1
|
Xu MR, Wang AP, Wang YJ, Lu JX, Shen L, Li LX. Serum Magnesium Levels Are Negatively Associated with Obesity and Abdominal Obesity in Type 2 Diabetes Mellitus: A Real-World Study. Diabetes Metab J 2024; 48:1147-1159. [PMID: 38807276 PMCID: PMC11621656 DOI: 10.4093/dmj.2023.0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/06/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGRUOUND There remains controversy over the relationship between serum magnesium levels and obesity in type 2 diabetes mellitus (T2DM). Therefore, the aim of this study was to assess whether there is any association of serum magnesium levels with obesity and abdominal obesity in T2DM. METHODS This cross-sectional, real-world study was conducted in 8,010 patients with T2DM, which were stratified into quintiles according to serum magnesium levels. The clinical characteristics and the prevalence of obesity and abdominal obesity were compared across serum magnesium quintiles in T2DM. Regression analyses were used to evaluate the relationship of serum magnesium with obesity and abdominal obesity in T2DM (clinical trial registration number: ChiCTR1800015893). RESULTS After adjustment for age, sex, and duration of diabetes, the prevalence of obesity and abdominal obesity was significantly declined across magnesium quintiles (obesity: 51.3%, 50.8%, 48.9%, 45.3%, and 43.8%, respectively, P<0.001 for trend; abdominal obesity: 71.5%, 70.5%, 68.2%, 66.4%, and 64.5%, respectively, P=0.001 for trend). After controlling for confounders, there were clearly negative associations of serum magnesium levels and quintiles with obesity and abdominal obesity in T2DM. Moreover, C-reactive protein partly mediates the effect of serum magnesium on obesity and abdominal obesity (P=0.016 and P=0.004, respectively). CONCLUSION The significantly negative relationship between serum magnesium and the risk of obesity and abdominal obesity was observed in T2DM. Furthermore, the independently negative association of serum magnesium with obesity may be explained by its anti-inflammatory functions. Serum magnesium levels may be applied to assess the risk of obesity and abdominal obesity in T2DM.
Collapse
Affiliation(s)
- Man-Rong Xu
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Ai-Ping Wang
- Department of Endocrinology, Eastern Theater Air Force Hospital of People’s Liberation Army, Nanjing, China
| | - Yu-Jie Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Jun-Xi Lu
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Li Shen
- Clinical Research Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lian-Xi Li
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| |
Collapse
|
2
|
Aleman J, K R, Wiegand C, Schurdak ME, Vernetti L, Gavlock D, Reese C, DeBiasio R, LaRocca G, Angarita YD, Gough A, Soto-Gutierrez A, Behari J, Yechoor VK, Miedel MT, Stern AM, Banerjee I, Taylor DL. A metabolic dysfunction-associated steatotic liver acinus biomimetic induces pancreatic islet dysfunction in a coupled microphysiology system. Commun Biol 2024; 7:1317. [PMID: 39397070 PMCID: PMC11471816 DOI: 10.1038/s42003-024-07006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Preclinical and clinical studies suggest that lipid-induced hepatic insulin resistance is a primary defect that predisposes to dysfunction in islets, implicating a perturbed liver-pancreas axis underlying the comorbidity of T2DM and MASLD. To investigate this hypothesis, we developed a human biomimetic microphysiological system (MPS) coupling our vascularized liver acinus MPS (vLAMPS) with pancreatic islet MPS (PANIS) enabling MASLD progression and islet dysfunction to be assessed. The modular design of this system (vLAMPS-PANIS) allows intra-organ and inter-organ dysregulation to be deconvoluted. When compared to normal fasting (NF) conditions, under early metabolic syndrome (EMS) conditions, the standalone vLAMPS exhibited characteristics of early stage MASLD, while no significant differences were observed in the standalone PANIS. In contrast, with EMS, the coupled vLAMPS-PANIS exhibited a perturbed islet-specific secretome and a significantly dysregulated glucose stimulated insulin secretion response implicating direct signaling from the dysregulated liver acinus to the islets. Correlations between several pairs of a vLAMPS-derived and a PANIS-derived factors were significantly altered under EMS, as compared to NF conditions, mechanistically connecting MASLD and T2DM associated hepatic-factors with islet-derived GLP-1 synthesis and regulation. Since vLAMPS-PANIS is compatible with patient-specific iPSCs, this platform represents an important step towards addressing patient heterogeneity, identifying disease mechanisms, and advancing precision medicine.
