1
|
Mendoza A, Patel P, Robichaux D, Ramirez D, Karch J. Inhibition of the mPTP and Lipid Peroxidation Is Additively Protective Against I/R Injury. Circ Res 2024; 134:1292-1305. [PMID: 38618716 PMCID: PMC11081482 DOI: 10.1161/circresaha.123.323882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND During myocardial ischemia/reperfusion (I/R) injury, high levels of matrix Ca2+ and reactive oxygen species (ROS) induce the opening of the mitochondrial permeability transition pore (mPTP), which causes mitochondrial dysfunction and ultimately necrotic death. However, the mechanisms of how these triggers individually or cooperatively open the pore have yet to be determined. METHODS Here, we use a combination of isolated mitochondrial assays and in vivo I/R surgery in mice. We challenged isolated liver and heart mitochondria with Ca2+, ROS, and Fe2+ to induce mitochondrial swelling. Using inhibitors of the mPTP (cyclosporine A or ADP) lipid peroxidation (ferrostatin-1, MitoQ), we determined how the triggers elicit mitochondrial damage. Additionally, we used the combination of inhibitors during I/R injury in mice to determine if dual inhibition of these pathways is additivity protective. RESULTS In the absence of Ca2+, we determined that ROS fails to trigger mPTP opening. Instead, high levels of ROS induce mitochondrial dysfunction and rupture independently of the mPTP through lipid peroxidation. As expected, Ca2+ in the absence of ROS induces mPTP-dependent mitochondrial swelling. Subtoxic levels of ROS and Ca2+ synergize to induce mPTP opening. Furthermore, this synergistic form of Ca2+- and ROS-induced mPTP opening persists in the absence of CypD (cyclophilin D), suggesting the existence of a CypD-independent mechanism for ROS sensitization of the mPTP. These ex vivo findings suggest that mitochondrial dysfunction may be achieved by multiple means during I/R injury. We determined that dual inhibition of the mPTP and lipid peroxidation is significantly more protective against I/R injury than individually targeting either pathway alone. CONCLUSIONS In the present study, we have investigated the relationship between Ca2+ and ROS, and how they individually or synergistically induce mitochondrial swelling. Our findings suggest that Ca2+ mediates mitochondrial damage through the opening of the mPTP, although ROS mediates its damaging effects through lipid peroxidation. However, subtoxic levels both Ca2+ and ROS can induce mPTP-mediated mitochondrial damage. Targeting both of these triggers to preserve mitochondria viability unveils a highly effective therapeutic approach for mitigating I/R injury.
Collapse
Affiliation(s)
- Arielys Mendoza
- Department of Integrative Physiology (A.M., P.P., D.R., D.R., J.K.), Baylor College of Medicine, Houston TX
| | - Pooja Patel
- Department of Integrative Physiology (A.M., P.P., D.R., D.R., J.K.), Baylor College of Medicine, Houston TX
| | - Dexter Robichaux
- Department of Integrative Physiology (A.M., P.P., D.R., D.R., J.K.), Baylor College of Medicine, Houston TX
| | - Daniel Ramirez
- Department of Integrative Physiology (A.M., P.P., D.R., D.R., J.K.), Baylor College of Medicine, Houston TX
| | - Jason Karch
- Department of Integrative Physiology (A.M., P.P., D.R., D.R., J.K.), Baylor College of Medicine, Houston TX
- the Cardiovascular Research Institute (J.K.), Baylor College of Medicine, Houston TX
| |
Collapse
|
2
|
Firth W, Pye KR, Weightman Potter PG. Astrocytes at the intersection of ageing, obesity, and neurodegeneration. Clin Sci (Lond) 2024; 138:515-536. [PMID: 38652065 DOI: 10.1042/cs20230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Once considered passive cells of the central nervous system (CNS), glia are now known to actively maintain the CNS parenchyma; in recent years, the evidence for glial functions in CNS physiology and pathophysiology has only grown. Astrocytes, a heterogeneous group of glial cells, play key roles in regulating the metabolic and inflammatory landscape of the CNS and have emerged as potential therapeutic targets for a variety of disorders. This review will outline astrocyte functions in the CNS in healthy ageing, obesity, and neurodegeneration, with a focus on the inflammatory responses and mitochondrial function, and will address therapeutic outlooks.
