1
|
Mehrotra S, Kalyan BG P, Nayak PG, Joseph A, Manikkath J. Recent Progress in the Oral Delivery of Therapeutic Peptides and Proteins: Overview of Pharmaceutical Strategies to Overcome Absorption Hurdles. Adv Pharm Bull 2024; 14:11-33. [PMID: 38585454 PMCID: PMC10997937 DOI: 10.34172/apb.2024.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/04/2023] [Accepted: 08/16/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Proteins and peptides have secured a place as excellent therapeutic moieties on account of their high selectivity and efficacy. However due to oral absorption limitations, current formulations are mostly delivered parenterally. Oral delivery of peptides and proteins (PPs) can be considered the need of the hour due to the immense benefits of this route. This review aims to critically examine and summarize the innovations and mechanisms involved in oral delivery of peptide and protein drugs. Methods Comprehensive literature search was undertaken, spanning the early development to the current state of the art, using online search tools (PubMed, Google Scholar, ScienceDirect and Scopus). Results Research in oral delivery of proteins and peptides has a rich history and the development of biologics has encouraged additional research effort in recent decades. Enzyme hydrolysis and inadequate permeation into intestinal mucosa are the major causes that result in limited oral absorption of biologics. Pharmaceutical and technological strategies including use of absorption enhancers, enzyme inhibition, chemical modification (PEGylation, pro-drug approach, peptidomimetics, glycosylation), particulate delivery (polymeric nanoparticles, liposomes, micelles, microspheres), site-specific delivery in the gastrointestinal tract (GIT), membrane transporters, novel approaches (self-nanoemulsifying drug delivery systems, Eligen technology, Peptelligence, self-assembling bubble carrier approach, luminal unfolding microneedle injector, microneedles) and lymphatic targeting, are discussed. Limitations of these strategies and possible innovations for improving oral bioavailability of protein and peptide drugs are discussed. Conclusion This review underlines the application of oral route for peptide and protein delivery, which can direct the formulation scientist for better exploitation of this route.
Collapse
Affiliation(s)
- Sonal Mehrotra
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Pavan Kalyan BG
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Pawan Ganesh Nayak
- Department of Pharmacology,Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | | | - Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
2
|
Jena D, Srivastava N, Chauhan I, Verma M. Challenges and Therapeutic Approaches for the Protein Delivery System: A Review. Pharm Nanotechnol 2024; 12:391-411. [PMID: 38192140 DOI: 10.2174/0122117385265979231115074255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 01/10/2024]
Abstract
The protein delivery system is one of the innovative or novel drug delivery systems in the present era. Proteins play an indispensable role in our body and are mainly found in every part, like tissue and cells of our body. It also controls various functions, such as maintaining our tissue, transportation, muscle recovery, enzyme production and acting as an energy source for our body. Protein therapeutics have big future perspectives, and their use in the treatment of a wide range of serious diseases has transformed the delivery system in the pharmaceutical and biotechnology industries. The chief advantage of protein delivery is that it can be delivered directly to the systemic circulation. So far, parenteral routes, such as intravenous, intramuscular, and subcutaneous, are the most often used method of administering protein drugs. Alternative routes like buccal, oral, pulmonary, transdermal, nasal, and ocular routes have also shown a remarkable success rate. However, as with all other types of delivery, here, several challenges are posed due to the presence of various barriers, such as the enzymatic barrier, intestinal epithelial barrier, capillary endothelial barrier, and blood-brain barrier. There are several approaches that have been explored to overcome these barriers, such as chemical modification, enzymatic inhibitors, penetration enhancers, and mucoadhesive polymers. This review article discusses the protein, its functions, routes of administration, challenges, and strategies to achieve ultimate formulation goals. Recent advancements like the protein Pegylation method and Depofoam technology are another highlight of the article.
Collapse
Affiliation(s)
- Devashish Jena
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow, Sector 125, Noida, 201313, India
| | - Nimisha Srivastava
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow, Sector 125, Noida, 201313, India
| | - Iti Chauhan
- Department of Pharmaceutics, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, 201206, Uttar Pradesh, India
| | - Madhu Verma
- Department of Pharmaceutics, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, 201206, Uttar Pradesh, India
| |
Collapse
|
3
|
Nhàn NTT, Yamada T, Yamada KH. Peptide-Based Agents for Cancer Treatment: Current Applications and Future Directions. Int J Mol Sci 2023; 24:12931. [PMID: 37629112 PMCID: PMC10454368 DOI: 10.3390/ijms241612931] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Peptide-based strategies have received an enormous amount of attention because of their specificity and applicability. Their specificity and tumor-targeting ability are applied to diagnosis and treatment for cancer patients. In this review, we will summarize recent advancements and future perspectives on peptide-based strategies for cancer treatment. The literature search was conducted to identify relevant articles for peptide-based strategies for cancer treatment. It was performed using PubMed for articles in English until June 2023. Information on clinical trials was also obtained from ClinicalTrial.gov. Given that peptide-based strategies have several advantages such as targeted delivery to the diseased area, personalized designs, relatively small sizes, and simple production process, bioactive peptides having anti-cancer activities (anti-cancer peptides or ACPs) have been tested in pre-clinical settings and clinical trials. The capability of peptides for tumor targeting is essentially useful for peptide-drug conjugates (PDCs), diagnosis, and image-guided surgery. Immunomodulation with peptide vaccines has been extensively tested in clinical trials. Despite such advantages, FDA-approved peptide agents for solid cancer are still limited. This review will provide a detailed overview of current approaches, design strategies, routes of administration, and new technological advancements. We will highlight the success and limitations of peptide-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Nguyễn Thị Thanh Nhàn
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Richard & Loan Hill Department of Biomedical Engineering, University of Illinois College of Engineering, Chicago, IL 60607, USA
| | - Kaori H. Yamada
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Department of Ophthalmology & Visual Sciences, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Identification of antiviral peptide inhibitors for receptor binding domain of SARS-CoV-2 omicron and its sub-variants: an in-silico approach. 3 Biotech 2022; 12:198. [PMID: 35923684 PMCID: PMC9342843 DOI: 10.1007/s13205-022-03258-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/08/2022] [Indexed: 11/01/2022] Open
Abstract
Omicron, a variant of concern (VOC) of SARS-CoV-2, emerged in South Africa in November 2021. Omicron has been continuously acquiring a series of new mutations, especially in the spike (S) protein that led to high infectivity and transmissibility. Peptides targeting the receptor-binding domain (RBD) of the spike protein by which omicron and its variants attach to the host receptor, angiotensin-converting enzyme (ACE2) can block the viral infection at the first step. This study aims to identify antiviral peptides from the Antiviral peptide database (AVPdb) and HIV-inhibitory peptide database (HIPdb) against the RBD of omicron by using a molecular docking approach. The lead RBD binder peptides obtained through molecular docking were screened for allergenicity and physicochemical criteria (isoelectric point (pI) and net charge) required for peptide-based drugs. The binding affinity of the best five peptide inhibitors with the RBD of omicron was validated further by molecular dynamics (MD) simulation. Our result introduces five antiviral peptides, including AVP1056, AVP1059, AVP1225, AVP1801, and HIP755, that may effectively hinder omicron-host interactions. It is worth mentioning that all the three major sub-variants of omicron, BA.1 (B.1.1.529.1), BA.2 (B.1.1.529.2), and BA.3 (B.1.1.529.3), exhibits conserved ACE-2 interacting residues. Hence, the screened antiviral peptides with similar affinity can also interrupt the RBD-mediated invasion of different major sub-variants of omicron. Altogether, these peptides can be considered in the peptide-based therapeutics development for omicron treatment after further experimentation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03258-4.