Collapse
Affiliation(s)
- Julio Aleman
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Bioengineering, Pittsburgh, USA
| | - Ravikumar K
- University of Pittsburgh Department of Chemical and Petroleum Engineering, Pittsburgh, USA
| | - Connor Wiegand
- University of Pittsburgh Department of Chemical and Petroleum Engineering, Pittsburgh, USA
| | - Mark E Schurdak
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
| | - Dillon Gavlock
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | - Celeste Reese
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | - Greg LaRocca
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | | | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
- University of Pittsburgh Department of Pathology, Pittsburgh, USA
| | - Jaideep Behari
- Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Vijay K Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, USA
| | - Mark T Miedel
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
- University of Pittsburgh Department of Pathology, Pittsburgh, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA.
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA.
| | - Ipsita Banerjee
- University of Pittsburgh Department of Bioengineering, Pittsburgh, USA.
- University of Pittsburgh Department of Chemical and Petroleum Engineering, Pittsburgh, USA.
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA.
- University of Pittsburgh Department of Bioengineering, Pittsburgh, USA.
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA.
- University of Pittsburgh Liver Research Center, Pittsburgh, USA.
| |
Collapse
|
3
|
Aleman J, Ravikumar K, Wiegand C, Schurdak ME, Vernetti L, Gavlock D, Reese C, DeBiasio R, LaRocca G, Angarita YD, Gough A, Soto-Gutierrez A, Behari J, Yechoor V, Miedel MT, Stern AM, Banerjee I, Taylor DL. A metabolic-dysfunction associated steatotic liver acinus biomimetic induces pancreatic islet dysfunction in a coupled microphysiology system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590598. [PMID: 38712135 PMCID: PMC11071380 DOI: 10.1101/2024.04.22.590598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Preclinical and clinical studies suggest that lipid-induced hepatic insulin resistance is a primary defect that predisposes to dysfunction in pancreatic islets, implicating a perturbed liver-pancreas axis underlying the comorbidity of T2DM and MASLD. To investigate this hypothesis, we developed a human biomimetic microphysiological system (MPS) coupling our vascularized liver acinus MPS (vLAMPS) with primary islets on a chip (PANIS) enabling MASLD progression and islet dysfunction to be quantitatively assessed. The modular design of this system (vLAMPS-PANIS) allows intra-organ and inter-organ dysregulation to be deconvoluted. When compared to normal fasting (NF) conditions, under early metabolic syndrome (EMS) conditions, the standalone vLAMPS exhibited characteristics of early stage MASLD, while no significant differences were observed in the standalone PANIS. In contrast, with EMS, the coupled vLAMPS-PANIS exhibited a perturbed islet-specific secretome and a significantly dysregulated glucose stimulated insulin secretion (GSIS) response implicating direct signaling from the dysregulated liver acinus to the islets. Correlations between several pairs of a vLAMPS-derived and a PANIS-derived secreted factors were significantly altered under EMS, as compared to NF conditions, mechanistically connecting MASLD and T2DM associated hepatic factors with islet-derived GLP-1 synthesis and regulation. Since vLAMPS-PANIS is compatible with patient-specific iPSCs, this platform represents an important step towards addressing patient heterogeneity, identifying complex disease mechanisms, and advancing precision medicine.
