence divergence times. Here, we present a new approach (RelTime with Dated Tips [RTDT]) to estimating pathogen timetrees based on a relative rate framework underlying the RelTime approach that is algebraic in nature and distinct from all other current methods. RTDT does not require many of the priors demanded by Bayesian approaches, and it has light computing requirements. In analyses of an extensive collection of computer-simulated datasets, we found the accuracy of RTDT time estimates and the coverage probabilities of their confidence intervals (CIs) to be excellent. In analyses of empirical datasets, RTDT produced dates that were similar to those reported in the literature. In comparative benchmarking with Bayesian and non-Bayesian methods (LSD, TreeTime, and treedater), we found that no method performed the best in every scenario. So, we provide a brief guideline for users to select the most appropriate method in empirical data analysis. RTDT is implemented for use via a graphical user interface and in high-throughput settings in the newest release of cross-platform MEGA X software, freely available from http://www.megasoftware.net. Pathogen timetrees trace the origins and evolutionary histories of strains in populations, hosts, and outbreaks. The tips of these molecular phylogenies often contain sampling time information because the sequences were generally obtained at different times during the disease outbreaks and propagation. We have developed a new method for inferring divergence times and confidence intervals for phylogenies with tip dates. The new Relative Times with Dated Tips (RTDT) methods showed excellent performance in the analysis of computer-simulated datasets, producing similar or better results in several evolutionary scenarios as compared to other fast, non-Bayesian methods. The new method is available in the cross-platform MEGA software package (version 10.1 and higher) that provides a graphical user interface and allows usage via a command line in scripting and high throughput analysis (www.megasoftware.net).
Collapse
Affiliation(s)
- Sayaka Miura
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Koichiro Tamura
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Tokyo, Japan
| | - Qiqing Tao
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Louise A. Huuki
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Jessica Priest
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Jiamin Deng
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
- Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail:
| |
Collapse
|
14
|
Endless Forms: Within-Host Variation in the Structure of the West Nile Virus RNA Genome during Serial Passage in Bird Hosts. mSphere 2019; 4:4/3/e00291-19. [PMID: 31243074 PMCID: PMC6595145 DOI: 10.1128/msphere.00291-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The enzymes that copy RNA genomes lack proofreading, and viruses that possess RNA genomes, such as West Nile virus, rapidly diversify into swarms of mutant lineages within a host. Intrahost variation of the primary genomic sequence of RNA viruses has been studied extensively because the extent of this variation shapes key virus phenotypes. However, RNA genomes also form complex secondary structures based on within-genome nucleotide complementarity, which are critical regulators of the cyclization of the virus genome that is necessary for efficient replication and translation. We sought to characterize variation in these secondary structures within populations of West Nile virus during serial passage in three bird species. Our study indicates that the intrahost population of West Nile virus is a diverse assortment of RNA secondary structures that should be considered in future analyses of intrahost viral diversity, but some regions that are critical for genome cyclization are conserved within hosts. Besides potential impacts on viral replication, structural diversity can influence the efficacy of small RNA antiviral therapies. RNA viruses are infamous for their high rates of mutation, which produce swarms of genetic variants within individual hosts. To date, analyses of intrahost genetic diversity have focused on the primary genome sequence. However, virus phenotypes are shaped not only by primary sequence but also by the secondary structures into which this sequence folds. Such structures enable viral replication, translation, and binding of small RNAs, yet within-host variation at the structural level has not been adequately explored. We characterized the structural diversity of the 5′ untranslated region (UTR) of populations of West Nile virus (WNV) that had been subject to five serial passages in triplicate in each of three bird species. Viral genomes were sampled from host serum samples at each passage (n = 45 populations) and subjected to next-generation sequencing. For populations derived from passages 1, 3, and 5 (n = 9 populations), we predicted the impact of each mutation occurring at a frequency of ≥1% on the secondary structure of the 5′ UTR. As expected, mutations in double-stranded (DS) regions of the 5′ UTR stem structures caused structural changes of significantly greater magnitude than did mutations in single-stranded (SS) regions. Despite the greater impact of mutations in DS regions, mutations in DS and SS regions occurred at similar frequencies, with no evidence of enhanced selection against mutation in DS regions. In contrast, mutations in two regions that mediate genome cyclization and thereby regulate replication and translation, the 5′ cyclization sequence and the UAR flanking stem (UFS), were suppressed in all three hosts. IMPORTANCE The enzymes that copy RNA genomes lack proofreading, and viruses that possess RNA genomes, such as West Nile virus, rapidly diversify into swarms of mutant lineages within a host. Intrahost variation of the primary genomic sequence of RNA viruses has been studied extensively because the extent of this variation shapes key virus phenotypes. However, RNA genomes also form complex secondary structures based on within-genome nucleotide complementarity, which are critical regulators of the cyclization of the virus genome that is necessary for efficient replication and translation. We sought to characterize variation in these secondary structures within populations of West Nile virus during serial passage in three bird species. Our study indicates that the intrahost population of West Nile virus is a diverse assortment of RNA secondary structures that should be considered in future analyses of intrahost viral diversity, but some regions that are critical for genome cyclization are conserved within hosts. Besides potential impacts on viral replication, structural diversity can influence the efficacy of small RNA antiviral therapies.