Collapse
|
5
|
Calatayud DG, Neophytou S, Nicodemou E, Giuffrida SG, Ge H, Pascu SI. Nano-Theranostics for the Sensing, Imaging and Therapy of Prostate Cancers. Front Chem 2022; 10:830133. [PMID: 35494646 PMCID: PMC9039169 DOI: 10.3389/fchem.2022.830133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/16/2022] [Indexed: 01/28/2023] Open
Abstract
We highlight hereby recent developments in the emerging field of theranostics, which encompasses the combination of therapeutics and diagnostics in a single entity aimed for an early-stage diagnosis, image-guided therapy as well as evaluation of therapeutic outcomes of relevance to prostate cancer (PCa). Prostate cancer is one of the most common malignancies in men and a frequent cause of male cancer death. As such, this overview is concerned with recent developments in imaging and sensing of relevance to prostate cancer diagnosis and therapeutic monitoring. A major advantage for the effective treatment of PCa is an early diagnosis that would provide information for an appropriate treatment. Several imaging techniques are being developed to diagnose and monitor different stages of cancer in general, and patient stratification is particularly relevant for PCa. Hybrid imaging techniques applicable for diagnosis combine complementary structural and morphological information to enhance resolution and sensitivity of imaging. The focus of this review is to sum up some of the most recent advances in the nanotechnological approaches to the sensing and treatment of prostate cancer (PCa). Targeted imaging using nanoparticles, radiotracers and biomarkers could result to a more specialised and personalised diagnosis and treatment of PCa. A myriad of reports has been published literature proposing methods to detect and treat PCa using nanoparticles but the number of techniques approved for clinical use is relatively small. Another facet of this report is on reviewing aspects of the role of functional nanoparticles in multimodality imaging therapy considering recent developments in simultaneous PET-MRI (Positron Emission Tomography-Magnetic Resonance Imaging) coupled with optical imaging in vitro and in vivo, whilst highlighting feasible case studies that hold promise for the next generation of dual modality medical imaging of PCa. It is envisaged that progress in the field of imaging and sensing domains, taken together, could benefit from the biomedical implementation of new synthetic platforms such as metal complexes and functional materials supported on organic molecular species, which can be conjugated to targeting biomolecules and encompass adaptable and versatile molecular architectures. Furthermore, we include hereby an overview of aspects of biosensing methods aimed to tackle PCa: prostate biomarkers such as Prostate Specific Antigen (PSA) have been incorporated into synthetic platforms and explored in the context of sensing and imaging applications in preclinical investigations for the early detection of PCa. Finally, some of the societal concerns around nanotechnology being used for the detection of PCa are considered and addressed together with the concerns about the toxicity of nanoparticles–these were aspects of recent lively debates that currently hamper the clinical advancements of nano-theranostics. The publications survey conducted for this review includes, to the best of our knowledge, some of the most recent relevant literature examples from the state-of-the-art. Highlighting these advances would be of interest to the biomedical research community aiming to advance the application of theranostics particularly in PCa diagnosis and treatment, but also to those interested in the development of new probes and methodologies for the simultaneous imaging and therapy monitoring employed for PCa targeting.
Collapse
Affiliation(s)
- David G. Calatayud
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Department of Electroceramics, Instituto de Ceramica y Vidrio - CSIC, Madrid, Spain
- *Correspondence: Sofia I. Pascu, ; David G. Calatayud,
| | - Sotia Neophytou
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Eleni Nicodemou
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | | | - Haobo Ge
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Sofia I. Pascu
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Centre of Therapeutic Innovations, University of Bath, Bath, United Kingdom
- *Correspondence: Sofia I. Pascu, ; David G. Calatayud,
| |
Collapse
|
6
|
Mangla B, Javed S, Sultan MH, Ahsan W, Aggarwal G, Kohli K. Nanocarriers-Assisted Needle-Free Vaccine Delivery Through Oral and Intranasal Transmucosal Routes: A Novel Therapeutic Conduit. Front Pharmacol 2022; 12:757761. [PMID: 35087403 PMCID: PMC8787087 DOI: 10.3389/fphar.2021.757761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
Drug delivery using oral route is the most popular, convenient, safest and least expensive approach. It includes oral transmucosal delivery of bioactive compounds as the mucosal cavity offers an intriguing approach for systemic drug distribution. Owing to the dense vascular architecture and high blood flow, oral mucosal layers are easily permeable and can be an ideal site for drug administration. Recently, the transmucosal route is being investigated for other therapeutic candidates such as vaccines for their efficient delivery. Vaccines have the potential to trigger immune reactions and can act as both prophylactic and therapeutic conduit to a variety of diseases. Administration of vaccines using transmucosal route offers multiple advantages, the most important one being the needle-free (non-invasive) delivery. Development of needle-free devices are the most recent and pioneering breakthrough in the delivery of drugs and vaccines, enabling patients to avoid needles, reducing anxiety, pain and fear as well as improving compliance. Oral, nasal and aerosol vaccination is a novel immunization approach that utilizes a nanocarrier to administer the vaccine. Nanocarriers improve the bioavailability and serve as adjuvants to elicit a stronger immune response, resulting in increased effectiveness of vaccination. Drugs and vaccines with lower penetration abilities can also be delivered transmucosally while maintaining their biological function. The development of micro/nanocarriers for transmucosal delivery of macromolecules, vaccines and other substances is currently drawing much attention and a number of studies were performed recently. This comprehensive review is aimed to summarize the most recent investigations on needle-free and non-invasive approaches for the delivery of vaccines using oral transmucosal route, their strengths and associated challenges. The oral transmucosal vaccine delivery by nanocarriers is the most upcoming advancement in efficient vaccine delivery and this review would help further research and trials in this field.