Collapse
|
4
|
En Li Cho E, Ang CZ, Quek J, Fu CE, Lim LKE, Heng ZEQ, Tan DJH, Lim WH, Yong JN, Zeng R, Chee D, Nah B, Lesmana CRA, Bwa AH, Win KM, Faulkner C, Aboona MB, Lim MC, Syn N, Kulkarni AV, Suzuki H, Takahashi H, Tamaki N, Wijarnpreecha K, Huang DQ, Muthiah M, Ng CH, Loomba R. Global prevalence of non-alcoholic fatty liver disease in type 2 diabetes mellitus: an updated systematic review and meta-analysis. Gut 2023; 72:2138-2148. [PMID: 37491159 DOI: 10.1136/gutjnl-2023-330110] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease, with type 2 diabetes mellitus (T2DM) as a major predictor. Insulin resistance and chronic inflammation are key pathways in the pathogenesis of T2DM leading to NAFLD and vice versa, with the synergistic effect of NAFLD and T2DM increasing morbidity and mortality risks. This meta-analysis aims to quantify the prevalence of NAFLD and the prevalence of clinically significant and advanced fibrosis in people with T2DM. METHODS MEDLINE and Embase databases were searched from inception until 13 February 2023. The primary outcomes were the prevalence of NAFLD, non-alcoholic steatohepatitis (NASH) and fibrosis in people with T2DM. A generalised linear mixed model with Clopper-Pearson intervals was used for the analysis of proportions with sensitivity analysis conducted to explore heterogeneity between studies. RESULTS 156 studies met the inclusion criteria, and a pooled analysis of 1 832 125 patients determined that the prevalence rates of NAFLD and NASH in T2DM were 65.04% (95% CI 61.79% to 68.15%, I2=99.90%) and 31.55% (95% CI 17.12% to 50.70%, I2=97.70%), respectively. 35.54% (95% CI 19.56% to 55.56%, I2=100.00%) of individuals with T2DM with NAFLD had clinically significant fibrosis (F2-F4), while 14.95% (95% CI 11.03% to 19.95%, I2=99.00%) had advanced fibrosis (F3-F4). CONCLUSION This study determined a high prevalence of NAFLD, NASH and fibrosis in people with T2DM. Increased efforts are required to prevent T2DM to combat the rising burden of NAFLD. PROSPERO REGISTRATION NUMBER CRD42022360251.
Collapse
Affiliation(s)
- Elina En Li Cho
- Department of Medicine, National University Hospital, Singapore
| | - Chong Zhe Ang
- Department of Medicine, National University Hospital, Singapore
| | - Jingxuan Quek
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Clarissa Elysia Fu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lincoln Kai En Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zane En Qi Heng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jie Ning Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rebecca Zeng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Douglas Chee
- Department of Medicine, National University Hospital, Singapore
| | - Benjamin Nah
- Department of Medicine, National University Hospital, Singapore
| | | | - Aung Hlaing Bwa
- Department of Medical Research, Union of Myanmar, Naypyidaw, Myanmar
| | - Khin Maung Win
- Department of Medical Research, Union of Myanmar, Naypyidaw, Myanmar
| | - Claire Faulkner
- Department of Medicine, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Majd B Aboona
- Department of Medicine, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Mei Chin Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Diagnostic Imaging, National University Health System, Singapore
| | - Nicholas Syn
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anand V Kulkarni
- Hepatology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Hiroyuki Suzuki
- Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | | | - Nobuharu Tamaki
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, Musashino Red Cross Hospital, Musashino, Japan
| | - Karn Wijarnpreecha
- Division of Gastroenterology and Hepatology, University of Michigan, Michigan, Michigan, USA
| | - Daniel Q Huang
- Department of Medicine, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Mark Muthiah
- Department of Medicine, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rohit Loomba
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Xu MR, Jin CH, Lu JX, Li MF, Li LX. High-normal unconjugated bilirubin is associated with decreased risk of chronic kidney disease in type 2 diabetes: A real-world study. Diabetes Metab Res Rev 2023; 39:e3672. [PMID: 37309279 DOI: 10.1002/dmrr.3672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/01/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the association between serum unconjugated bilirubin (UCB) within normal limits and chronic kidney disease (CKD) in T2DM patients. METHOD This cross-sectional, real-world study was performed in 8661 hospitalised T2DM patients. The subjects were stratified into quintiles based on serum UCB levels. The clinical characteristics and CKD prevalence were compared among the UCB quantile groups. The associations of serum UCB levels and quintiles with CKD were also analysed by binary logistic regression. RESULTS After controlling for age, sex, and diabetes duration (DD), the CKD prevalence (20.4%, 12.2%, 10.6%, 8.3%, and 6.4% for the first, second, third, fourth, and fifth quintiles, respectively, p < 0.001 for trend) was significantly decreased across the serum UCB quintiles. The fully adjusted regression model showed negative associations of serum UCB levels (OR: 0.660, 95% CI: 0.585-0.744; p < 0.001 for trend) and quintiles (p < 0.001) with the presence of CKD. Compared with the subjects in the lowest UCB quintile, the risk of CKD decreased by 36.2%, 54.3%, 53.8%, and 62.1%, respectively, in those from the second to the highest UCB quintile. Additionally, C-reactive protein (CRP) levels were significantly higher in the subjects with CKD than in those without CKD (p < 0.001), and significantly decreased across the UCB quintiles (p < 0.001 for trend). CONCLUSIONS Serum UCB levels within the normal range were significantly and negatively linked to CKD in T2DM patients. High-normal UCB may be an independent protective factor for CKD by its antioxidant and the following anti-inflammatory activities through its signalling activity, which was indicated by clearly decreased CRP levels across the UCB quintiles.