Collapse
|
15
|
Low Postseroconversion CD4 + T-cell Level Is Associated with Faster Disease Progression and Higher Viral Evolutionary Rate in HIV-2 Infection. mBio 2019; 10:mBio.01245-18. [PMID: 30622192 PMCID: PMC6325243 DOI: 10.1128/mbio.01245-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The relationship between HIV evolution and disease progression is fundamental to our understanding of HIV immune control and vaccine design. There are no clear definitions for faster and slower HIV-2 disease progression and for the relationship of the rate of progression with HIV-2 evolution. To address the hypothesis that viral evolution is correlated with disease progression in HIV-2 infection, we determined faster and slower disease progression based on follow-up data from a prospective cohort of police officers in Guinea-Bissau. The analysis showed that although the CD4+ T-cell level and the decline in the level were independently associated with progression to AIDS, only the CD4+ T-cell level or a combined CD4+ T-cell level/decline stratification was associated with the rate of HIV-2 evolution. The HIV-2 evolutionary rate was almost twice as high among the faster progressors as among the slower progressors. Importantly, this report defines previously unknown characteristics linking HIV-2 disease progression with virus evolution. A positive correlation between virus evolutionary rate and disease progression has been shown for human immunodeficiency virus type 1 (HIV-1) infection. Much less is known about HIV-2, the second causative agent of AIDS. We analyzed 528 HIV-2 env V1-C3 sequences generated from longitudinal plasma samples that were collected from 16 study participants during a median observation time of 7.9 years (interquartile range [IQR], 5.2 to 14.0 years). Study participants were classified as faster or slower disease progressors based on longitudinal CD4+ T-cell data. The HIV-2 evolutionary rate was significantly associated with CD4+ T-cell levels and was almost twice as high among the faster progressors as among the slower progressors. Higher evolutionary rates were accounted for by both synonymous and nonsynonymous nucleotide substitutions. Moreover, slow disease progression was associated with stronger positive selection on HIV-2/SIVsm (simian immunodeficiency virus infecting sooty mangabey) surface-exposed conserved residues. This study demonstrated a number of previously unknown characteristics linking HIV-2 disease progression with virus evolution. Some of these findings distinguish HIV-2 from HIV-1 and may contribute to the understanding of differences in pathogenesis.
Collapse
|
16
|
Marín-Palma D, Castro GA, Cardona-Arias JA, Urcuqui-Inchima S, Hernandez JC. Lower High-Density Lipoproteins Levels During Human Immunodeficiency Virus Type 1 Infection Are Associated With Increased Inflammatory Markers and Disease Progression. Front Immunol 2018; 9:1350. [PMID: 29963050 PMCID: PMC6010517 DOI: 10.3389/fimmu.2018.01350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/31/2018] [Indexed: 01/14/2023] Open
Abstract
Introduction High-density lipoproteins (HDL) are responsible for the efflux and transport of cholesterol from peripheral tissues to the liver. In addition, HDL can modulate various immunological mechanisms, including the inflammatory response. Inflammasomes are multiprotein complexes that have been reported to be activated during human immunodeficiency virus type 1 (HIV-1) infection, thus contributing to immune hyperactivation, which is the main pathogenic mechanism of HIV-1 progression. However, the relationship between HDL and inflammasomes in the context of HIV-1 infection is unclear. Therefore, this research aims to explore the association between HDL and the components of the inflammatory response during HIV-1 infection. Methodology A cross-sectional study, including 36 HIV-1-infected individuals without antiretroviral treatment and 36 healthy controls matched by sex and age, was conducted. Viral load, CD4+ T-cell counts, serum HDL, and C-reactive protein (CRP) were quantified. Serum cytokine levels, including IL-1β, IL-6, and IL-18, were assessed by ELISA. The inflammasome-related genes in peripheral blood mononuclear cells were determined by quantitative real-time PCR. Results HIV-1-infected individuals showed a significant decrease in HDL levels, particularly those subjects with higher viral load and lower CD4+ T-cell counts. Moreover, upregulation of inflammasome-related genes (NLRP3, AIM2, ASC, IL-1β, and IL-18) was observed, notably in those HIV-1-infected individuals with higher viral loads (above 5,000 copies/mL). Serum levels of IL-6 and CRP were also elevated in HIV-1-infected individuals. Significant negative correlations between HDL and the mRNA of NLRP3, AIM2, ASC, IL-1β, and IL-18, as well as viral load and CRP were observed in HIV-1-infected individuals. Likewise, a significant positive correlation between HDL and CD4+ T-cell counts was found. Conclusion In summary, our results indicate that HDL might modulate the expression of several key components of the inflammasomes during HIV-1 infection, suggesting a novel role of HDL in modifying the inflammatory state and consequently, the progression of HIV-1 infection.
