1
|
Wu D, Peng D, Liang XF, Xie R, Zeng M, Chen J, Lan J, Yang R, Hu J, Lu P. Dietary soybean lecithin promoted growth performance and feeding in juvenile Chinese perch (Siniperca chuatsi) could be by optimizing glucolipid metabolism. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1097-1114. [PMID: 37855970 DOI: 10.1007/s10695-023-01241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/16/2023] [Indexed: 10/20/2023]
Abstract
To explore the potential benefits of dietary phospholipids (PLs) in fish glucose metabolism and to promote feed culture of Chinese perch (Siniperca chuatsi), we set up six diets to feed Chinese perch (initial mean body weight 37.01 ± 0.20 g) for 86 days, including: Control diet (CT), 1% (SL1), 2% (SL2), 3% (SL3), 4% (SL4) soybean lecithin (SL) and 2% (KO2) krill oil (KO) supplemental diets (in triplicate, 20 fish each). Our study found that the SL2 significantly improved the weight gain rate and special growth rate, but the KO2 did not. In addition, the SL2 diet significantly improved feed intake, which is consistent with the mRNA levels of appetite-related genes (npy, agrp, leptin A). Additionally, in the CT and SL-added groups, leptin A expression levels were nearly synchronized with serum glucose levels. Besides, the SL2 significantly upregulated expression levels of glut2, gk, cs, fas and downregulated g6pase in the liver, suggesting that it may enhance glucose uptake, aerobic oxidation, and conversion to fatty acids. The SL2 also maintained the hepatic crude lipid content unchanged compared to the CT, possibly by significantly down-regulating the mRNA level of hepatic lipase gene (hl), and by elevating serum low-density lipoprotein (LDL) level and intraperitoneal fat ratio in significance. Moreover, the serum high-density lipoprotein levels were significantly increased by PL supplementation, and the SL2 further significantly increased serum total cholesterol and LDL levels, suggesting that dietary PLs promote lipid absorption and transport. Furthermore, dietary SL at 1% level could enhance non-specific immune capacity, with serum total protein level being markedly higher than that in the CT group. In conclusion, it is speculated that the promotion of glucose utilization and appetite by 2% dietary SL could be linked. We suggest a 1.91% supplementation of SL in the diet for the best growth performance in juvenile Chinese perch.
Collapse
Affiliation(s)
- Dongliang Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Di Peng
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| | - Ruipeng Xie
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Ming Zeng
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Junliang Chen
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jie Lan
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Ru Yang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jiacheng Hu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Peisong Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| |
Collapse
|
2
|
Amer AR, Eweedah NM, Amer AA, Gewaily MS, Younis NA, Ahmed HA, Dawood MAO. Dietary effect of soybean lecithin on the growth performance, digestive enzyme activity, blood biomarkers, and antioxidative status of striped catfish, Pangasianodon hypophthalmus. PLoS One 2023; 18:e0291954. [PMID: 37796907 PMCID: PMC10553347 DOI: 10.1371/journal.pone.0291954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
Soybean lecithin (SBL) is usually added to aquafeed as a lipid source because aquatic animals cannot synthesize phospholipids. Hence, this study aimed to investigate the role of SBL on the growth, nutrient consumption, digestive enzyme activity, blood parameters, and antioxidant capability of striped catfish. The fish were fed on five experimental diets with five grading levels of SBL (0, 2, 4, 6, and 8%) for 60 days. The final weight, weight gain, specific growth rate, feed intake, and protein efficiency ratio were markedly higher in striped catfish treated with 2-4% SBL than the control level (0% SBL). However, the lowest feed conversion ratio was in the fish-fed groups of 4-6% SBL. The carcass lipid content was significantly higher in fish fed 2-4% SBL compared to the control level (0% SBL). The lipase, amylase, and protease activities were significantly increased in the fish fed 2-6% SBL compared to 0% SBL-fed group. The gradually increased levels of SBL improved the structural appearance and increased the intestinal villi length and branching appearance. The triglycerides and total cholesterol were increased in the fish fed with 4, 6, and 8% compared to the control level, with the highest being in the fish fed with 8%. The lysozyme activity was higher in the fish fed with 2, 4, and 6% of SBL compared to the control level, with higher activity in the fish fed with 2 and 4% than 6%. Superoxide dismutase, glutathione peroxidase, and catalase activities were increased in the fish fed with 2, 4, and 6% SBL. The malondialdehyde level was lower in the fish fed with 4-6% SBL compared to the control level. The regression analysis revealed that the optimum dose of SBL is required at 3.65-4.42% for better productivity and health performances in striped catfish.