Collapse
Affiliation(s)
- Man-Rong Xu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Chun-Hua Jin
- Department of Endocrinology and Metabolism, Shanghai Songjiang District Central Hospital, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Preparatory Stage), Shanghai, China
| | - Jun-Xi Lu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Mei-Fang Li
- Department of Emergency, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lian-Xi Li
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| |
Collapse
|
6
|
Ma YL, Ke JF, Wang JW, Wang YJ, Xu MR, Li LX. Blood lactate levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease in type 2 diabetes: a real-world study. Front Endocrinol (Lausanne) 2023; 14:1133991. [PMID: 37223022 PMCID: PMC10200915 DOI: 10.3389/fendo.2023.1133991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Aim To investigate the association between blood lactate levels and metabolic dysfunction-associated fatty liver disease (MAFLD) in type 2 diabetes mellitus (T2DM). Methods 4628 Chinese T2DM patients were divided into quartiles according to blood lactate levels in this real-world study. Abdominal ultrasonography was used to diagnosis MAFLD. The associations of blood lactate levels and quartiles with MAFLD were analyzed by logistic regression. Results There were a significantly increased trend in both MAFLD prevalence (28.9%, 36.5%, 43.5%, and 54.7%) and HOMA2-IR value (1.31(0.80-2.03), 1.44(0.87-2.20), 1.59(0.99-2.36), 1.82(1.15-2.59)) across the blood lactate quartiles in T2DM patients after adjustment for age, sex, diabetic duration, and metformin use (all p<0.001 for trend). After correcting for other confounding factors, not only increased blood lactate levels were obviously associated with MAFLD presence in the patients with (OR=1.378, 95%CI: 1.210-1.569, p<0.001) and without taking metformin (OR=1.181, 95%CI: 1.010-1.381, p=0.037), but also blood lactate quartiles were independently correlated to the increased risk of MAFLD in T2DM patients (p<0.001 for trend). Compared with the subjects in the lowest blood lactate quartiles, the risk of MAFLD increased to 1.436-, 1.473-, and 2.055-fold, respectively, in those from the second to the highest lactate quartiles. Conclusions The blood lactate levels in T2DM subjects were independently associated with an increased risk of MAFLD, which was not affected by metformin-taking and might closely related to insulin resistance. Blood lactate levels might be used as a practical indicator for assessing the risk of MAFLD in T2DM patients.
Collapse
Affiliation(s)
- Yi-Lin Ma
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Jiang-Feng Ke
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jun-Wei Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Yu-Jie Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Man-Rong Xu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Lian-Xi Li
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| |
Collapse
|
7
|
Hu R, Yang X, He X, Song G. The relationship between NAFLD and retinol-binding protein 4 - an updated systematic review and meta-analysis. Lipids Health Dis 2023; 22:8. [PMID: 36670387 PMCID: PMC9862531 DOI: 10.1186/s12944-022-01771-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/31/2022] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Retinol-binding protein 4 (RBP4) has been considered to be related to metabolic related diseases, such as hyperuricemia, obesity, and diabetes mellitus. However, whether nonalcoholic fatty liver disease (NAFLD) is related to RBP4 is unclear. Previous studies on the relationship between NAFLD and RBP4 levels have yielded inconsistent results. Hence, this meta-analysis was aimed to clarify whether circulating RBP4 levels are in relation to the risk of NAFLD. METHODS A meta-analysis was performed by applying observational studies to evaluate circulating RBP4 levels and NAFLD. Eligible studies published up to September 23, 2022, were searched in Embase, PubMed, and Cochrane databases. RESULTS In this study, 17 cross-sectional studies involving 8423 participants were included. Results from a random effects model showed that circulating RBP4 levels were higher in NAFLD patients than non-NAFLD (standardized mean difference (SMD) 0.28; 95% confidence intervals (CI): 0.11-0.46, I2: 89.8%). This association was confirmed in the Yellow race. However, no significant association was noted in the Caucasian race. After excluding the morbidly obese Population from the weight loss study (n = 2), the results of the comparison remained largely unchanged (SMD 0.28; 95% CI: 0.10-0.47, I2: 90.8%). Remarkable publication bias was not found. Although considerable heterogeneity was observed among the studies, no potential sources of heterogeneity were found in the subgroup analysis. Diagnostic methods for NAFLD were determined to be a potential source of statistical heterogeneity in meta-regression. CONCLUSION The findings provide evidence that NAFLD patients exhibit higher levels of circulating RBP4 compared with controls, but high heterogeneity was observed. Thus, a high RBP4 level is probably a potential risk factor for NAFLD. To confirm the causal link between NAFLD and RBP4 level of causality, further prospective cohort studies are needed.