Collapse
Affiliation(s)
- Damariz Marín-Palma
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia.,Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Gustavo A Castro
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Jaiberth A Cardona-Arias
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia.,Escuela de Microbiología, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| |
Collapse
|
17
|
NGS combined with phylogenetic analysis to detect HIV-1 dual infection in Romanian people who inject drugs. Microbes Infect 2018; 20:308-311. [PMID: 29626632 DOI: 10.1016/j.micinf.2018.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/24/2018] [Accepted: 03/21/2018] [Indexed: 11/23/2022]
Abstract
Dual HIV infections are possible and likely in people who inject drugs (PWID). Thirty-eight newly diagnosed patients, 19 PWID and 19 heterosexually HIV infected were analyzed. V2V3 loop of HIV-1 env gene was sequenced on the NGS platform 454 GSJunior (Roche). HIV-1 dual/multiple infections were identified in five PWID. For three of these patients, the reconstructed variants belonged to pure F1 subtype and CRF14_BG strains according to phylogenetic analysis. New recombinant forms between these parental strains were identified in two PWID samples. NGS data can provide, with the help of phylogenetic analysis, important insights about the intra-host sub-population structure.
Collapse
|
18
|
Rife Magalis B, Kosakovsky Pond SL, Summers MF, Salemi M. Evaluation of global HIV/SIV envelope gp120 RNA structure and evolution within and among infected hosts. Virus Evol 2018; 4:vey018. [PMID: 29951250 PMCID: PMC6014367 DOI: 10.1093/ve/vey018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lentiviral RNA genomes contain structural elements that play critical roles in viral replication. Although structural features of 5'-untranslated regions have been well characterized, attempts to identify important structures in other genomic regions by Selective 2'-Hydroxyl Acylation analyzed by Primer Extension (SHAPE) have led to conflicting structural and mechanistic conclusions. Previous approaches accounted neither for sequence heterogeneity that is ubiquitous in viral populations, nor for selective constraints operating at the protein level. We developed an approach that augments SHAPE with phylogenetic analyses and applied it to investigate structure in coding regions (cRNA) within the HIV and SIV envelope genes. Analysis of single-genome SHAPE data with phylogenetic information from diverse lentiviral sequences argues against the conservation of a putative global gp120 RNA structure but points to the existence of core RNA sub-structures. Our findings establish a framework for considering sequence heterogeneity and protein function in de novo RNA structure inference approaches.
Collapse
Affiliation(s)
- Brittany Rife Magalis
- Emerging Pathogens Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
- Institute for Genomics and Evolutionary Medicine and Department of Biology, Temple University, Philadelphia, PA, USA
| | - Sergei L Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine and Department of Biology, Temple University, Philadelphia, PA, USA
| | - Michael F Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Marco Salemi
- Emerging Pathogens Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Insights into the Impact of CD8 + Immune Modulation on Human Immunodeficiency Virus Evolutionary Dynamics in Distinct Anatomical Compartments by Using Simian Immunodeficiency Virus-Infected Macaque Models of AIDS Progression. J Virol 2017; 91:JVI.01162-17. [PMID: 28931681 DOI: 10.1128/jvi.01162-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022] Open
Abstract
A thorough understanding of the role of human immunodeficiency virus (HIV) intrahost evolution in AIDS pathogenesis has been limited by the need for longitudinally sampled viral sequences from the vast target space within the host, which are often difficult to obtain from human subjects. CD8+ lymphocyte-depleted macaques infected with simian immunodeficiency virus (SIV) provide an increasingly utilized model of pathogenesis due to clinical manifestations similar to those for HIV-1 infection and AIDS progression, as well as a characteristic rapid disease onset. Comparison of this model with SIV-infected non-CD8+ lymphocyte-depleted macaques also provides a unique opportunity to investigate the role of CD8+ cells in viral evolution and population dynamics throughout the duration of infection. Using several different phylogenetic methods, we analyzed viral gp120 sequences obtained from extensive longitudinal sampling of multiple tissues and enriched leukocyte populations from SIVmac251-infected macaques with or without CD8+ lymphocyte depletion. SIV evolutionary and selection patterns in non-CD8+ lymphocyte-depleted animals were characterized by sequential population turnover and continual viral adaptation, a scenario readily comparable to intrahost evolutionary patterns during human HIV infection in the absence of antiretroviral therapy. Alternatively, animals that were depleted of CD8+ lymphocytes exhibited greater variation in population dynamics among tissues and cell populations over the course of infection. Our findings highlight the major role for CD8+ lymphocytes in prolonging disease progression through continual control of SIV subpopulations from various anatomical compartments and the potential for greater independent viral evolutionary behavior among these compartments in response to immune modulation.IMPORTANCE Although developments in combined antiretroviral therapy (cART) strategies have successfully prolonged the time to AIDS onset in HIV-1-infected individuals, a functional cure has yet to be found. Improvement of drug interventions for a virus that is able to infect a wide range of tissues and cell types requires a thorough understanding of viral adaptation and infection dynamics within this target milieu. Although it is difficult to accomplish in the human host, longitudinal sampling of multiple anatomical locations is readily accessible in the SIV-infected macaque models of neuro-AIDS. The significance of our research is in identifying the impact of immune modulation, through differing immune selective pressures, on viral evolutionary behavior in a multitude of anatomical compartments. The results provide evidence encouraging the development of a more sophisticated model that considers a network of individual viral subpopulations within the host, with differing infection and transmission dynamics, which is necessary for more effective treatment strategies.