Collapse
Affiliation(s)
- Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Muhammad H. Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Geeta Aggarwal
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Kanchan Kohli
- Director Research and Publication, Lloyd Institute of Management and Technology (Pharm.), Greater Noida, India
| |
Collapse
|
7
|
Shah JN, Guo GQ, Krishnan A, Ramesh M, Katari NK, Shahbaaz M, Abdellattif MH, Singh SK, Dua K. Peptides-based therapeutics: Emerging potential therapeutic agents for COVID-19. Therapie 2021; 77:319-328. [PMID: 34689960 PMCID: PMC8498005 DOI: 10.1016/j.therap.2021.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is a positive-sense RNA virus and it is the causative agent of the global COVID-19 outbreak. COVID-19 is similar to the previous outbreaks for instance SARS in 2002-2003 and MERS in 2012. As the peptides have many advantages, peptide-based therapeutics might be one of the possible ways in the development of COVID-19 specific drugs. SARS-CoV-2 enters into a human via its S protein by attaching with human hACE2 present on the cell membrane in the lungs and intestines of humans. hACE2 cleaves S protein into the S1 subunit for viral attachment and the S2 subunit for fusion with the host cell membrane. The fusion mechanism forms a six-helical bundle (6-HB) structure which finally fuses the viral envelope with the host cell membrane. hACE2 based peptides such as SBP1 and Spikeplug have shown their potential as antiviral agents. S protein-hACE2 interaction and the SARS-CoV-2 fusion machinery play a crucial part in human viral infection. It is evident that if these interactions could be blocked successfully and efficiently, it could be the way to find the drug for COVID-19. Several peptide-based inhibitors are potent inhibitors of S protein-hACE2 interaction. Similarly, the antiviral activity of the antimicrobial peptide, lactoferrin makes it an important candidate for the COVID-19 drug development process. A candidate drug, RhACE2-APN01 based on recombinant hACE2 peptide has already entered phase II clinical trials. This review sheds light on different aspects of the feasibility of using peptide-based therapeutics as the promising therapeutic route for COVID-19.
Collapse
Affiliation(s)
- Jagat Narayan Shah
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 730000 Lanzhou, China; Department of Plant and Cell Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, 730000 Lanzhou, China
| | - Guang-Qin Guo
- Department of Plant and Cell Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, 730000 Lanzhou, China.
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, 9300 Bloemfontein, South Africa.
| | - Muthusamy Ramesh
- Department of Pharmaceutical Analysis, Omega College of Pharmacy, 501 301 Hyderabad, India
| | - Naresh Kumar Katari
- Department of Chemistry, GITAM Deemed to be University, 502329 Hyderabad, India
| | - Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, 7535 Bellville, Cape Town, South Africa; Laboratory of Computational Modeling of Drugs, South Ural State University, 454080 Chelyabinsk, Russia
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Deanship of Scientific Research, Taif University, Al-Haweiah, P.O. Box 11099, 21944 Taif, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, 144411 Phagwara, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Ultimo, Australia
| |
Collapse
|
8
|
Panchal D, Kataria J, Patel K, Crowe K, Pai V, Azizogli A, Kadian N, Sanyal S, Roy A, Dodd‐o J, Acevedo‐Jake AM, Kumar VA. Peptide-Based Inhibitors for SARS-CoV-2 and SARS-CoV. ADVANCED THERAPEUTICS 2021; 4:2100104. [PMID: 34514085 PMCID: PMC8420164 DOI: 10.1002/adtp.202100104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/14/2021] [Indexed: 12/20/2022]
Abstract
The COVID-19 (coronavirus disease) global pandemic, caused by the spread of the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus, currently has limited treatment options which include vaccines, anti-virals, and repurposed therapeutics. With their high specificity, tunability, and biocompatibility, small molecules like peptides are positioned to act as key players in combating SARS-CoV-2, and can be readily modified to match viral mutation rate. A recent expansion of the understanding of the viral structure and entry mechanisms has led to the proliferation of therapeutic viral entry inhibitors. In this comprehensive review, inhibitors of SARS and SARS-CoV-2 are investigated and discussed based on therapeutic design, inhibitory mechanistic approaches, and common targets. Peptide therapeutics are highlighted, which have demonstrated in vitro or in vivo efficacy, discuss advantages of peptide therapeutics, and common strategies in identifying targets for viral inhibition.
Collapse
Affiliation(s)
- Disha Panchal
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Jeena Kataria
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Kamiya Patel
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Kaytlyn Crowe
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Varun Pai
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Abdul‐Rahman Azizogli
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Neil Kadian
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Sreya Sanyal
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Abhishek Roy
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Joseph Dodd‐o
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | | | - Vivek A. Kumar
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
- Department of Biomedical EngineeringDepartment of ChemicalBiological and Pharmaceutical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| |
Collapse
|
9
|
Central composite design for the development of carvedilol-loaded transdermal ethosomal hydrogel for extended and enhanced anti-hypertensive effect. J Nanobiotechnology 2021; 19:100. [PMID: 33836744 PMCID: PMC8035747 DOI: 10.1186/s12951-021-00833-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/14/2021] [Indexed: 12/16/2022] Open
Abstract
Background Carvedilol, the anti-hypertensive drug, has poor bioavailability when administered orally. Ethosomes-mediated transdermal delivery is considered a potential route of administration to increase the bioavailability of carvedilol. The central composite design could be used as a tool to optimize ethosomal formulation. Thus, this study aims to optimize carvedilol-loaded ethosomes using central composite design, followed by incorporation of synthesized ethosomes into hydrogels for transdermal delivery of carvedilol. Results The optimized carvedilol-loaded ethosomes were spherical in shape. The optimized ethosomes had mean particle size of 130 ± 1.72 nm, entrapment efficiency of 99.12 ± 2.96%, cumulative drug release of 97.89 ± 3.7%, zeta potential of − 31 ± 1.8 mV, and polydispersity index of 0.230 ± 0.03. The in-vitro drug release showed sustained release of carvedilol from ethosomes and ethosomal hydrogel. Compared to free carvedilol-loaded hydrogel, the ethosomal gel showed increased penetration of carvedilol through the skin. Moreover, ethosomal hydrogels showed a gradual reduction in blood pressure for 24 h in rats. Conclusions Taken together, central composite design can be used for successful optimization of carvedilol-loaded ethosomes formulation, which can serve as the promising transdermal delivery system for carvedilol. Moreover the carvedilol-loaded ethosomal gel can extend the anti-hypertensive effect of carvedilol for a longer time, as compared to free carvedilol, suggesting its therapeutic potential in future clinics.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00833-4.
Collapse
|
10
|
Abstract
While contraceptive drugs have enabled many people to decide when they want to have a baby, more than 100 million unintended pregnancies each year in the world may indicate the contraceptive requirement of many people has not been well addressed yet. The vagina is a well-established and practical route for the delivery of various pharmacological molecules, including contraceptives. This review aims to present an overview of different contraceptive methods focusing on the vaginal route of delivery for contraceptives, including current developments, discussing the potentials and limitations of the modern methods, designs, and how well each method performs for delivering the contraceptives and preventing pregnancy.