Collapse
Affiliation(s)
- Abdel-Rahman Amer
- Faculty of Agriculture, Department of Animal Production, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nabil M. Eweedah
- Faculty of Agriculture, Department of Animal Production, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Asem A. Amer
- Agriculture Research Center, Central Laboratory for Aquaculture Research, Abbassa, Sharkia, Sakha Aquaculture Research Unit, Kafrelsheikh, Egypt
| | - Mahmoud S. Gewaily
- Faculty of Veterinary Medicine, Department of Anatomy and Embryology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nehal A. Younis
- Faculty of Veterinary Medicine, Aquatic Animal Medicine and Management, Cairo University, Giza, Egypt
| | - Hamada A. Ahmed
- Faculty of Veterinary Medicine, Department of Nutrition and Veterinary Clinical Nutrition, Damanhour University, Damanhour, Egypt
| | - Mahmoud A. O. Dawood
- Faculty of Agriculture, Department of Animal Production, Kafrelsheikh University, Kafrelsheikh, Egypt
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
3
|
Matulić D, Barišić J, Aničić I, Tomljanović T, Safner R, Treer T, Gao J, Glojnarić I, Čož-Rakovac R. Growth, health aspects and histopathology of brown bullhead (Ameiurus nebulosus L.): replacing fishmeal with soybean meal and brewer's yeast. Sci Rep 2020; 10:1104. [PMID: 31980692 PMCID: PMC6981201 DOI: 10.1038/s41598-020-57722-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/28/2019] [Indexed: 11/09/2022] Open
Abstract
A ten-week feeding trial was carried out to investigate the effects of replacing fishmeal (FM) with soybean meal (SBM) and brewer's yeast (BY) on growth performance, blood parameters, oxidative stress and micromorphology of liver and intestines in brown bullhead (Ameiurus nebulosus L.). Fish were fed nine feeds in which FM was replaced with 25%, 50%, 75% and 100% SBM (K1, K2, K3 and K4) and 17% + 8%, 42% + 8%, 67% + 8% and 92% + 8% of SBM/BY combination (K5, K6, K7, K8). Growth indices showed greater outcomes for the K2 group in comparison to all other groups. A decrease in plasma cholesterol and triglycerides concentrations was found after FM replacement. Activity of SOD was higher in groups K4, K7 and K8. The early inflammatory indications with abnormal vacuolization of lamina propria and basal epithelium were present in diets K4 and K8. Hepatocytes were irregular in shape with signs of inflammatory reaction in diet K8. A decreased perimeter of hepatocyte nuclei was detected in all experimental diets when compared with the control. This study demonstrates that the optimal replacement of FM with SBM/BY in brown bullhead diets contains up to 50% of FM replaced with SBM in order to obtain advantageous growth performance and adequate health condition.
Collapse
Affiliation(s)
- Daniel Matulić
- Department of Fisheries, Apiculture, Wildlife management and special Zoology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia.
| | - Josip Barišić
- Laboratory for biotechnology in aquaculture, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivica Aničić
- Department of Fisheries, Apiculture, Wildlife management and special Zoology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Tea Tomljanović
- Department of Fisheries, Apiculture, Wildlife management and special Zoology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Roman Safner
- Department of Fisheries, Apiculture, Wildlife management and special Zoology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Tomislav Treer
- Department of Fisheries, Apiculture, Wildlife management and special Zoology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Jian Gao
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | | | | |
Collapse
|
4
|
Jafari F, Agh N, Noori F, Tokmachi A, Gisbert E. Effects of dietary soybean lecithin on growth performance, blood chemistry and immunity in juvenile stellate sturgeon (Acipenser stellatus). FISH & SHELLFISH IMMUNOLOGY 2018; 80:487-496. [PMID: 29906622 DOI: 10.1016/j.fsi.2018.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
An eleven weeks feeding trial was conducted to determine the effects of different levels of dietary soybean lecithin (SBL) on growth performance, blood chemistry and immunity in juvenile stellate sturgeon (Acipenser stellatus). Fish were fed seven isoproteic (44% crude protein) and isolipidic (17% crude fat) diets containing graded levels of SBL: 0 (control), 1, 2, 4, 6, 8 and 10%. Results showed that dietary SBL supplementation significantly improved the final body weight (BW) and weight gain (WG). Fish fed 6% SBL showed the highest BW and WG values in comparison to fish fed the control diet (P < 0.05), whereas increasing SBL levels above 6% had little practical benefit in terms of somatic growth performance. The inclusion of SBL in diets significantly improved the immune response as data from lysozyme, total Ig levels, alternative complement, phagocytic and bactericidal activities indicated (P < 0.05). The broken-line regression analysis of immunological variable revealed that depending on the parameter considered, the optimal SBL levels in diets for stellate sturgeon juveniles varied. In particular, dietary SBL levels requirements in stellate sturgeon when considering the phagocytic activity rate were determined at 3.3%, whereas 4.1-4.2% were recommended when considering data from lysozyme, alternative complement and bactericidal activities. In contrast, the highest minimum dietary SBL content was estimated at 6.9% when data from total Ig levels were considered. These results indicated that dietary PLs are required for boosting innate immunity in stellate sturgeon, although their minimal level changed depending on the immunological parameter considered. Therefore, we assume that SBL levels comprised between 3.3 and 6.9% may be used as a prophylactic measure to improve the health status in stellate sturgeon. Red blood cell count, hemoglobin and hematocrit levels increased with increasing dietary SBL levels, especially in those sturgeons fed the diet with 6% SBL (P < 0.05). In addition, white blood cell counts significantly increased as dietary SBL levels increased from 4 to 8% in comparison to the control group. Blood biochemistry was also affected by different dietary SBL levels. In particular, significantly higher levels of glucose, cholesterol, HDL and triglycerides were detected in fish fed >6%, >4%, >2% and 2% SBL, respectively (P < 0.05). Based on somatic growth parameters, blood chemistry and systemic immunity parameters, diets containing ca. 6% SBL are recommended for juvenile stellate sturgeon.
Collapse
Affiliation(s)
- Fatemeh Jafari
- Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Naser Agh
- Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran.
| | - Farzaneh Noori
- Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Amir Tokmachi
- Faculty of Veterinary, Urmia University, Urmia, Iran
| | - Enric Gisbert
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita, Unitat de Cultius Aqüícoles, Crta. Poble Nou km 5.5, 43540, Sant Carles de la Rapita, Spain
| |
Collapse
|