Collapse
Affiliation(s)
- Wyn Firth
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, U.K
| | - Katherine R Pye
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Paul G Weightman Potter
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| |
Collapse
|
3
|
Gnaiger E. Complex II ambiguities-FADH 2 in the electron transfer system. J Biol Chem 2024; 300:105470. [PMID: 38118236 PMCID: PMC10772739 DOI: 10.1016/j.jbc.2023.105470] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/22/2023] Open
Abstract
The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). CII is the only membrane-bound enzyme in the tricarboxylic acid cycle and is part of the electron transfer system of the mitochondrial inner membrane feeding electrons into the coenzyme Q-junction. The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the β-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
Collapse
|
4
|
Pirc Marolt T, Kramar B, Vovk A, Podgornik H, Šuput D, Milisav I. Therapeutic Dosage of Antipsychotic Drug Aripiprazole Induces Persistent Mitochondrial Hyperpolarisation, Moderate Oxidative Stress in Liver Cells, and Haemolysis. Antioxidants (Basel) 2023; 12:1930. [PMID: 38001783 PMCID: PMC10669280 DOI: 10.3390/antiox12111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Aripiprazole has fewer metabolic side effects than other antipsychotics; however, there are some severe ones in the liver, leading to drug-induced liver injury. Repeated treatment with aripiprazole affects cell division. Since this process requires a lot of energy, we decided to investigate the impact of aripiprazole on rat liver cells and mitochondria as the main source of cellular energy production by measuring the mitochondrial membrane potential, respiration, adenosine triphosphate (ATP) production, oxidative stress, antioxidative response, and human blood haemolysis. Here, we report that mitochondrial hyperpolarisation from aripiprazole treatment is accompanied by higher reactive oxygen species (ROS) production and increased antioxidative response. Lower mitochondrial and increased glycolytic ATP synthesis demand more glucose through glycolysis for equal ATP production and may change the partition between the glycolysis and pentose phosphate pathway in the liver. The uniform low amounts of the haemolysis of erythrocytes in the presence of aripiprazole in 25 individuals indicate lower quantities of the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH+H+), which is in accordance with a decreased activity of glucose 6-phosphate dehydrogenase and the lower dehydrogenase activity upon aripiprazole treatment. The lower activity of glucose 6-phosphate dehydrogenase supports a shift to glycolysis, thus rescuing the decreased mitochondrial ATP synthesis. The putative reduction in NADPH+H+ did not seem to affect the oxidised-to-reduced glutathione ratio, as it remained equal to that in the untreated cells. The effect of aripiprazole on glutathione reduction is likely through direct binding, thus reducing its total amount. As a consequence, the low haemolysis of human erythrocytes was observed. Aripiprazole causes moderate perturbations in metabolism, possibly with one defect rescuing the other. The result of the increased antioxidant enzyme activity upon treatment with aripiprazole is increased resilience to oxidative stress, which makes it an effective drug for schizophrenia in which oxidative stress is constantly present because of disease and treatment.
Collapse
Affiliation(s)
- Tinkara Pirc Marolt
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Barbara Kramar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Andrej Vovk
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Helena Podgornik
- Department of Haematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Dušan Šuput
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Moškrič A, Pavlin A, Mole K, Marinč A, Bubnič J, Opara A, Kovačić M, Puškadija Z, Uzunov A, Andonov S, Dahle B, Prešern J. Cutting corners: The impact of storage and DNA extraction on quality and quantity of DNA in honeybee ( Apis mellifera) spermatheca. Front Physiol 2023; 14:1139269. [PMID: 36935742 PMCID: PMC10020693 DOI: 10.3389/fphys.2023.1139269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
The purpose of our study was to investigate methods of short-term storage that allow preservation, transport and retrieval of genetic information contained in honeybee queen's spermatheca. Genotyping of the honeybee colony requires well ahead planned sample collection, depending on the type of data to be acquired. Sampling and genotyping of spermatheca's content instead of individual offspring is timesaving, allowing answers to the questions related to patriline composition immediately after mating. Such procedure is also cheaper and less error prone. For preservation either Allprotect Tissue Reagent (Qiagen) or absolute ethanol were used. Conditions during transportation were simulated by keeping samples 6-8 days at room temperature. Six different storing conditions of spermathecas were tested, complemented with two DNA extraction methods. We have analysed the concentration of DNA, RNA, and proteins in DNA extracts. We also analysed how strongly the DNA is subjected to fragmentation (through amplification of genetic markers ANT2 and tRNAleu-COX2) and whether the quality of the extracted DNA is suitable for microsatellite (MS) analysis. Then, we tested the usage of spermatheca as a source of patriline composition in an experiment with three instrumentally inseminated virgin queens and performed MS analysis of the extracted DNA from each spermatheca, as well as queens' and drones' tissue. Our results show that median DNA concentration from spermathecas excised prior the storage, regardless of the storing condition and DNA extraction method, were generally lower than median DNA concentration obtained from spermathecas dissected from the whole queens after the storage. Despite the differences in DNA yield from the samples subjected to different storing conditions there was no significant effect of storage method or the DNA extraction method on the amplification success, although fewer samples stored in EtOH amplified successfully in comparison to ATR storing reagent. However, we recommend EtOH as a storing reagent due to its availability, low price, simplicity in usage in the field and in the laboratory, and capability of good preservation of the samples for DNA analysis during transport at room temperature.