Collapse
|
11
|
Pulmonary route of administration is instrumental in developing therapeutic interventions against respiratory diseases. Saudi Pharm J 2020; 28:1655-1665. [PMID: 33424258 PMCID: PMC7783104 DOI: 10.1016/j.jsps.2020.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary route of drug delivery has drawn significant attention due to the limitations associated with conventional routes and available treatment options. Drugs administered through pulmonary route has been an important research area that focuses on to developing effective therapeutic interventions for asthma, chronic obstructive pulmonary disease, tuberculosis, lung cancer etc. The intravenous route has been a natural route of delivery of proteins and peptides but associated with several issues including high cost, needle-phobia, pain, sterility issues etc. These issues might be addressed by the pulmonary administration of macromolecules to achieving an effective delivery and efficacious therapeutic impact. Efforts have been made to develop novel drug delivery systems (NDDS) such as nanoparticles, microparticles, liposomes and their engineered versions, polymerosomes, micelles etc to achieving targeted and sustained delivery of drug(s) through pulmonary route. Further, novel approaches such as polymer-drug conjugates, mucoadhesive particles and mucus penetrating particles have attracted significant attention due to their unique features for an effective delivery of drugs. Also, use of semi flourinated alkanes is in use for improvising the pulmonary delivery of lipophilic drugs. Present review focuses on to unravel the mechanism of pulmonary absorption of drugs for major pulmonary diseases. It summarizes the development of interventional approaches using various particulate and vesicular drug delivery systems. In essence, the orchestrated attempt presents an inflammatory narrative on the advancements in the field of pulmonary drug delivery.
Collapse
|
12
|
Amigo L, Hernández-Ledesma B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020; 25:E4479. [PMID: 33003506 PMCID: PMC7582556 DOI: 10.3390/molecules25194479] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
Food protein-derived bioactive peptides are recognized as valuable ingredients of functional foods and/or nutraceuticals to promote health and reduce the risk of chronic diseases. However, although peptides have been demonstrated to exert multiple benefits by biochemical assays, cell culture, and animal models, the ability to translate the new findings into practical or commercial uses remains delayed. This fact is mainly due to the lack of correlation of in vitro findings with in vivo functions of peptides because of their low bioavailability. Once ingested, peptides need to resist the action of digestive enzymes during their transit through the gastrointestinal tract and cross the intestinal epithelial barrier to reach the target organs in an intact and active form to exert their health-promoting properties. Thus, for a better understanding of the in vivo physiological effects of food bioactive peptides, extensive research studies on their gastrointestinal stability and transport are needed. This review summarizes the most current evidence on those factors affecting the digestive and absorptive processes of food bioactive peptides, the recently designed models mimicking the gastrointestinal environment, as well as the novel strategies developed and currently applied to enhance the absorption and bioavailability of peptides.
Collapse
Affiliation(s)
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Research in Food Sciences (CIAL, CSIC-UAM, CEI-UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain;
| |
Collapse
|
13
|
Pharmacological Potential of Small Molecules for Treating Corneal Neovascularization. Molecules 2020; 25:molecules25153468. [PMID: 32751576 PMCID: PMC7435801 DOI: 10.3390/molecules25153468] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Under healthy conditions, the cornea is an avascular structure which allows for transparency and optimal visual acuity. Its avascular nature is maintained by a balance of proangiogenic and antiangiogenic factors. An imbalance of these factors can result in abnormal blood vessel proliferation into the cornea. This corneal neovascularization (CoNV) can stem from a variety of insults including hypoxia and ocular surface inflammation caused by trauma, infection, chemical burns, and immunological diseases. CoNV threatens corneal transparency, resulting in permanent vision loss. Mainstay treatments of CoNV have partial efficacy and associated side effects, revealing the need for novel treatments. Numerous natural products and synthetic small molecules have shown potential in preclinical studies in vivo as antiangiogenic therapies for CoNV. Such small molecules include synthetic inhibitors of the vascular endothelial growth factor (VEGF) receptor and other tyrosine kinases, plus repurposed antimicrobials, as well as natural source-derived flavonoid and non-flavonoid phytochemicals, immunosuppressants, vitamins, and histone deacetylase inhibitors. They induce antiangiogenic and anti-inflammatory effects through inhibition of VEGF, NF-κB, and other growth factor receptor pathways. Here, we review the potential of small molecules, both synthetics and natural products, targeting these and other molecular mechanisms, as antiangiogenic agents in the treatment of CoNV.
Collapse
|
14
|
Siemiradzka W, Dolińska B, Ryszka F. Influence of Concentration on Release and Permeation Process of Model Peptide Substance-Corticotropin-From Semisolid Formulations. Molecules 2020; 25:E2767. [PMID: 32549368 PMCID: PMC7357061 DOI: 10.3390/molecules25122767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/23/2022] Open
Abstract
The transdermal route of administration of drug substances allows clinicians to obtain a therapeutic effect bypassing the gastrointestinal tract, where the active substance could be inactivated. The hormonal substance used in the study-corticotropin (ACTH)-shows systemic effects. Therefore, the study of the effect of the type of ointment base and drug concentration on the release rate and also permeation rate in in vivo simulated conditions may be a valuable source of information for clinical trials to effectively optimize corticotropin treatment. This goal was achieved by preparation ointment formulation selecting the appropriate ointment base and determining the effect of ACTH concentration on the release and permeation studies of the ACTH. Semi-solid preparations containing ACTH were prepared using Unguator CITO e/s. The release study of ACTH was tested using a modified USP apparatus 2 with Enhancer cells. The permeation study was conducted with vertical Franz cells. Rheograms of hydrogels were made with the use of a universal rotational rheometer. The dependence of the amount of released and permeated hormone on the ointment concentration was found. Based on the test of ACTH release from semi-solid formulations and evaluation of rheological parameters, it was found that glycerol ointment is the most favourable base for ACTH. The ACTH release and permeation process depends on both viscosity and ACTH concentration. The higher the hormone concentration, the higher the amount of released ACTH but it reduces the amount of ACTH penetrating through porcine skin.
Collapse
Affiliation(s)
- Wioletta Siemiradzka
- Department of Pharmaceutical Technology, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine, 41-200 Sosnowiec, Poland;
| | - Barbara Dolińska
- Department of Pharmaceutical Technology, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine, 41-200 Sosnowiec, Poland;
- “Biochefa” Pharmaceutical Research and Production Plant, 41-200 Sosnowiec, Poland;
| | - Florian Ryszka
- “Biochefa” Pharmaceutical Research and Production Plant, 41-200 Sosnowiec, Poland;
| |
Collapse
|
15
|
Ibrahim YHEY, Regdon G, Hamedelniel EI, Sovány T. Review of recently used techniques and materials to improve the efficiency of orally administered proteins/peptides. Daru 2020; 28:403-416. [PMID: 31811628 PMCID: PMC7214593 DOI: 10.1007/s40199-019-00316-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/13/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The main objective of present review is to explore and evaluate the effectiveness of recently developed methods to improve the bioavailability of orally administered biopharmaceutical drugs. METHODS A systematic search of sciencedirect, tandfonline and Google Scholar databases based on various sets of keywords was performed. All results were evaluated based on their abstracts, and irrelevant studies were neglected during further evaluation. RESULTS At present, biopharmaceuticals are used as injectable therapies as they are not absorbed adequately from the different routes of drug administration, particularly the oral one. Their insufficient absorption is attributed to their high molecular weight, degradation by proteolytic enzymes, high hydrophilicity and rigidity of the absorptive tissues. From industrial aspect incorporation of enzyme inhibitors (EIs) and permeation enhancers (PEs) and mucoadhesive polymers into conventional dosage forms may be the easiest way of formulation of orally administered macromolecular drugs, but the effectiveness of protection and absorption enhancement here is the most questionable. Conjugation may be problematic from regulatory aspect. Encapsulation into lipid-based vesicles sufficiently protects the incorporated macromolecule and improves intestinal uptake but have considerable stability issues. In contrast, polymeric nanocarriers may provide good stability but provides lower internalization efficacy in comparison with the lipid-based carriers. CONCLUSION It can be concluded that the combination of the advantages of mucoadhesive polymeric and lid-based carriers in hybrid lipid/polymer nanoparticles may result in improved absorption and might represent a potential means for the oral administration of therapeutic proteins in the near future. Graphical abstract Delivery systems for oral protein daministration.