Collapse
Affiliation(s)
- Rui Hu
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017 Hebei People’s Republic of China ,grid.440208.a0000 0004 1757 9805Endocrinology Department, Hebei General Hospital, Shijiazhuang, 050051 Hebei People’s Republic of China
| | - Xiaoyue Yang
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017 Hebei People’s Republic of China ,grid.440208.a0000 0004 1757 9805Endocrinology Department, Hebei General Hospital, Shijiazhuang, 050051 Hebei People’s Republic of China
| | - Xiaoyu He
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017 Hebei People’s Republic of China ,grid.440208.a0000 0004 1757 9805Endocrinology Department, Hebei General Hospital, Shijiazhuang, 050051 Hebei People’s Republic of China
| | - Guangyao Song
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, 050051, Hebei, People's Republic of China.
| |
Collapse
|
8
|
Wang JW, Jin CH, Ke JF, Ma YL, Wang YJ, Lu JX, Li MF, Li LX. GA/HbA1c ratio is a simple and practical indicator to evaluate the risk of metabolic dysfunction-associated fatty liver disease in type 2 diabetes: an observational study. Diabetol Metab Syndr 2022; 14:167. [PMID: 36369095 PMCID: PMC9652955 DOI: 10.1186/s13098-022-00946-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND It is still debatable whether glycated albumin/glycated hemoglobin A1C (GA/HbA1C) ratio is associated with metabolic dysfunction-associated fatty liver disease (MAFLD), and few studies have been conducted in type 2 diabetes mellitus (T2DM). Therefore, we aimed to investigate the association between GA/HbA1C ratio and MAFLD and to evaluate whether GA/HbA1C ratio can be used an indicator of MAFLD in Chinese patients with T2DM. METHODS This cross-sectional study consisted of 7117 T2DM patients including 3296 men and 3821 women from real-world settings. Abdominal ultrasonography was performed to diagnose MAFLD. In addition to comparing the clinical characteristics among the GA/HbA1C ratio quartile groups, we also investigated the associations of GA/HbA1C ratio and quartiles with MAFLD in T2DM subjects. RESULTS There was a significantly decreased trend in the MAFLD prevalence across the GA/HbA1C ratio quartiles (56.3%, 47.4%, 37.8%, and 35.6% for the first, second, third, and fourth quartile, respectively, P < 0.001 for trend) after adjusting for gender, age, and diabetes duration. Fully adjusted Binary logistic regression indicated that both GA/HbA1C ratio (OR: 0.575, 95% CI: 0.471 to 0.702, P < 0.001) and quartiles (P < 0.001 for trend) were inversely associated with the presence of MAFLD among T2DM patients. Additionally, HOMA2-IR values were clearly increased in the T2DM subjects with MAFLD compared with those without MAFLD (P < 0.001), and markedly increased from the highest to the lowest GA/HbA1C ratio quartile (P < 0.001 for trend). CONCLUSIONS GA/HbA1C ratio is closely and negatively associated with MAFLD in T2DM subjects, which may attribute to that GA/HbA1C ratio reflects the degree of insulin resistance. GA/HbA1C ratio may act as a simple and practical indicator to evaluate the risk of MAFLD in T2DM.