Collapse
Affiliation(s)
- Ajda Moškrič
- Department of Animal Production, Agricultural Institute of Slovenia, Ljubljana, Slovenia
- *Correspondence: Ajda Moškrič,
| | - Anja Pavlin
- Department of Animal Production, Agricultural Institute of Slovenia, Ljubljana, Slovenia
- Department of Biology, Biotechnical faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Mole
- Department of Animal Production, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Andraž Marinč
- Department of Animal Production, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Jernej Bubnič
- Department of Animal Production, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Andreja Opara
- Department of Animal Production, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Marin Kovačić
- Faculty of Agrobiotechnical Sciences Osijek, University of J.J. Strossmayer, Osijek, Croatia
- Centre for Applied Life Sciences Healthy Food Chain Ltd., Osijek, Croatia
| | - Zlatko Puškadija
- Faculty of Agrobiotechnical Sciences Osijek, University of J.J. Strossmayer, Osijek, Croatia
- Centre for Applied Life Sciences Healthy Food Chain Ltd., Osijek, Croatia
| | - Aleksandar Uzunov
- Faculty of Agricultural Sciences and Food, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
- Company for Applied Research and Permanent Education in Agriculture, Skopje, Macedonia
| | - Sreten Andonov
- Department of Animal Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bjørn Dahle
- Norwegian Beekeepers Association, Kløfta, Norway
| | - Janez Prešern
- Department of Animal Production, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
6
|
Molecular mechanisms of coronary microvascular endothelial dysfunction in diabetes mellitus: focus on mitochondrial quality surveillance. Angiogenesis 2022; 25:307-329. [PMID: 35303170 DOI: 10.1007/s10456-022-09835-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Coronary microvascular endothelial dysfunction is both a culprit and a victim of diabetes, and can accelerate diabetes-related microvascular and macrovascular complications by promoting vasoconstrictive, pro-inflammatory and pro-thrombotic responses. Perturbed mitochondrial function induces oxidative stress, disrupts metabolism and activates apoptosis in endothelial cells, thus exacerbating the progression of coronary microvascular complications in diabetes. The mitochondrial quality surveillance (MQS) system responds to stress by altering mitochondrial metabolism, dynamics (fission and fusion), mitophagy and biogenesis. Dysfunctional mitochondria are prone to fission, which generates two distinct types of mitochondria: one with a normal and the other with a depolarized mitochondrial membrane potential. Mitochondrial fusion and mitophagy can restore the membrane potential and homeostasis of defective mitochondrial fragments. Mitophagy-induced decreases in the mitochondrial population can be reversed by mitochondrial biogenesis. MQS abnormalities induce pathological mitochondrial fission, delayed mitophagy, impaired metabolism and defective biogenesis, thus promoting the accumulation of unhealthy mitochondria and the activation of mitochondria-dependent apoptosis. In this review, we examine the effects of MQS on mitochondrial fitness and explore the association of MQS disorders with coronary microvascular endothelial dysfunction in diabetes. We also discuss the potential to treat diabetes-related coronary microvascular endothelial dysfunction using novel MQS-altering drugs.
Collapse
|
7
|
Mitochondrial Antioxidant SkQ1 Has a Beneficial Effect in Experimental Diabetes as Based on the Analysis of Expression of microRNAs and mRNAs for the Oxidative Metabolism Regulators. Antioxidants (Basel) 2021; 10:antiox10111749. [PMID: 34829620 PMCID: PMC8615282 DOI: 10.3390/antiox10111749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus and related complications are among the most important problems of the world-leading healthcare systems. Despite their priority, molecular and genetic aspects of diabetes pathogenesis are poorly understood; however, the involvement of oxidative stress in this process is undoubted. Rats with experimental diabetes induced by the intraperitoneal injection of alloxan were subjected to the antioxidant pre-therapy with a series of mitochondria-targeted 10-(6’-plastoquinonyl)decyltriphenylphosphonium (SkQ1) injections and analyzed for the expression of mRNAs and microRNAs by real-time quantitative polymerase chain reaction to identify potential predictors of diabetes. Animals that received SkQ1 before diabetes induction demonstrated lower blood glucose levels compared to the diabetic animals not subjected to the therapy. SkQ1 caused changes in the mRNA levels of genes involved in the cellular defense against free radicals, which indicates a beneficial effect of the pre-therapy. Moreover, similar changes were observed on the epigenetic level, as the microRNA expression patterns not only proved the SkQ1 efficacy but also correlated with the expression levels of their mRNA targets. Oxidative stress and macromolecule damage by free radicals are determining factors in diabetes, which suggests that strategies aimed at restoring the antioxidant status of the cell can be beneficial. Mitochondria-targeted antioxidant SkQ1 demonstrates positive effects on several levels, from the normalization of the blood glucose content to genetic and epigenetic changes. Our results can serve as a basis for the development of novel therapeutic and diagnostic strategies.