Collapse
Affiliation(s)
- Yousif H-E Y Ibrahim
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, Szeged, H-6720, Hungary
- Pharmaceutics Department, Omdurman Islamic University, Omdurman, Sudan
| | - Géza Regdon
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, Szeged, H-6720, Hungary
| | | | - Tamás Sovány
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, Szeged, H-6720, Hungary.
| |
Collapse
|
16
|
Asfour MH. Advanced trends in protein and peptide drug delivery: a special emphasis on aquasomes and microneedles techniques. Drug Deliv Transl Res 2020; 11:1-23. [PMID: 32337668 DOI: 10.1007/s13346-020-00746-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proteins and peptides have a great potential as therapeutic agents; they have higher efficiency and lower toxicity, compared to chemical drugs. However, their oral bioavailability is very low; also, the transdermal peptide delivery faces absorption limitations. Accordingly, most of proteins and peptides are administered by parenteral route, but there are many problems associated with this route such as patient discomfort, especially for pediatric use. Thus, it is a great challenge to develop drug delivery systems for administration of proteins and peptides by routes other than parenteral one. This review provides an overview on recent advances adopted for protein and peptide drug delivery, focusing on oral and transdermal routes. This is followed by an emphasis on two recent approaches adopted as delivery systems for protein and peptide drugs, namely aquasomes and microneedles. Aquasomes are nanoparticles fabricated from ceramics developed to enhance proteins and peptides stability, providing an adequate residence time in circulation. It consists of ceramic core coated with poly hydroxyl oligomer, on which protein and peptide drug can be adsorbed. Aquasomes preparation, characterization, and application in protein and peptide drug delivery are discussed. Microneedles are promising transdermal approach; it involves creation of micron-sized pores in the skin for enhancing the drug delivery across the skin, as their length ranged between 150 and 1500 μm. Types of microneedles with different drug delivery mechanisms, characterization, and application in protein and peptide drug delivery are discussed. Graphical abstract.
Collapse
Affiliation(s)
- Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth Street, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
17
|
Effect of Polymorphisms in CYP2C9 and CYP2C19 on the Disposition, Safety and Metabolism of Progesterone Administrated Orally or Vaginally. Adv Ther 2019; 36:2744-2755. [PMID: 31482508 DOI: 10.1007/s12325-019-01075-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Exogenous progesterone is prescribed for a variety of conditions with endogenous progesterone deficiency, e.g. menstrual alterations, primary or secondary infertility or premenopause. To the best of our knowledge, no pharmacogenetic studies have been published in relation to exogenous progesterone pharmacokinetic safety or progesterone metabolites so far. METHODS Candidate-gene study where we evaluated whether five single-nucleotide polymorphisms (CYP2C9*2, *3, CYP2C19*2, *3 and *17) were related to the pharmacokinetics, safety and metabolism of progesterone in 24 healthy volunteers who received a 200-mg progesterone formulation either orally or vaginally. RESULTS The vaginal formulation had an average AUCt value approximately 18 times greater than the oral formulation. CYP2C19 intermediate metabolizers (IM) consistently showed higher adjusted AUCt and adjusted Cmax than extensive metabolizers (EM) (P < 0.05); CYP2C9 EM incongruently exhibited higher adjusted Cmax and longer half-life than IM (p < 0.05). CONCLUSION This is the first study that reports variability in progesterone disposition according to the CYP2C19 and CYP2C9 phenotype. We suggest that CYP2C19 may condition progesterone disposition and that it may be more relevant than CYP2C9. This study lays the foundations for further in-depth research to evaluate the pharmacogenetics of progesterone. TRIAL REGISTRATION EudraCT numbers are 2012-005105-43 and 2012-005011-10.
Collapse
|
18
|
Bajracharya R, Song JG, Back SY, Han HK. Recent Advancements in Non-Invasive Formulations for Protein Drug Delivery. Comput Struct Biotechnol J 2019; 17:1290-1308. [PMID: 31921395 PMCID: PMC6944732 DOI: 10.1016/j.csbj.2019.09.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 01/14/2023] Open
Abstract
Advancements in biotechnology and protein engineering expand the availability of various therapeutic proteins including vaccines, antibodies, hormones, and growth factors. In addition, protein drugs hold many therapeutic advantages over small synthetic drugs in terms of high specificity and activity. This has led to further R&D investment in protein-based drug products and an increased number of drug approvals for therapeutic proteins. However, there are many biological and biopharmaceutical obstacles inherent to protein drugs including physicochemical and enzymatic destabilization, which limit their development and clinical application. Therefore, effective formulations of therapeutic proteins are needed to overcome the various physicochemical and biological barriers. In current medical practice, protein drugs are predominantly available in injectable formulations, which have disadvantages including pain, the possibility of infection, high cost, and low patient compliance. Consequently, non-invasive drug delivery systems for therapeutic proteins have gained great attention in the research and development of biomedicines. Therefore, this review covers the various formulation approaches to optimizing the delivery properties of protein drugs with an emphasis on improving bioavailability and patient compliance. It provides a comprehensive update on recent advancements in nanotechnologies with regard to non-invasive protein drug delivery systems, which is also categorized by the route of administrations including oral, nasal, transdermal, pulmonary, ocular, and rectal delivery systems.
Collapse
|
19
|
Han CS, Kim S, Oh DW, Yoon JY, Park ES, Rhee YS, Kim JY, Shin DH, Kim DW, Park CW. Preparation, Characterization, and Stability Evaluation of Taste-Masking Lacosamide Microparticles. MATERIALS 2019; 12:ma12061000. [PMID: 30917621 PMCID: PMC6470747 DOI: 10.3390/ma12061000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 11/30/2022]
Abstract
Lacosamide (LCM) is a third-generation antiepileptic drug. Selective action of the drug on voltage-gated sodium channels reduces side effects. Oral administration of LCM shows good pharmacokinetic profile. However, the bitter taste of LCM is a barrier to the development of oral formulations. In this study, we aimed to prepare encapsulated LCM microparticles (MPs) for masking its bitter taste. Encapsulated LCM MPs were prepared with Eudragit® E100 (E100), a pH-dependent polymer, by spray drying. Three formulations comprising different ratios of LCM and E100 (3:1, 1:1, and 1:3) were prepared. Physicochemical tests showed that LCM was in an amorphous state in the prepared formulations, and they were not miscible. LCM-E100 (1:3) had a rough surface due to surface enrichment of LCM. Increased E100 ratio in LCM-E100 MPs resulted in better taste-making effectiveness: LCM-E100 (1:1) and LCM-E100 (1:3) showed good taste-masking effectiveness, while LCM-E100 (3:1) could not mask the bitter taste of LCM. Dissolution results of the prepared formulations showed good correlation with taste-masking effectiveness. Nevertheless, high E100 ratio reduced the stability of the prepared formulations. Especially the difference in initial dissolution profile observed for LCM-E100 (1:3) indicated rapid reduction in taste-masking effectiveness and surface recrystallization. Therefore, LCM-E100 formulation in the ratio of 1:1 was selected as the best formulation with good taste-masking effectiveness and stability.