Collapse
Affiliation(s)
- Jun-Wei Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai, 200233, China
| | - Chun-Hua Jin
- Department of Endocrinology and Metabolism, Shanghai Songjiang District Central Hospital, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 201600, China
| | - Jiang-Feng Ke
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai, 200233, China
| | - Yi-Lin Ma
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai, 200233, China
| | - Yu-Jie Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai, 200233, China
| | - Jun-Xi Lu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai, 200233, China
| | - Mei-Fang Li
- Department of Emergency, Shanghai Sixth People's Hospital Affifiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| | - Lian-Xi Li
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
9
|
Ma YL, Jin CH, Zhao CC, Ke JF, Wang JW, Wang YJ, Lu JX, Huang GZ, Li LX. Waist-to-height ratio is a simple and practical alternative to waist circumference to diagnose metabolic syndrome in type 2 diabetes. Front Nutr 2022; 9:986090. [PMID: 36419559 PMCID: PMC9676651 DOI: 10.3389/fnut.2022.986090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/20/2022] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND As an indicator of abdominal obesity, waist circumference (WC) varied with race and gender in diagnosing metabolic syndrome (MetS). Therefore, it is clinically important to find an alternative indicator of abdominal obesity independent of these factors to diagnose MetS. Our aims were to evaluate the association between waist-to-height ratio (WHtR) and MetS and further determine whether WHtR could be used as a simple and practical alternative to WC to diagnose MetS in patients with type 2 diabetes mellitus (T2DM). METHODS This cross-sectional, real-world study recruited 8488 hospitalized T2DM patients including 3719 women (43.8%) aged from 18 to 94 years and 4769 men (56.2%) aged from 18 to 91 years. A WHtR cut-off of 0.52 was used to diagnose MetS in both men and women T2DM patients based on our previous study. The association of WHtR with MetS in T2DM patients was analyzed by binary logistic regression. The consistency of two diagnostic criteria for MetS according to WC and WHtR was determined by Kappa test. RESULTS The prevalence of MetS according to WHtR was 79.4% in women and 68.6% in men T2DM patients, which was very close to the prevalence of MetS according to WC in both women (82.6%) and men (68.3%). The prevalence of MetS diagnosed by WC in both men and women with WHtR ≥ 0.52 was significantly higher than in those with WHtR < 0.52 after adjustment for age and duration of diabetes (89.2 vs. 38.7% for men; 92.8 vs. 57.4% for women; respectively, all p < 0.001). Binary logistic regression analysis displayed that after adjusting for confounding factors, WHtR was significantly associated with the presence of MetS in both men and women (men: OR = 4.821, 95% CI: 3.949-5.885; women: OR = 3.096, 95% CI: 2.484-3.860; respectively, all p < 0.001). Kappa test revealed that there was an excellent consistency between the diagnosis of MetS based on WC and on WHtR in T2DM patients (men: kappa value = 0.929, 95% CI: 0.918-0.940; women: kappa value = 0.874, 95% CI: 0.854-0.894; total: kappa value = 0.911, 95% CI: 0.901-0.921; respectively, all p < 0.001). CONCLUSION WHtR is independently associated with the presence of MetS and can be used as a simple and practical alternative to WC to diagnose MetS regardless of gender in T2DM patients.