Collapse
|
8
|
|
9
|
Patel P, Karch J. Regulation of cell death in the cardiovascular system. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 353:153-209. [PMID: 32381175 DOI: 10.1016/bs.ircmb.2019.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The adult heart is a post-mitotic terminally differentiated organ; therefore, beyond development, cardiomyocyte cell death is maladaptive. Heart disease is the leading cause of death in the world and aberrant cardiomyocyte cell death is the underlying problem for most cardiovascular-related diseases and fatalities. In this chapter, we will discuss the different cell death mechanisms that engage during normal cardiac development, aging, and disease states. The most abundant loss of cardiomyocytes occurs during a myocardial infarction, when the blood supply to the heart is obstructed, and the affected myocardium succumbs to cell death. Originally, this form of cell death was considered to be unregulated; however, research from the last half a century clearly demonstrates that this form of cell death is multifaceted and employees various degrees of regulation. We will explore all of the cell death pathways that have been implicated in this disease state and the potential interplay between them. Beyond myocardial infarction, we also explore the role and mechanisms of cardiomyocyte cell death in heart failure, myocarditis, and chemotherapeutic-induced cardiotoxicity. Inhibition of cardiomyocyte cell death has extensive therapeutic potential that will increase the longevity and health of the human heart.
Collapse
Affiliation(s)
- Pooja Patel
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
| | - Jason Karch
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
10
|
Singh-Mallah G, Nair S, Sandberg M, Mallard C, Hagberg H. The Role of Mitochondrial and Endoplasmic Reticulum Reactive Oxygen Species Production in Models of Perinatal Brain Injury. Antioxid Redox Signal 2019; 31:643-663. [PMID: 30957515 PMCID: PMC6657303 DOI: 10.1089/ars.2019.7779] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
Abstract
Significance: Perinatal brain injury is caused by hypoxia-ischemia (HI) in term neonates, perinatal arterial stroke, and infection/inflammation leading to devastating long-term neurodevelopmental deficits. Therapeutic hypothermia is the only currently available treatment but is not successful in more than 50% of term neonates suffering from hypoxic-ischemic encephalopathy. Thus, there is an urgent unmet need for alternative or adjunct therapies. Reactive oxygen species (ROS) are important for physiological signaling, however, their overproduction/accumulation from mitochondria and endoplasmic reticulum (ER) during HI aggravate cell death. Recent Advances and Critical Issues: Mechanisms underlying ER stress-associated ROS production have been primarily elucidated using either non-neuronal cells or adult neurodegenerative experimental models. Findings from mature brain cannot be simply transferred to the immature brain. Therefore, age-specific studies investigating ER stress modulators may help investigate ER stress-associated ROS pathways in the immature brain. New therapeutics such as mitochondrial site-specific ROS inhibitors that selectively inhibit superoxide (O2•-)/hydrogen peroxide (H2O2) production are currently being developed. Future Directions: Because ER stress and oxidative stress accentuate each other, a combinatorial therapy utilizing both antioxidants and ER stress inhibitors may prove to be more protective against perinatal brain injury. Moreover, multiple relevant targets need to be identified for targeting ROS before they are formed. The role of organelle-specific ROS in brain repair needs investigation. Antioxid. Redox Signal. 31, 643-663.
Collapse
Affiliation(s)
- Gagandeep Singh-Mallah
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Syam Nair
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Sandberg
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Bhargavi M, Sivan SK, Potlapally SR. Identification of novel anti cancer agents by applying insilico methods for inhibition of TSPO protein. Comput Biol Chem 2017; 68:43-55. [DOI: 10.1016/j.compbiolchem.2016.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 11/18/2016] [Accepted: 12/30/2016] [Indexed: 11/16/2022]
|
12
|
Funke S, Perumal N, Beck S, Gabel-Scheurich S, Schmelter C, Teister J, Gerbig C, Gramlich OW, Pfeiffer N, Grus FH. Glaucoma related Proteomic Alterations in Human Retina Samples. Sci Rep 2016; 6:29759. [PMID: 27425789 PMCID: PMC4947915 DOI: 10.1038/srep29759] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/24/2016] [Indexed: 01/23/2023] Open
Abstract
Glaucoma related proteomic changes have been documented in cell and animal models. However, proteomic studies investigating on human retina samples are still rare. In the present work, retina samples of glaucoma and non-glaucoma control donors have been examined by a state-of-the-art mass spectrometry (MS) workflow to uncover glaucoma related proteomic changes. More than 600 proteins could be identified with high confidence (FDR < 1%) in human retina samples. Distinct proteomic changes have been observed in 10% of proteins encircling mitochondrial and nucleus species. Numerous proteins showed a significant glaucoma related level change (p < 0.05) or distinct tendency of alteration (p < 0.1). Candidates were documented to be involved in cellular development, stress and cell death. Increase of stress related proteins and decrease of new glaucoma related candidates, ADP/ATP translocase 3 (ANT3), PC4 and SRFS1-interacting protein 1 (DFS70) and methyl-CpG-binding protein 2 (MeCp2) could be documented by MS. Moreover, candidates could be validated by Accurate Inclusion Mass Screening (AIMS) and immunostaining and supported for the retinal ganglion cell layer (GCL) by laser capture microdissection (LCM) in porcine and human eye cryosections. The workflow allowed a detailed view into the human retina proteome highlighting new molecular players ANT3, DFS70 and MeCp2 associated to glaucoma.