Collapse
Affiliation(s)
- Chang-Soo Han
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea.
| | - Seungsu Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea.
| | - Dong-Won Oh
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea.
| | - Jeong Yeol Yoon
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea.
| | - Eun-Seok Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Yun-Seok Rhee
- College of Pharmacy, Research Institute of Pharmaceutical sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Ju-Young Kim
- College of Pharmacy, Woosuk University, Wanju-gun 55338, Korea.
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea.
| | - Dong-Wook Kim
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju 28530, Korea.
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea.
| |
Collapse
|
20
|
Effect of Chemical Permeation Enhancers on Skin Permeability: In silico screening using Molecular Dynamics simulations. Sci Rep 2019; 9:1456. [PMID: 30728438 PMCID: PMC6365548 DOI: 10.1038/s41598-018-37900-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/12/2018] [Indexed: 11/17/2022] Open
Abstract
Breaching of the skin barrier is essential for delivering active pharmaceutical ingredients (APIs) for pharmaceutical, dermatological and aesthetic applications. Chemical permeation enhancers (CPEs) are molecules that interact with the constituents of skin’s outermost and rate limiting layer stratum corneum (SC), and increase its permeability. Designing and testing of new CPEs is a resource intensive task, thus limiting the rate of discovery of new CPEs. In-silico screening of CPEs in a rigorous skin model could speed up the design of CPEs. In this study, we performed coarse grained (CG) molecule dynamics (MD) simulations of a multilayer skin lipid matrix in the presence of CPEs. The CPEs are chosen from different chemical functionalities including fatty acids, esters, and alcohols. A multi-layer in-silico skin model was developed. The CG parameters of permeation enhancers were also developed. Interactions of CPEs with SC lipids was studied in silico at three different CPE concentrations namely, 1% w/v, 3% w/v and 5% w/v. The partitioning and diffusion coefficients of CPEs in the SC lipids were found to be highly size- and structure-dependent and these dependencies are explained in terms of structural properties such as radial distribution function, area per lipid and order parameter. Finally, experimentally reported effects of CPEs on skin from the literature are compared with the simulation results. The trends obtained using simulations are in good agreement with the experimental measurements. The studies presented here validate the utility of in-silico models for designing, screening and testing of novel and effective CPEs.
Collapse
|
21
|
Abstract
Objective: To evaluate the literature and educate the pharmacy community about the different treatment options for vulvodynia. Data Sources: Searches were performed through MEDLINE (1946-May 2018) using OVID and EBSCOhost, and Excerpta Medica (1974-May 2018) using EMBASE. Search terms included vulvar vestibulitis syndrome, vestibulodynia, vulvodynia, vulvar pain, provoked vulvar vestibulitis, and vulvodynia treatment. References of all relevant articles were then used to find additional applicable articles. Study Selection and Data Extraction: This review includes articles in the English language and human trial literature. Twenty-five trials explored the use of oral and topical medications in the treatment of vulvodynia. Data Synthesis: Vulvodynia is a poorly understood disease with an unknown etiology. Oral tricyclic antidepressants and gabapentin continue to be the most commonly used treatments for vulvodynia pain. This is due to their ease of use and patient preference. Topical treatments that have efficacy data are amitriptyline, gabapentin, lidocaine, baclofen, and hormones. This route of administration avoids systemic adverse effects and interpatient variability that accompanies oral administration. Alternative therapies more commonly used include physiotherapy, psychotherapy, and surgery. Treatment length may vary due to dose titrations and potential changes in medication therapy. Conclusions: Several medication and alternative therapies may be effective in treating vulvodynia. Current studies used wide dosing ranges, making it difficult to standardize therapy. No consistent method of assessing pain was used between studies, as well as a limited number being randomized and placebo controlled. Additional research is needed to increase knowledge and further develop vulvodynia treatments.
Collapse
Affiliation(s)
- Bobbi Jo Loflin
- Southwestern Oklahoma State University,
Weatherford, OK, USA
| | | | | |
Collapse
|
22
|
Kumar NN, Pizzo ME, Nehra G, Wilken-Resman B, Boroumand S, Thorne RG. Passive Immunotherapies for Central Nervous System Disorders: Current Delivery Challenges and New Approaches. Bioconjug Chem 2018; 29:3937-3966. [PMID: 30265523 PMCID: PMC7234797 DOI: 10.1021/acs.bioconjchem.8b00548] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Passive immunotherapy, i.e., the administration of exogenous antibodies that recognize a specific target antigen, has gained significant momentum as a potential treatment strategy for several central nervous system (CNS) disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain cancer, among others. Advances in antibody engineering to create therapeutic antibody fragments or antibody conjugates have introduced new strategies that may also be applied to treat CNS disorders. However, drug delivery to the CNS for antibodies and other macromolecules has thus far proven challenging, due in large part to the blood-brain barrier and blood-cerebrospinal fluid barriers that greatly restrict transport of peripherally administered molecules from the systemic circulation into the CNS. Here, we summarize the various passive immunotherapy approaches under study for the treatment of CNS disorders, with a primary focus on disease-specific and target site-specific challenges to drug delivery and new, cutting edge methods.