Collapse
|
20
|
Arenas M, Araujo NM, Branco C, Castelhano N, Castro-Nallar E, Pérez-Losada M. Mutation and recombination in pathogen evolution: Relevance, methods and controversies. INFECTION GENETICS AND EVOLUTION 2017; 63:295-306. [PMID: 28951202 DOI: 10.1016/j.meegid.2017.09.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
Mutation and recombination drive the evolution of most pathogens by generating the genetic variants upon which selection operates. Those variants can, for example, confer resistance to host immune systems and drug therapies or lead to epidemic outbreaks. Given their importance, diverse evolutionary studies have investigated the abundance and consequences of mutation and recombination in pathogen populations. However, some controversies persist regarding the contribution of each evolutionary force to the development of particular phenotypic observations (e.g., drug resistance). In this study, we revise the importance of mutation and recombination in the evolution of pathogens at both intra-host and inter-host levels. We also describe state-of-the-art analytical methodologies to detect and quantify these two evolutionary forces, including biases that are often ignored in evolutionary studies. Finally, we present some of our former studies involving pathogenic taxa where mutation and recombination played crucial roles in the recovery of pathogenic fitness, the generation of interspecific genetic diversity, or the design of centralized vaccines. This review also illustrates several common controversies and pitfalls in the analysis and in the evaluation and interpretation of mutation and recombination outcomes.
Collapse
Affiliation(s)
- Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Natalia M Araujo
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Catarina Branco
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Nadine Castelhano
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Eduardo Castro-Nallar
- Universidad Andrés Bello, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Santiago, Chile.
| | - Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Ashburn, VA 20147, Washington, DC, United States; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal.
| |
Collapse
|
21
|
Park SY, Love TMT, Perelson AS, Mack WJ, Lee HY. Molecular clock of HIV-1 envelope genes under early immune selection. Retrovirology 2016; 13:38. [PMID: 27246201 PMCID: PMC4888660 DOI: 10.1186/s12977-016-0269-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/11/2016] [Indexed: 11/10/2022] Open
Abstract
Background The molecular clock hypothesis that genes or proteins evolve at a constant rate is a key tool to reveal phylogenetic relationships among species. Using the molecular clock, we can trace an infection back to transmission using HIV-1 sequences from a single time point. Whether or not a strict molecular clock applies to HIV-1’s early evolution in the presence of immune selection has not yet been fully examined. Results We identified molecular clock signatures from 1587 previously published HIV-1 full envelope gene sequences obtained since acute infection in 15 subjects. Each subject’s sequence diversity linearly increased during the first 150 days post infection, with rates ranging from \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1.54 \times 10^{ - 5}$$\end{document}1.54×10-5 to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3.91 \times 10^{ - 5}$$\end{document}3.91×10-5 with a mean of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2.69 \times 10^{ - 5}$$\end{document}2.69×10-5 per base per day. The rate of diversification for 12 out of the 15 subjects was comparable to the neutral evolution rate. While temporal diversification was consistent with evolution patterns in the absence of selection, mutations from the founder virus were highly clustered on statistically identified selection sites, which diversified more than 65 times faster than non-selection sites. By mathematically quantifying deviations from the molecular clock under various selection scenarios, we demonstrate that the deviation from a constant clock becomes negligible as multiple escape lineages emerge. The most recent common ancestor of a virus pair from distinct escape lineages is most likely the transmitted founder virus, indicating that HIV-1 molecular dating is feasible even after the founder viruses are no longer detectable. Conclusions The ability of HIV-1 to escape from immune surveillance in many different directions is the driving force of molecular clock persistence. This finding advances our understanding of the robustness of HIV-1’s molecular clock under immune selection, implying the potential for molecular dating. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0269-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sung Yong Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA, 90089, USA
| | - Tanzy M T Love
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, 14642, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ha Youn Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA, 90089, USA.