Collapse
Affiliation(s)
- Sebastian Funke
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Natarajan Perumal
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Sabine Beck
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Silke Gabel-Scheurich
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Carsten Schmelter
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Julia Teister
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Claudia Gerbig
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Oliver W Gramlich
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa, USA
| | - Norbert Pfeiffer
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Franz H Grus
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
13
|
Szalardy L, Molnar M, Torok R, Zadori D, Kovacs GG, Vecsei L, Klivenyi P. Lack of age-related clinical progression in PGC-1α-deficient mice - implications for mitochondrial encephalopathies. Behav Brain Res 2016; 313:272-281. [PMID: 27424777 DOI: 10.1016/j.bbr.2016.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 07/09/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022]
Abstract
Impaired peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) function has been demonstrated in several neurodegenerative diseases, and murine whole-body knockouts of PGC-1α have been considered as models for Huntington's disease. Recent neuropathological studies, however, rather propose these animals to be morphological models of mitochondrial encephalopathies, with special reminiscence of Kearns-Sayre syndrome. PGC-1α-deficient animals have already been subjected to behavioral assessments; however, the contradictory findings and the paucity of data assessing long-term progression necessitated further examinations. This study provides a comprehensive neurological phenotypic profiling of full-length-(FL-)PGC-1α-deficient mice in a broad age spectrum, with special focus on previously controversial findings, the issue of long-term phenotypic progression, the histopathological assessment of previously non-characterized tissues of potential clinicopathological relevance, and the gene expression profile of novel brain-specific isoforms of PGC-1α. Our findings demonstrate moderate hypomotility with signs of gait and trunk ataxia in addition to severe impairments in coordination and muscle strength in FL-PGC-1α-deficient mice, phenotypic features consistent of a mitochondrial disease. Intriguingly, however, these early alterations did not progress with age, the understanding of which may unveil mechanisms of potential therapeutic relevance, as discussed. The observed phenotype did not associate with retinal or spinal cord alterations, and was accompanied by mild myopathic changes. Based on these, FL-PGC-1α-deficient mice can be regarded not only as morphological but behavioral models of mitochondrial encephalopathies, with an important temporal limitation that has now been clarified. The mechanisms capable of halting a potentially lethal phenotype are to be unveiled, as they may hold therapeutic value for mitochondrial diseases.
Collapse
Affiliation(s)
- Levente Szalardy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Mate Molnar
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Rita Torok
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Denes Zadori
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, AKH 4J, A-1090 Vienna, Währinger Gürtel 18-20, Austria.
| | - Laszlo Vecsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary; MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Peter Klivenyi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| |
Collapse
|
14
|
Quines CB, Rosa SG, Chagas PM, da Rocha JT, Dobrachinski F, Carvalho NR, Soares FA, da Luz SCA, Nogueira CW. Homeostatic effect of p-chloro-diphenyl diselenide on glucose metabolism and mitochondrial function alterations induced by monosodium glutamate administration to rats. Amino Acids 2015; 48:137-48. [DOI: 10.1007/s00726-015-2073-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
|
15
|
Kantar Ş, Türközkan N, Bircan FS, Paşaoğlu ÖT. Beneficial effects of melatonin on serum nitric oxide, homocysteine, and ADMA levels in fructose-fed rats. PHARMACEUTICAL BIOLOGY 2015; 53:1035-41. [PMID: 25609150 DOI: 10.3109/13880209.2014.957782] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
CONTEXT Melatonin, a pineal hormone and a potent antioxidant, has important roles in metabolic regulation. OBJECTIVE This study investigated serum asymmetric dimethylarginine (ADMA), homocysteine (Hcy), nitric oxide (NO) levels, known to be reliable markers of cardiovascular diseases, and determined possible protective effects of melatonin in fructose-fed rats. MATERIALS AND METHODS Sprague-Dawley rats were divided into four groups: control, fructose, melatonin, and fructose plus melatonin. Metabolic syndrome was induced in rats by 20% (w/v) fructose solution in tap water, and melatonin was administered at the dose of 20 mg/kg bw per day by oral gavage. After 8 weeks, serum lipids, glucose, insulin, ADMA, Hcy, and NOx (the stable end products of NO) levels were quantified. RESULTS Fructose administration caused a statistically significant increase in systolic blood pressure (SBP), serum insulin, triglycerides, and very low-density lipoprotein (VLDL)-cholesterol levels compared with the control group and the metabolic syndrome model was successfully demonstrated. In comparison with the control group, fructose caused a significant increase in serum ADMA, Hcy, and NOx levels. Melatonin counteracted the changes in SBP, serum ADMA, and Hcy levels found in rats both alone and administered with fructose. DISCUSSION AND CONCLUSION These results show that high fructose consumption leads to elevated SBP, atherogenic lipid profile, increased serum ADMA, and Hcy levels and melatonin treatment has beneficial effects on these biochemical parameters in rats. Melatonin might be beneficial for the prevention and/or treatment of the cardiovascular complications of metabolic syndrome not only by reducing the well-known risk factors of the disease but also by diminishing blood ADMA and Hcy levels.