Collapse
Affiliation(s)
- Niyanta N. Kumar
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Michelle E. Pizzo
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
- Clinical Neuroengineering Training Program, University of
Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Geetika Nehra
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Brynna Wilken-Resman
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Sam Boroumand
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Robert G. Thorne
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
- Clinical Neuroengineering Training Program, University of
Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Neuroscience Training Program & Center for
Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin 53705, United
States
- Cellular and Molecular Pathology Graduate Training Program,
University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
23
|
Xu Y, Zhang X, Zhang Y, Ye J, Wang HL, Xia X, Liu Y. Mechanisms of deformable nanovesicles based on insulin-phospholipid complex for enhancing buccal delivery of insulin. Int J Nanomedicine 2018; 13:7319-7331. [PMID: 30519017 PMCID: PMC6233485 DOI: 10.2147/ijn.s175425] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Non-injectable delivery of peptides and proteins are not feasible due to its large molecular, high hydrophilic and gastrointestinal degradation. Therefore, proposing a new method to solve this problem is a burning issue. PURPOSE The objective of this study was to propose a novel protein delivery strategy to vanquish the poor efficacy of buccal mucosa delivery systems for protein delivery and then investigate the detailed mechanisms of the enhanced buccal delivery of protein, using insulin as a model drug. MATERIALS AND METHODS Insulin-phospholipid complex combined with deformable nanovesicles (IPC-DNVs) were prepared, using deformable nanovesicles based on insulin (INS-DNVs) and conventional nanovesicles based on insulin-phospholipid complex (IPC-NVs) as references. Besides, their physicochemical characterization, in vitro transport behavior, in vivo bioactivity and hypoglycemic effect were systematically characterized and compared. Finally, we evaluated the in vivo safety of IPC-DNVs. RESULTS First, IPC-DNVs increased insulin permeability through deposition of the IPC and deformability of the DNVs, which was revealed by an in vitro mucosal permeation study. Second, DNVs could act as a drug carrier and penetrate the mucosa to reach the receiver medium as intact nanovesicles, which was supported by the observation of intact nanovesicles in the receiver medium through transmission electron microscopy (TEM). Third, IPC-DNVs exhibited both transcellular and paracellular transport in the form of IPC and DNVs, respectively, which was proved by confocal laser scanning microscopy (CLSM). Unlike the other two formulations, IPC-DNVs exhibited a sustained mild hypoglycemic effect, with a relative bioavailability (Fp) of 15.53% (3.09% and 1.96% for INS-DNVs and IPC-NVs, respectively). Furthermore, buccal administration of IPC-DNVs resulted in no visible mucosal irritation to the buccal mucosa. CONCLUSION Our work reveals the mechanisms underlying the enhanced buccal delivery of IPC-DNVs: the DNVs facilitate penetration through the main barrier, and the deposition of IPC enhances buccal absorption. Our results and proposed mechanisms could be an important reference to understand other nanocarriers based on protein (peptide)-phospholipid complexes that penetrate the mucosa and provide a theoretical basis for the future development of buccal delivery systems for insulin.
Collapse
Affiliation(s)
- You Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China, ;
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China, ;
| | - Xing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China, ;
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China, ;
| | - Yun Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China, ;
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China, ;
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China, ;
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China, ;
| | - Hong-Liang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China, ;
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China, ;
| | - Xuejun Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China, ;
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China, ;
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China, ;
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China, ;
| |
Collapse
|
24
|
Mathur D, Singh S, Mehta A, Agrawal P, Raghava GPS. In silico approaches for predicting the half-life of natural and modified peptides in blood. PLoS One 2018; 13:e0196829. [PMID: 29856745 PMCID: PMC5983457 DOI: 10.1371/journal.pone.0196829] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 04/22/2018] [Indexed: 11/19/2022] Open
Abstract
This paper describes a web server developed for designing therapeutic peptides with desired half-life in blood. In this study, we used 163 natural and 98 modified peptides whose half-life has been determined experimentally in mammalian blood, for developing in silico models. Firstly, models have been developed on 261 peptides containing natural and modified residues, using different chemical descriptors. The best model using 43 PaDEL descriptors got a maximum correlation of 0.692 between the predicted and the actual half-life peptides. Secondly, models were developed on 163 natural peptides using amino acid composition feature of peptides and achieved a maximum correlation of 0.643. Thirdly, models were developed on 163 natural peptides using chemical descriptors and attained a maximum correlation of 0.743 using 45 selected PaDEL descriptors. In order to assist researchers in the prediction and designing of half-life of peptides, the models developed have been integrated into PlifePred web server (http://webs.iiitd.edu.in//raghava/plifepred/).
Collapse
Affiliation(s)
- Deepika Mathur
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sandeep Singh
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ayesha Mehta
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Piyush Agrawal
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Gajendra P. S. Raghava
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
- * E-mail: ,
| |
Collapse
|
25
|
Abstract
TopicalPdb (http://crdd.osdd.net/raghava/topicalpdb/) is a repository of experimentally verified topically delivered peptides. Data was manually collected from research articles. The current release of TopicalPdb consists of 657 entries, which includes peptides delivered through the skin (462 entries), eye (173 entries), and nose (22 entries). Each entry provides comprehensive information related to these peptides like the source of origin, nature of peptide, length, N- and C-terminal modifications, mechanism of penetration, type of assays, cargo and biological properties of peptides, etc. In addition to natural peptides, TopicalPdb contains information of peptides having non-natural, chemically modified residues and D-amino acids. Besides this primary information, TopicalPdb stores predicted tertiary structures as well as peptide sequences in SMILE format. Tertiary structures of peptides were predicted using state-of-art method PEPstrMod. In order to assist users, a number of web-based tools have been integrated that includes keyword search, data browsing, similarity search and structural similarity. We believe that TopicalPdb is a unique database of its kind and it will be very useful in designing peptides for non-invasive topical delivery.
Collapse
|
26
|
Munang'andu HM. MucoJet: a novel noninvasive buccal mucosa immunization strategy. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:64. [PMID: 29610754 DOI: 10.21037/atm.2018.01.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hetron Mweemba Munang'andu
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| |
Collapse
|
27
|
Bisht R, Rupenthal ID, Sreebhavan S, Jaiswal JK. Development of a novel stability indicating RP-HPLC method for quantification of Connexin43 mimetic peptide and determination of its degradation kinetics in biological fluids. J Pharm Anal 2017; 7:365-373. [PMID: 29404061 PMCID: PMC5790747 DOI: 10.1016/j.jpha.2017.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/30/2022] Open
Abstract
Connexin43 mimetic peptide (Cx43MP) has been intensively investigated for its therapeutic effect in the management of inflammatory eye conditions, spinal cord injury, wound healing and ischemia-induced brain damage. Here, we report on a validated stability-indicating reversed-phase high performance liquid chromatography (RP-HPLC) method for the quantification of Cx43MP under stress conditions. These included exposure to acid/base, light, oxidation and high temperature. In addition, the degradation kinetics of the peptide were evaluated in bovine vitreous and drug-free human plasma at 37 °C. Detection of Cx43MP was carried out at 214 nm with a retention time of 7.5 min. The method showed excellent linearity over the concentration range of 0.9-250 µg/mL (R2 ≥ 0.998), and the limits of detection (LOD) and quantification (LOQ) were found to be 0.90 and 2.98 μg/mL, respectively. The accuracy of the method determined by the mean percentage recovery at 7.8, 62.5 and 250 µg/mL was 96.79%, 98.25% and 99.06% with a RSD of < 2.2%. Accelerated stability studies revealed that Cx43MP was more sensitive to basic conditions and completely degraded within 24 h at 37 °C (0% recovery) and within 12 h at 80 °C (0.34% recovery). Cx43MP was found to be more stable in bovine vitreous (t1/2slow= 171.8 min) compared to human plasma (t1/2slow = 39.3 min) at 37 °C according to the two phase degradation kinetic model. These findings are important for further pre-clinical development of Cx43MP.