| |
Collapse
|
22
|
Danaviah S, de Oliveira T, Gordon M, Govender S, Chelule P, Pillay S, Naicker T, Cassol S, Ndung'u T. Analysis of Dominant HIV Quasispecies Suggests Independent Viral Evolution Within Spinal Granulomas Coinfected with Mycobacterium tuberculosis and HIV-1 Subtype C. AIDS Res Hum Retroviruses 2016; 32:262-70. [PMID: 26564424 DOI: 10.1089/aid.2015.0189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Extrapulmonary tuberculosis (TB) is a significant public health challenge in South Africa and worldwide, largely fuelled by the HIV epidemic. In spinal TB, Mycobacteria infect the spinal column without dissemination to the spinal cord. The immune microenvironment, target cell characteristics, and other evolutionary forces within granulomas during HIV/TB coinfection are poorly characterized. We investigated whether spinal TB granulomas represent a sequestered anatomical site where independent HIV evolution occurs, and assessed the role of macrophages as a target cell for both HIV and mycobacteria. RNA was extracted from plasma and granulomatous tissue from six antiretroviral-naive HIV-1/spinal TB-coinfected patients, RT-PCR amplified, and the C2-V5 env segment was cloned and sequenced. Analysis of genetic diversity, phylogeny and coalescence patterns was performed on clonal sequences. To investigate their role in HIV sequestration, macrophages and the HIV-1 p24 protein were immune localized and ultrastructural features were studied. Intercompartment diversity measurements and phylogenetic reconstruction revealed anatomically distinct monophyletic HIV-1 clusters in four of six patients. Genotypic CCR5-tropic variants were predominant (98.9%) with conservation of putative N-linked glycosylation sites in both compartments. CD68(+) reactivity was associated with higher tissue viral load (r = 1.0; p < 0.01) but not greater intrapatient diversity (r = 0.60; p > 0.05). Ultrastructural imaging revealed the presence of bacterial and virus-like particles within membrane-bound intracellular compartments of macrophages. Spinal tuberculosis granulomas may form anatomically discreet sites of divergent viral evolution. Macrophages in these granulomas harbored both pathogens, suggesting that they may facilitate the process of viral sequestration within this compartment.
Collapse
Affiliation(s)
- Sivapragashini Danaviah
- Africa Centre for Health and Population Studies, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal (UKZN), Durban, South Africa
| | - Tulio de Oliveira
- Africa Centre for Health and Population Studies, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal (UKZN), Durban, South Africa
| | - Michelle Gordon
- Department of Virology, Nelson R. Mandela School of Medicine, UKZN, Durban, South Africa
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), UKZN, Durban, South Africa
| | - Shunmugam Govender
- Department of Orthopedics, Nelson R. Mandela School of Medicine, UKZN, Durban, South Africa
| | - Paul Chelule
- School of Public Health, Sefako Makgatho Health Sciences University, Medunsa, South Africa
| | - Sureshnee Pillay
- Africa Centre for Health and Population Studies, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal (UKZN), Durban, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Nelson R. Mandela School of Medicine, UKZN, Durban, South Africa
| | - Sharon Cassol
- MRC Inflammation and Immunity Unit, Department of Immunology, University of Pretoria, Pretoria, South Africa
| | - Thumbi Ndung'u
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), UKZN, Durban, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, UKZN, Durban, South Africa
- Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- The Ragon Institute of MGH, MIT and Harvard University, Cambridge, Massachusetts
| |
Collapse
|
23
|
Salemi M, Rife B. Phylogenetics and Phyloanatomy of HIV/SIV Intra-Host Compartments and Reservoirs: The Key Role of the Central Nervous System. Curr HIV Res 2016; 14:110-20. [PMID: 26511341 PMCID: PMC9199530 DOI: 10.2174/1570162x13666151029102413] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/10/2015] [Accepted: 10/21/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND The ability of the human immunodeficiency virus type 1 (HIV-1) to persist in anatomic compartments and cellular reservoirs is a major obstacle for eradication of replicationcompetent virus in the infected host. APPROACH We extensively review recent advancements in phylogenetic and phylogeographic techniques that provide a unique opportunity for studies of intra-host HIV-1 compartmentalization and the detection of potential reservoirs. CONCLUSION We show that infected macrophages in the central nervous system (CNS) harbor viral subpopulations that play a key role in the emergence of escape variants and viral rebound following discontinuation of antiretroviral therapy. An HIV cure, therefore, cannot be achieved without the effective targeting of the virus in the CNS, for which in depth knowledge of viral population dynamics contributing to the development and maintenance of latent reservoirs is critical.
Collapse
Affiliation(s)
- Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, USA.
| | | |
Collapse
|
24
|
Mourier T, Mollerup S, Vinner L, Hansen TA, Kjartansdóttir KR, Guldberg Frøslev T, Snogdal Boutrup T, Nielsen LP, Willerslev E, Hansen AJ. Characterizing novel endogenous retroviruses from genetic variation inferred from short sequence reads. Sci Rep 2015; 5:15644. [PMID: 26493184 PMCID: PMC4616055 DOI: 10.1038/srep15644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023] Open
Abstract
From Illumina sequencing of DNA from brain and liver tissue from the lion, Panthera leo, and tumor samples from the pike-perch, Sander lucioperca, we obtained two assembled sequence contigs with similarity to known retroviruses. Phylogenetic analyses suggest that the pike-perch retrovirus belongs to the epsilonretroviruses, and the lion retrovirus to the gammaretroviruses. To determine if these novel retroviral sequences originate from an endogenous retrovirus or from a recently integrated exogenous retrovirus, we assessed the genetic diversity of the parental sequences from which the short Illumina reads are derived. First, we showed by simulations that we can robustly infer the level of genetic diversity from short sequence reads. Second, we find that the measures of nucleotide diversity inferred from our retroviral sequences significantly exceed the level observed from Human Immunodeficiency Virus infections, prompting us to conclude that the novel retroviruses are both of endogenous origin. Through further simulations, we rule out the possibility that the observed elevated levels of nucleotide diversity are the result of co-infection with two closely related exogenous retroviruses.