Collapse
Affiliation(s)
- Şerife Kantar
- Department of Biochemistry, Faculty of Medicine, Gazi University , Ankara , Turkey and
| | | | | | | |
Collapse
|
16
|
Pan S, Wang N, Bisetto S, Yi B, Sheu SS. Downregulation of adenine nucleotide translocator 1 exacerbates tumor necrosis factor-α-mediated cardiac inflammatory responses. Am J Physiol Heart Circ Physiol 2014; 308:H39-48. [PMID: 25380814 DOI: 10.1152/ajpheart.00330.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammation contributes significantly to cardiac dysfunction. Although the initial phase of inflammation is essential for repair and healing, excessive proinflammatory cytokines are detrimental to the heart. We found that adenine nucleotide translocator isoform-1 (ANT1) protein levels were significantly decreased in the inflamed heart of C57BL/6 mice following cecal ligation and puncture. To understand the molecular mechanisms involved, we performed small-interfering RNA-mediated knockdown of ANT1 and studied tumor necrosis factor-α (TNFα)-induced inflammatory responses in myocardium-derived H9c2 cells and cardiomyocytes. ANT1 knockdown significantly increased swollen mitochondria and mitochondrial reactive oxygen species, concomitant with increased TNFα-induced NF-κB reporter gene activity and interleukin-6 and TNFα expression. A mitochondrial-targeted antioxidant mito-TEMPO attenuated TNFα-induced mitochondrial reactive oxygen species, NF-κB reporter gene activity, and cytokine expression in ANT1 knockdown cells. Interestingly, TNFα or lipopolysaccharide (LPS) treatment significantly decreased ANT1 protein levels, suggesting a feed-forward regulation of proinflammatory cytokine expression activated by ANT1 downregulation. These data suggest that ANT1 downregulation contributes to cardiac inflammation post-cecal ligation and puncture. Preventing ANT1 downregulation could provide a novel molecular target to temper cardiac inflammation.
Collapse
Affiliation(s)
- Shi Pan
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nadan Wang
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sara Bisetto
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Bing Yi
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shey-Shing Sheu
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Cho EH. SIRT3 as a Regulator of Non-alcoholic Fatty Liver Disease. J Lifestyle Med 2014; 4:80-5. [PMID: 26064858 PMCID: PMC4391020 DOI: 10.15280/jlm.2014.4.2.80] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 09/06/2014] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a hepatic presentation of obesity and metabolic syndrome. NAFLD includes a large spectrum of hepatic pathologies that range from simple steatosis and non-alcoholic steatohepatitis (NASH), to liver cirrhosis without an all-encompassing approved therapeutic strategy. Mitochondrial dysfunction is a key component of many metabolic diseases, such as obesity, type 2 diabetes, cancer, NAFLD, and aging. Sirtuin 3 (SIRT3) is a NAD+-dependent deacetylase that regulates many of the mitochondrial proteins that are involved with metabolic homeostasis, oxidative stress, and cell survival. This review discusses the association between mitochondrial dysfunction and insulin resistance and later explore the possibility that SIRT3 plays a protective role against NAFLD by improving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Eun-Hee Cho
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
18
|
Lee KH, Lee HW, Choi HJ, Min HJ, Baek SY, Yoon S. Expression and Characterization of Genes by Expressed Sequence Tag Analysis in the Rat Thymus during Regeneration following Acute Thymic Involution Induced by Cyclophosphamide. ACTA ACUST UNITED AC 2014. [DOI: 10.11637/kjpa.2014.27.4.197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Keun-Ho Lee
- Department of Medicine, Graduate School, Pusan National University, Korea
| | - Hee-Woo Lee
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Korea
| | - Hee Jung Choi
- Department of Medicine, Graduate School, Pusan National University, Korea
| | - Hye-jin Min
- Department of Medicine, Graduate School, Pusan National University, Korea
| | - Sun Yong Baek
- Department of Medicine, Graduate School, Pusan National University, Korea
| | - Sik Yoon
- Department of Medicine, Graduate School, Pusan National University, Korea
| |
Collapse
|
19
|
The 18-kDa translocator protein (TSPO) disrupts mammary epithelial morphogenesis and promotes breast cancer cell migration. PLoS One 2013; 8:e71258. [PMID: 23967175 PMCID: PMC3743866 DOI: 10.1371/journal.pone.0071258] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/27/2013] [Indexed: 12/04/2022] Open
Abstract
Mitochondria play important roles in cancer progression and have emerged as viable targets for cancer therapy. Increasing levels of the outer mitochondrial membrane protein, 18-kDa translocator protein (TSPO), are associated with advancing breast cancer stage. In particular, higher TSPO levels are found in estrogen receptor (ER)-negative breast tumors, compared with ER-positive tumors. In this study, we sought to define the roles of TSPO in the acquisition of breast cancer malignancy. Using a three-dimensional Matrigel culture system, we determined the impact of elevated TSPO levels on mammary epithelial morphogenesis. Our studies demonstrate that stable overexpression of TSPO in mammary epithelial MCF10A acini drives proliferation and provides partial resistance to luminal apoptosis, resulting in enlarged acinar structures with partially filled lumen that resemble early stage breast lesions leading to breast cancer. In breast cancer cell lines, TSPO silencing or TSPO overexpression significantly altered the migratory activity. In addition, we found that combination treatment with the TSPO ligands (PK 11195 or Ro5-4864) and lonidamine, a clinical phase II drug targeting mitochondria, decreased viability of ER-negative breast cancer cell lines. Taken together, these data demonstrate that increases in TSPO levels at different stages of breast cancer progression results in the acquisition of distinct properties associated with malignancy. Furthermore, targeting TSPO, particularly in combination with other mitochondria-targeting agents, may prove useful for the treatment of ER-negative breast cancer.