Collapse
Affiliation(s)
- Yi-Lin Ma
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Chun-Hua Jin
- Department of Endocrinology and Metabolism, Shanghai Songjiang District Central Hospital, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai, China
| | - Cui-Chun Zhao
- Department of VIP, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang-Feng Ke
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Jun-Wei Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Yu-Jie Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Jun-Xi Lu
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Gao-Zhong Huang
- Department of VIP, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lian-Xi Li
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| |
Collapse
|
10
|
Jin CH, Wang JW, Ke JF, Li JB, Li MF, Li LX. Low-normal serum unconjugated bilirubin levels are associated with late but not early carotid atherosclerotic lesions in T2DM subjects. Front Endocrinol (Lausanne) 2022; 13:948338. [PMID: 36407305 PMCID: PMC9667095 DOI: 10.3389/fendo.2022.948338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
AIMS We aimed to examine the association of serum unconjugated bilirubin (UCB) within normal limits with carotid atherosclerosis in Chinese patients with type 2 diabetes mellitus (T2DM). METHODS This cross-sectional, real-world study was performed in 8,006 hospitalized T2DM patients including 4,153 men and 3,853 women with normal UCB. The subjects were stratified into quintiles based on serum UCB levels (<6.2, 6.2-7.9, 8.0-8.9, 9.0-10.9, and >10.9 μmol/l, respectively). Carotid atherosclerotic lesions detected by ultrasonography, including carotid intima-media thickness (CIMT), carotid plaque, and stenosis, were compared among the five groups. The associations of serum UCB levels and quintiles with carotid atherosclerotic lesions were also determined by multiple logistic regression. RESULTS The prevalence of carotid plaque (55.3%, 49.5%, 47.4%, 43.8%, and 37.5%, respectively; p < 0.001 for trend) and stenosis (15.2%, 12.2%, 9.1%, 7.7%, and 5.4%, respectively; p < 0.001 for trend) was progressively lower across the UCB quintiles even after adjusting for age, sex, and duration of diabetes. Results of a fully adjusted multiple logistic regression analysis revealed that serum UCB levels and quintiles were significantly associated with carotid plaque and stenosis. Compared with the subjects in the lowest UCB quintile, the risk of carotid plaque decreased by 25.5%, 28.7%, 33.5%, and 42.8%, and that of carotid stenosis by 24.6%, 37.4%, 44.9%, and 47.3%, respectively, in those from the second to highest UCB quintiles. High serum UCB within the normal range was a protective factor against carotid plaque [odds ratio (OR) 0.810, 95% confidence interval (CI) 0.747-0.878; p < 0.001] and stenosis [OR 0.722, 95% CI 0.647-0.805; p < 0.001]. However, no significant association was observed between serum UCB and CIMT in T2DM patients. Furthermore, C-reactive protein (CRP) levels were significantly higher in the subjects with carotid atherosclerosis than in those without carotid atherosclerosis and clearly decreased across the UCB quintiles. CONCLUSIONS Serum UCB within normal limits is inversely associated with late carotid atherosclerotic lesions including carotid plaque and stenosis but not CIMT, an early carotid atherosclerotic lesion in T2DM patients. High-normal UCB may be protective against carotid atherosclerosis by its anti-inflammation effect, which was indicated by significantly decreased CRP levels from the lowest to highest UCB quintiles.
Collapse
Affiliation(s)
- Chun-Hua Jin
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai Key Laboratory of Diabetes, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai Songjiang District Central Hospital, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Wei Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai Key Laboratory of Diabetes, Shanghai, China
| | - Jiang-Feng Ke
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai Key Laboratory of Diabetes, Shanghai, China
| | - Jing-Bo Li
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mei-Fang Li
- Department of Emergency, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Mei-Fang Li, ; Lian-Xi Li,
| | - Lian-Xi Li
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai Key Laboratory of Diabetes, Shanghai, China
- *Correspondence: Mei-Fang Li, ; Lian-Xi Li,
| |
Collapse
|
11
|
Wang JW, Jin CH, Ke JF, Ma YL, Wang YJ, Lu JX, Li MF, Li LX. Serum iron is closely associated with metabolic dysfunction-associated fatty liver disease in type 2 diabetes: A real-world study. Front Endocrinol (Lausanne) 2022; 13:942412. [PMID: 36133303 PMCID: PMC9484008 DOI: 10.3389/fendo.2022.942412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS There is still a debate about the relationship between serum iron and metabolic dysfunction-associated fatty liver disease (MAFLD). Furthermore, few relevant studies were conducted in type 2 diabetes mellitus (T2DM). Therefore, this study aimed to explore the association of serum iron levels with MAFLD in Chinese patients with T2DM. METHODS This cross-sectional, real-world study consisted of 1,467 Chinese T2DM patients. MAFLD was diagnosed by abdominal ultrasonography. Based on serum iron quartiles, the patients were classified into four groups. Clinical characteristics were compared among the four groups, and binary logistic analyses were used to assess the associations of serum iron levels and quartiles with the presence of MAFLD in T2DM. RESULTS After adjusting for gender, age, and diabetes duration, significantly higher prevalence of MAFLD was found in the second (45.7%), third (45.2%), and fourth (47.0%) serum iron quartiles than in the first quartiles (26.8%), with the highest MAFLD prevalence in the fourth quartile (p < 0.001 for trend). Moreover, increased HOMA2-IR (p = 0.003 for trend) and decreased HOMA2-S (p = 0.003 for trend) were observed across the serum iron quartiles. Fully adjusted binary logistic regression analyses indicated that both increased serum iron levels (OR: 1.725, 95% CI: 1.427 to 2.085, p < 0.001) and quartiles (p < 0.001 for trend) were still closely associated with the presence of MAFLD in T2DM patients even after controlling for multiple confounding factors. CONCLUSIONS There is a positive correlation between the presence of MAFLD and serum iron levels in T2DM patients, which may be attributed to the close association between serum iron and insulin resistance. Serum iron levels may act as one of the indicators for evaluating the risk of MAFLD in T2DM individuals.