Collapse
Affiliation(s)
- Tobias Mourier
- Centre for GeoGenetics, Museum of Natural History of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Mollerup
- Centre for GeoGenetics, Museum of Natural History of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Vinner
- Centre for GeoGenetics, Museum of Natural History of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Arn Hansen
- Centre for GeoGenetics, Museum of Natural History of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Kristín Rós Kjartansdóttir
- Centre for GeoGenetics, Museum of Natural History of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Guldberg Frøslev
- Centre for GeoGenetics, Museum of Natural History of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Torsten Snogdal Boutrup
- Section for Virology, National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| | - Lars Peter Nielsen
- Department for Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| | - Eske Willerslev
- Centre for GeoGenetics, Museum of Natural History of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Anders J Hansen
- Centre for GeoGenetics, Museum of Natural History of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Diaz A, Enomoto S, Romagosa A, Sreevatsan S, Nelson M, Culhane M, Torremorell M. Genome plasticity of triple-reassortant H1N1 influenza A virus during infection of vaccinated pigs. J Gen Virol 2015; 96:2982-2993. [PMID: 26251306 PMCID: PMC4857448 DOI: 10.1099/jgv.0.000258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/04/2015] [Indexed: 12/18/2022] Open
Abstract
To gain insight into the evolution of influenza A viruses (IAVs) during infection of vaccinated pigs, we experimentally infected a 3-week-old naive pig with a triple-reassortant H1N1 IAV and placed the seeder pig in direct contact with a group of age-matched vaccinated pigs (n = 10). We indexed the genetic diversity and evolution of the virus at an intra-host level by deep sequencing the entire genome directly from nasal swabs collected at two separate samplings during infection. We obtained 13 IAV metagenomes from 13 samples, which included the virus inoculum and two samples from each of the six pigs that tested positive for IAV during the study. The infection produced a population of heterogeneous alleles (sequence variants) that was dynamic over time. Overall, 794 polymorphisms were identified amongst all samples, which yielded 327 alleles, 214 of which were unique sequences. A total of 43 distinct haemagglutinin proteins were translated, two of which were observed in multiple pigs, whereas the neuraminidase (NA) was conserved and only one dominant NA was found throughout the study. The genetic diversity of IAVs changed dynamically within and between pigs. However, most of the substitutions observed in the internal gene segments were synonymous. Our results demonstrated remarkable IAV diversity, and the complex, rapid and dynamic evolution of IAV during infection of vaccinated pigs that can only be appreciated with repeated sampling of individual animals and deep sequence analysis.
Collapse
Affiliation(s)
- Andres Diaz
- College of Veterinary Medicine, University of Minnesota Saint Paul, Minnesota, USA
| | | | - Anna Romagosa
- College of Veterinary Medicine, University of Minnesota Saint Paul, Minnesota, USA
| | - Srinand Sreevatsan
- College of Veterinary Medicine, University of Minnesota Saint Paul, Minnesota, USA
| | - Martha Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie Culhane
- College of Veterinary Medicine, University of Minnesota Saint Paul, Minnesota, USA
| | | |
Collapse
|
26
|
Grossman Z, Avidor B, Mor Z, Chowers M, Levy I, Shahar E, Riesenberg K, Sthoeger Z, Maayan S, Shao W, Lorber M, Olstein-Pops K, Elbirt D, Elinav H, Asher I, Averbuch D, Istomin V, Gottesman BS, Kedem E, Girshengorn S, Kra-Oz Z, Shemer Avni Y, Radian Sade S, Turner D, Maldarelli F. A Population-Structured HIV Epidemic in Israel: Roles of Risk and Ethnicity. PLoS One 2015; 10:e0135061. [PMID: 26302493 PMCID: PMC4547742 DOI: 10.1371/journal.pone.0135061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/17/2015] [Indexed: 11/30/2022] Open
Abstract
Background HIV in Israel started with a subtype-B epidemic among men who have sex with men, followed in the 1980s and 1990s by introductions of subtype C from Ethiopia (predominantly acquired by heterosexual transmission) and subtype A from the former Soviet Union (FSU, most often acquired by intravenous drug use). The epidemic matured over the last 15 years without additional large influx of exogenous infections. Between 2005 and 2013 the number of infected men who have sex with men (MSM) increased 2.9-fold, compared to 1.6-fold and 1.3-fold for intravenous drug users (IVDU) and Ethiopian-origin residents. Understanding contemporary spread is essential for effective public health planning. Methods We analyzed demographic and virologic data from 1,427 HIV-infected individuals diagnosed with HIV-I during 1998–2012. HIV phylogenies were reconstructed with maximum-likelihood and Bayesian methods. Results Subtype-B viruses, but not A or C, demonstrated a striking number of large clusters with common ancestors having posterior probability ≥0.95, including some suggesting presence of transmission networks. Transmitted drug resistance was highest in subtype B (13%). MSM represented a frequent risk factor in cross-ethnic transmission, demonstrated by the presence of Israeli-born with non-B virus infections and FSU immigrants with non-A subtypes. Conclusions Reconstructed phylogenetic trees demonstrated substantial grouping in subtype B, but not in non-MSM subtype-A or in subtype-C, reflecting differences in transmission dynamics linked to HIV transmission categories. Cross-ethnic spread occurred through multiple independent introductions, with MSM playing a prevalent role in the transmission of the virus. Such data provide a baseline to track epidemic trends and will be useful in informing and quantifying efforts to reduce HIV transmission.