Collapse
|
20
|
Hsiao CP, Wang D, Kaushal A, Saligan L. Mitochondria-related gene expression changes are associated with fatigue in patients with nonmetastatic prostate cancer receiving external beam radiation therapy. Cancer Nurs 2013; 36:189-97. [PMID: 23047795 PMCID: PMC4665987 DOI: 10.1097/ncc.0b013e318263f514] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cancer-related fatigue (CRF) is associated with negative health outcomes and decreased health-related quality of life; however, few longitudinal studies have investigated molecular-genetic mechanisms of CRF. OBJECTIVE The objective of this study was to describe relationships between mitochondria-related gene expression changes and self-reported fatigue in prostate cancer patients receiving external beam radiation therapy (EBRT). METHODS A prospective, exploratory, and repeated-measures design was used. Self-report questionnaires and peripheral whole-blood samples were collected from 15 patients at 7 time points. Baseline data were compared against 15 healthy controls. The Human Mitochondria RT Profiler PCR Array was used to identify differential regulation of genes involved in mitochondrial biogenesis and function. RESULTS Compared with baseline, there were significant increases in fatigue scores (P = .02-.04) and changes in mitochondria-related gene expression (P = .001-.05) over time. Mean fatigue scores were 1.66 (SD, 1.66) at baseline, 3.06 (SD, 1.95) at EBRT midpoint, 2.98 (SD, 2.20) at EBRT completion, and 2.64 (SD, 2.56) at 30 days after EBRT. Over time, 11 genes related to mitochondrial function and structure were differentially expressed. Of these 11 genes, 3 (BCL2L1, FIS1, SLC25A37) were more than 2.5 fold up-regulated, and 8 (AIFM2, BCL2, IMMP2L, MIPEP, MSTO1, NEFL, SLC25A23, SLC25A4) were greater than 2-fold down-regulated. Furthermore, 8 genes (AIFM2, BCL2, FIS1, IMMP2L, MSTO1, SLC25A23, SLC25A37, SLC25A4) were significantly associated with the changes in fatigue scores. CONCLUSION This study provides preliminary evidence that 8 mitochondrial function genes were significantly associated with fatigue in prostate cancer patients during EBRT. IMPLICATIONS FOR PRACTICE These findings identify possible pathways and early biomarkers for targeting novel interventions for CRF.
Collapse
Affiliation(s)
- Chao-Pin Hsiao
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
21
|
Silva FSG, Ribeiro MPC, Santos MS, Rocha-Pereira P, Santos-Silva A, Custódio JBA. Acitretin affects bioenergetics of liver mitochondria and promotes mitochondrial permeability transition: potential mechanisms of hepatotoxicity. Toxicology 2013; 306:93-100. [PMID: 23384448 DOI: 10.1016/j.tox.2013.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 01/07/2023]
Abstract
Acitretin is a synthetic retinoid used for severe extensive psoriasis and it has been shown to be an effective and a safe therapeutic drug for other diseases including cancer when used in combination with other agents. However, cases of acitretin-associated liver injury have been documented, but the possible mechanisms of acitretin-associated hepatotoxicity and apoptosis are not entirely clarified. This study reports that mitochondrial dysfunctions may play an important role in liver injury and apoptosis induced by this retinoid. Acitretin (5-20 μM) impaired mitochondrial phosphorylation efficiency as demonstrated by the decrease in the state 3 respiration and ATP levels, and by the increase in the lag phase of ADP phosphorylation cycle, without affecting the membrane potential. Acitretin induced Ca(2+)-mediated mitochondrial permeability transition (MPT) and decreased the adenine nucleotide translocase (ANT) content. Acitretin-induced MPT was not prevented by thiol group protecting and antioxidant agents, excluding the involvement of oxidative stress mechanisms. However, MPT was prevented by ANT ligands ATP, ADP, tamoxifen and 4-hydroxytamoxifen, implying that the MPT induction by acitretin is mediated by the ANT. ANT plays a major role in promoting apoptosis and ATP synthesis, and it is still considered as a structural component of the pore with a regulatory role in MPT formation. Therefore, our results, including the decrease in the state 3 respiration and the increase in the lag phase of phosphorylation cycle, the ATP depletion and the induction of Ca(2+)-mediated MPT, indicate that acitretin-associated liver toxicity and apoptosis is possibly related with mitochondrial dysfunctions due to interactions with the ANT. Additionally, the combination of acitretin with other drugs, such as antiestrogens, which are able to inhibit the MPT, may contribute to decrease the toxicity induced by acitretin.