Collapse
Affiliation(s)
- Jun-Wei Wang
- 1Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Chun-Hua Jin
- Department of Endocrinology and Metabolism, Shanghai Songjiang District Central Hospital, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Preparatory Stage), Shanghai, China
| | - Jiang-Feng Ke
- 1Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Yi-Lin Ma
- 1Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Yu-Jie Wang
- 1Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Jun-Xi Lu
- 1Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Mei-Fang Li
- Department of Emergency, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Mei-Fang Li, ; Lian-Xi Li,
| | - Lian-Xi Li
- 1Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
- *Correspondence: Mei-Fang Li, ; Lian-Xi Li,
| |
Collapse
|
12
|
Wang YJ, Jin CH, Ke JF, Wang JW, Ma YL, Lu JX, Li MF, Li LX. Decreased Serum Osteocalcin is an Independent Risk Factor for Metabolic Dysfunction-Associated Fatty Liver Disease in Type 2 Diabetes. Diabetes Metab Syndr Obes 2022; 15:3717-3728. [PMID: 36471670 PMCID: PMC9719286 DOI: 10.2147/dmso.s389794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE The association between serum osteocalcin (OCN) levels and metabolic dysfunction-associated fatty liver disease (MAFLD) is still controversial. Moreover, few studies have explored their relationship in type 2 diabetes mellitus (T2DM) patients so far. The present study aimed to investigate the association of serum OCN levels with MAFLD in Chinese T2DM patients. METHODS This cross-sectional, real-world study included 1889 Chinese T2DM inpatients. MAFLD was diagnosed by abdominal ultrasonography. Participants were divided into four groups according to serum OCN quartiles, among which the clinical characteristics were compared. The association of serum OCN levels with the presence of MAFLD was also analyzed in subjects. RESULTS After controlling for sex, age, and diabetes duration, the prevalence of MAFLD significantly decreased across the serum OCN quartiles (55.3%, 52.0%, 48.6%, and 42.1% for the first, second, third, and fourth quartiles, respectively, P < 0.001 for trend). A fully adjusted multiple logistic regression analysis showed that serum OCN levels were independently and negatively associated with the presence of MAFLD in T2DM patients (odds ratio, 0.832; 95% confidence interval, 0.719-0.962; P = 0.013). Furthermore, there were significant decreases in HOMA-IR (P = 0.001 for trend) and C-reactive protein (P < 0.001 for trend) levels across the serum OCN quartiles after controlling for sex, age, and diabetes duration. CONCLUSION Serum OCN levels were independently and negatively associated with the presence of MAFLD in Chinese T2DM patients, partially due to the improvement of insulin resistance and inflammation mediated by OCN. Serum OCN may be used as a biomarker to assess the risk of MAFLD in T2DM patients.
Collapse
Affiliation(s)
- Yu-Jie Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, People’s Republic of China
| | - Chun-Hua Jin
- Department of Endocrinology and Metabolism, Shanghai Songjiang District Central Hospital, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai, People’s Republic of China
| | - Jiang-Feng Ke
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, People’s Republic of China
| | - Jun-Wei Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, People’s Republic of China
| | - Yi-Lin Ma
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, People’s Republic of China
| | - Jun-Xi Lu
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, People’s Republic of China
| | - Mei-Fang Li
- Department of Emergency, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Correspondence: Mei-Fang Li, Department of Emergency, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People’s Republic of China, Tel +86 18930170426, Email
| | - Lian-Xi Li
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, People’s Republic of China
- Lian-Xi Li, Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai, 200233, People’s Republic of China, Tel +86 21 64369181x58337, Email
| |
Collapse
|