Collapse
Affiliation(s)
- Zehava Grossman
- School of Public Health, Tel-Aviv University, Tel-Aviv, Israel
- National Cancer Institute, Frederick, MD, United States of America
- * E-mail:
| | - Boaz Avidor
- Crusaid Kobler AIDS Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Laboratory of Viruses and Molecular Biology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Zohar Mor
- Ramla Department of Health, Ministry of Health, Ramla, Israel
| | | | - Itzchak Levy
- Infectious Diseases Unit, Sheba Medical Center, Ramat-Gan, Israel
| | | | | | | | | | - Wei Shao
- Advanced Biomedical Computing Center, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, United States of America
| | | | | | | | | | | | | | | | | | | | - Shirley Girshengorn
- Crusaid Kobler AIDS Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Laboratory of Viruses and Molecular Biology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | - Dan Turner
- Crusaid Kobler AIDS Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Frank Maldarelli
- National Cancer Institute, Frederick, MD, United States of America
| |
Collapse
|
27
|
Greenbaum BD, Ghedin E. Viral evolution: beyond drift and shift. Curr Opin Microbiol 2015; 26:109-15. [PMID: 26189048 DOI: 10.1016/j.mib.2015.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 02/08/2023]
Abstract
Technological advances have allowed aspects of viral evolution to be explored at unprecedented scales. As a consequence, new quantitative approaches are needed to investigate features of viral evolution that fall outside traditional areas of study, such as antigenic evolution. We examine three areas of viral evolution where tools from disciplines such as statistical physics, topology, and information theory have been used recently as quantitative frameworks for large-scale studies and, in some cases, suggest a novel theoretical approach to a problem. Ongoing interaction among these disciplines with biology is necessary so that experimental researchers can determine which quantitative tools are right for them and quantitative researchers can learn which aspects of viral evolution can be understood and advanced with their approaches.
Collapse
Affiliation(s)
- Benjamin D Greenbaum
- Tisch Cancer Institute, Departments of Medicine and Pathology, 1190 5th Ave, New York, NY 10029, United States.
| | - Elodie Ghedin
- Center for Genomics & Systems Biology, Department of Biology, and Global Institute of Public Health, New York University, 100 Washington Place, 1009 Silver Center, New York, NY 10003, United States
| |
Collapse
|
28
|
Chang CH, Kist NC, Stuart Chester TL, Sreenu VB, Herman M, Luo M, Lunn D, Bell J, Plummer FA, Ball TB, Katzourakis A, Iversen AKN. HIV-infected sex workers with beneficial HLA-variants are potential hubs for selection of HIV-1 recombinants that may affect disease progression. Sci Rep 2015; 5:11253. [PMID: 26082240 PMCID: PMC4469978 DOI: 10.1038/srep11253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/11/2015] [Indexed: 11/15/2022] Open
Abstract
Cytotoxic T lymphocyte (CTL) responses against the HIV Gag protein are associated with lowering viremia; however, immune control is undermined by viral escape mutations. The rapid viral mutation rate is a key factor, but recombination may also contribute. We hypothesized that CTL responses drive the outgrowth of unique intra-patient HIV-recombinants (URFs) and examined gag sequences from a Kenyan sex worker cohort. We determined whether patients with HLA variants associated with effective CTL responses (beneficial HLA variants) were more likely to carry URFs and, if so, examined whether they progressed more rapidly than patients with beneficial HLA-variants who did not carry URFs. Women with beneficial HLA-variants (12/52) were more likely to carry URFs than those without beneficial HLA variants (3/61) (p < 0.0055; odds ratio = 5.7). Beneficial HLA variants were primarily found in slow/standard progressors in the URF group, whereas they predominated in long-term non-progressors/survivors in the remaining cohort (p = 0.0377). The URFs may sometimes spread and become circulating recombinant forms (CRFs) of HIV and local CRF fragments were over-represented in the URF sequences (p < 0.0001). Collectively, our results suggest that CTL-responses associated with beneficial HLA variants likely drive the outgrowth of URFs that might reduce the positive effect of these CTL responses on disease progression.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicolaas C Kist
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Tammy L Stuart Chester
- National HIV and Retrovirology Laboratories, JC Wilt Infectious Disease Research Centre, Winnipeg, Manitoba, Canada
| | - Vattipally B Sreenu
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Melissa Herman
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Ma Luo
- 1] National HIV and Retrovirology Laboratories, JC Wilt Infectious Disease Research Centre, Winnipeg, Manitoba, Canada [2] Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel Lunn
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - John Bell
- Office of the Regius Professor of Medicine, The Richard Doll Building, University of Oxford, Oxford, United Kingdom
| | - Francis A Plummer
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - T Blake Ball
- 1] National HIV and Retrovirology Laboratories, JC Wilt Infectious Disease Research Centre, Winnipeg, Manitoba, Canada [2] Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada [3] Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Astrid K N Iversen