Collapse
Affiliation(s)
- Filomena S G Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
22
|
Yoon TD, Lee HW, Kim YS, Choi HJ, Moon JO, Yoon S. Identification and analysis of expressed genes using a cDNA library from rat thymus during regeneration following cyclophosphamide-induced T cell depletion. Int J Mol Med 2013; 31:731-9. [PMID: 23314113 DOI: 10.3892/ijmm.2013.1238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/12/2012] [Indexed: 11/05/2022] Open
Abstract
Understanding the mechanisms of thymus regeneration is necessary for designing strategies to enhance host immunity when immune function is suppressed due to T cell depletion. In this study, expressed sequence tag (EST) analysis was performed following generation of a regenerating thymus cDNA library to identify genes expressed in thymus regeneration. A total of 1,000 ESTs were analyzed, of which 770 (77%) matched to known genes, 178 matched to unknown genes (17.8%) and 52 (5.2%) did not match any known sequences. The ESTs matched to known genes were grouped into eight functional categories: gene/protein synthesis (28%), metabolism (24%), cell signaling and communication (17%), cell structure and motility (6%), cell/organism defense and homeostasis (6%), cell division (3%), cell death/apoptosis (2%), and unclassified genes (14%). Based on the data of RT-PCR analysis, the expression of TLP, E2IG2, pincher, Paip2, TGF-β1, 4-1BB and laminin α3 genes was increased during thymus regeneration. These results provide extensive molecular information, for the first time, on thymus regeneration indicating that the regenerating thymus cDNA library may be a useful source for identifying various genes expressed during thymus regeneration.
Collapse
Affiliation(s)
- Tae-Deuk Yoon
- Department of Anatomy, Pusan National University, School of Medicine, Yangsan, Gyeongsangnam-do 626-870, Republic of Korea
| | | | | | | | | | | |
Collapse
|
23
|
Garcia-Cazarin ML, Gamboa JL, Andrade FH. Rat diaphragm mitochondria have lower intrinsic respiratory rates than mitochondria in limb muscles. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1311-5. [PMID: 21389333 DOI: 10.1152/ajpregu.00203.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The mitochondrial content of skeletal muscles is proportional to activity level, with the assumption that intrinsic mitochondrial function is the same in all muscles. This may not hold true for all muscles. For example, the diaphragm is a constantly active muscle; it is possible that its mitochondria are intrinsically different compared with other muscles. This study tested the hypothesis that mitochondrial respiration rates are greater in the diaphragm compared with triceps surae (TS, a limb muscle). We isolated mitochondria from diaphragm and TS of adult male Sprague Dawley rats. Mitochondrial respiration was measured by polarography. The contents of respiratory complexes, uncoupling proteins 1, 2, and 3 (UCP1, UCP2, and UCP3), and voltage-dependent anion channel 1 (VDAC1) were determined by immunoblotting. Complex IV activity was measured by spectrophotometry. Mitochondrial respiration states 3 (substrate and ADP driven) and 5 (uncoupled) were 27 ± 8% and 24 ± 10%, respectively, lower in diaphragm than in TS (P < 0.05 for both comparisons). However, the contents of respiratory complexes III, IV, and V, UCP1, and VDAC1 were higher in diaphragm mitochondria (23 ± 6, 30 ± 8, 25 ± 8, 36 ± 15, and 18 ± 8% respectively, P ≤ 0.04 for all comparisons). Complex IV activity was 64 ± 16% higher in diaphragm mitochondria (P ≤ 0.01). Mitochondrial UCP2 and UCP3 content and complex I activity were not different between TS and diaphragm. These data indicate that diaphragm mitochondria respire at lower rates, despite a higher content of respiratory complexes. The results invalidate our initial hypothesis and indicate that mitochondrial content is not the only determinant of aerobic capacity in the diaphragm. We propose that UCP1 and VDAC1 play a role in regulating diaphragm aerobic capacity.
Collapse
|