- 1] Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom [2] Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Tracking the Emergence of Host-Specific Simian Immunodeficiency Virus env and nef Populations Reveals nef Early Adaptation and Convergent Evolution in Brain of Naturally Progressing Rhesus Macaques. J Virol 2015; 89:8484-96. [PMID: 26041280 DOI: 10.1128/jvi.01010-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/27/2015] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED While a clear understanding of the events leading to successful establishment of host-specific viral populations and productive infection in the central nervous system (CNS) has not yet been reached, the simian immunodeficiency virus (SIV)-infected rhesus macaque provides a powerful model for the study of human immunodeficiency virus (HIV) intrahost evolution and neuropathogenesis. The evolution of the gp120 and nef genes, which encode two key proteins required for the establishment and maintenance of infection, was assessed in macaques that were intravenously inoculated with the same viral swarm and allowed to naturally progress to simian AIDS and potential SIV-associated encephalitis (SIVE). Longitudinal plasma samples and immune markers were monitored until terminal illness. Single-genome sequencing was employed to amplify full-length env through nef transcripts from plasma over time and from brain tissues at necropsy. nef sequences diverged from the founder virus faster than gp120 diverged. Host-specific sequence populations were detected in nef (~92 days) before they were detected in gp120 (~182 days). At necropsy, similar brain nef sequences were found in different macaques, indicating convergent evolution, while gp120 brain sequences remained largely host specific. Molecular clock and selection analyses showed weaker clock-like behavior and stronger selection pressure in nef than in gp120, with the strongest nef selection in the macaque with SIVE. Rapid nef diversification, occurring prior to gp120 diversification, indicates that early adaptation of nef in the new host is essential for successful infection. Moreover, the convergent evolution of nef sequences in the CNS suggests a significant role for nef in establishing neurotropic strains. IMPORTANCE The SIV-infected rhesus macaque model closely resembles HIV-1 immunopathogenesis, neuropathogenesis, and disease progression in humans. Macaques were intravenously infected with identical viral swarms to investigate evolutionary patterns in the gp120 and nef genes leading to the emergence of host-specific viral populations and potentially linked to disease progression. Although each macaque exhibited unique immune profiles, macaque-specific nef sequences evolving under selection were consistently detected in plasma samples at 3 months postinfection, significantly earlier than in gp120 macaque-specific sequences. On the other hand, nef sequences in brain tissues, collected at necropsy of two animals with detectable infection in the central nervous system (CNS), revealed convergent evolution. The results not only indicate that early adaptation of nef in the new host may be essential for successful infection, but also suggest that specific nef variants may be required for SIV to efficiently invade CNS macrophages and/or enhance macrophage migration, resulting in HIV neuropathology.
Collapse
|
30
|
Bęczkowski PM, Hughes J, Biek R, Litster A, Willett BJ, Hosie MJ. Rapid evolution of the env gene leader sequence in cats naturally infected with feline immunodeficiency virus. J Gen Virol 2015; 96:893-903. [PMID: 25535323 PMCID: PMC4361796 DOI: 10.1099/vir.0.000035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022] Open
Abstract
Analysing the evolution of feline immunodeficiency virus (FIV) at the intra-host level is important in order to address whether the diversity and composition of viral quasispecies affect disease progression. We examined the intra-host diversity and the evolutionary rates of the entire env and structural fragments of the env sequences obtained from sequential blood samples in 43 naturally infected domestic cats that displayed different clinical outcomes. We observed in the majority of cats that FIV env showed very low levels of intra-host diversity. We estimated that env evolved at a rate of 1.16×10(-3) substitutions per site per year and demonstrated that recombinant sequences evolved faster than non-recombinant sequences. It was evident that the V3-V5 fragment of FIV env displayed higher evolutionary rates in healthy cats than in those with terminal illness. Our study provided the first evidence that the leader sequence of env, rather than the V3-V5 sequence, had the highest intra-host diversity and the highest evolutionary rate of all env fragments, consistent with this region being under a strong selective pressure for genetic variation. Overall, FIV env displayed relatively low intra-host diversity and evolved slowly in naturally infected cats. The maximum evolutionary rate was observed in the leader sequence of env. Although genetic stability is not necessarily a prerequisite for clinical stability, the higher genetic stability of FIV compared with human immunodeficiency virus might explain why many naturally infected cats do not progress rapidly to AIDS.
Collapse
Affiliation(s)
- Paweł M Bęczkowski
- Small Animal Hospital, University of Glasgow, Glasgow, UK
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Joseph Hughes
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Roman Biek
- Boyd Orr Centre for Population and Ecosystem Health & Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Annette Litster
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Brian J Willett
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Margaret J Hosie
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|