Collapse
Affiliation(s)
- Rohit Bisht
- Buchanan Ocular Therapeutics Unit (BOTU), Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Ilva D. Rupenthal
- Buchanan Ocular Therapeutics Unit (BOTU), Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Sreevalsan Sreebhavan
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Jagdish K. Jaiswal
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
28
|
Abstract
Macromolecules (proteins/peptides) have the potential for the development of new therapeutics. Due to their specific mechanism of action, macromolecules can be administered at relatively low doses compared with small-molecule drugs. Unfortunately, the therapeutic potential and clinical application of macromolecules is hampered by various obstacles including their large size, short in vivo half-life, phagocytic clearance, poor membrane permeability and structural instability. These challenges have encouraged researchers to develop novel strategies for effective delivery of macromolecules. In this review, various routes of macromolecule administration (invasive/noninvasive) are discussed. The advantages/limitations of novel delivery systems and the potential role of nanotechnology for the delivery of macromolecules are elaborated. In addition, fabrication approaches to make nanoformulations in different shapes and sizes are also summarized.
Collapse
|
29
|
Mahlumba P, Choonara YE, Kumar P, du Toit LC, Pillay V. Stimuli-Responsive Polymeric Systems for Controlled Protein and Peptide Delivery: Future Implications for Ocular Delivery. Molecules 2016; 21:E1002. [PMID: 27483234 PMCID: PMC6273787 DOI: 10.3390/molecules21081002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/31/2022] Open
Abstract
Therapeutic proteins and peptides have become notable in the drug delivery arena for their compatibility with the human body as well as their high potency. However, their biocompatibility and high potency does not negate the existence of challenges resulting from physicochemical properties of proteins and peptides, including large size, short half-life, capability to provoke immune responses and susceptibility to degradation. Various delivery routes and delivery systems have been utilized to improve bioavailability, patient acceptability and reduce biodegradation. The ocular route remains of great interest, particularly for responsive delivery of macromolecules due to the anatomy and physiology of the eye that makes it a sensitive and complex environment. Research in this field is slowly gaining attention as this could be the breakthrough in ocular drug delivery of macromolecules. This work reviews stimuli-responsive polymeric delivery systems, their use in the delivery of therapeutic proteins and peptides as well as examples of proteins and peptides used in the treatment of ocular disorders. Stimuli reviewed include pH, temperature, enzymes, light, ultrasound and magnetic field. In addition, it discusses the current progress in responsive ocular drug delivery. Furthermore, it explores future prospects in the use of stimuli-responsive polymers for ocular delivery of proteins and peptides. Stimuli-responsive polymers offer great potential in improving the delivery of ocular therapeutics, therefore there is a need to consider them in order to guarantee a local, sustained and ideal delivery of ocular proteins and peptides, evading tissue invasion and systemic side-effects.
Collapse
Affiliation(s)
- Pakama Mahlumba
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
30
|
Skalickova S, Heger Z, Krejcova L, Pekarik V, Bastl K, Janda J, Kostolansky F, Vareckova E, Zitka O, Adam V, Kizek R. Perspective of Use of Antiviral Peptides against Influenza Virus. Viruses 2015; 7:5428-42. [PMID: 26492266 PMCID: PMC4632391 DOI: 10.3390/v7102883] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 01/13/2023] Open
Abstract
The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20(th) century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides.
Collapse
Affiliation(s)
- Sylvie Skalickova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| | - Ludmila Krejcova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
| | - Vladimir Pekarik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
| | - Karel Bastl
- Wool and Knitting Research Institute, Brno, Sujanovo namesti 3, Brno CZ-602 00, Czech Republic.
| | - Jozef Janda
- Laboratory of Tumour Biology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov CZ-277 21, Czech Republic.
| | - Frantisek Kostolansky
- Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Eva Vareckova
- Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| |
Collapse
|
31
|
Bak A, Leung D, Barrett SE, Forster S, Minnihan EC, Leithead AW, Cunningham J, Toussaint N, Crocker LS. Physicochemical and formulation developability assessment for therapeutic peptide delivery--a primer. AAPS JOURNAL 2014; 17:144-55. [PMID: 25398427 DOI: 10.1208/s12248-014-9688-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/09/2014] [Indexed: 12/12/2022]
Abstract
Peptides are an important class of endogenous ligands that regulate key biological cascades. As such, peptides represent a promising therapeutic class with the potential to alleviate many severe disease states. Despite their therapeutic potential, peptides frequently pose drug delivery challenges to scientists. This review introduces the physicochemical, biophysical, biopharmaceutical, and formulation developability aspects of peptides pertinent to the drug discovery-to-development interface. It introduces the relevance of these properties with respect to the delivery modalities available for peptide pharmaceuticals, with the parenteral route being the most prevalent route of administration. This review also presents characterization strategies for oral delivery of peptides with the aim of illuminating developability issues with the drug candidate. A brief overview of other routes of administration, including inhaled, transdermal, and intranasal routes, is provided as these routes are generally preferred by patients over injectables. Finally, this review presents formulation techniques to mitigate some of the developability obstacles associated with peptide delivery. The authors emphasize opportunities for the thoughtful application of pharmaceutical science to the development of peptide drugs and to the general advancement of this promising class of pharmaceuticals.
Collapse
Affiliation(s)
- Annette Bak
- Discovery Pharmaceutical Sciences, Merck & Co, Kenilworth, New Jersey, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Enhancing the buccal mucosal delivery of peptide and protein therapeutics. Pharm Res 2014; 32:1-21. [PMID: 25168518 DOI: 10.1007/s11095-014-1485-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
Abstract
With continuing advances in biotechnology and genetic engineering, there has been a dramatic increase in the availability of new biomacromolecules, such as peptides and proteins that have the potential to ameliorate the symptoms of many poorly-treated diseases. Although most of these macromolecular therapeutics exhibit high potency, their large molecular mass, susceptibility to enzymatic degradation, immunogenicity and tendency to undergo aggregation, adsorption, and denaturation have limited their ability to be administered via the traditional oral route. As a result, alternative noninvasive routes have been investigated for the systemic delivery of these macromolecules, one of which is the buccal mucosa. The buccal mucosa offers a number of advantages over the oral route, making it attractive for the delivery of peptides and proteins. However, the buccal mucosa still exhibits some permeability-limiting properties, and therefore various methods have been explored to enhance the delivery of macromolecules via this route, including the use of chemical penetration enhancers, physical methods, particulate systems and mucoadhesive formulations. The incorporation of anti-aggregating agents in buccal formulations also appears to show promise in other mucosal delivery systems, but has not yet been considered for buccal mucosal drug delivery. This review provides an update on recent approaches that have shown promise in enhancing the buccal mucosal transport of macromolecules, with a major focus on proteins and peptides.
Collapse
|
33
|
Sharma A, Singla D, Rashid M, Raghava GPS. Designing of peptides with desired half-life in intestine-like environment. BMC Bioinformatics 2014; 15:282. [PMID: 25141912 PMCID: PMC4150950 DOI: 10.1186/1471-2105-15-282] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 08/13/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND In past, a number of peptides have been reported to possess highly diverse properties ranging from cell penetrating, tumor homing, anticancer, anti-hypertensive, antiviral to antimicrobials. Owing to their excellent specificity, low-toxicity, rich chemical diversity and availability from natural sources, FDA has successfully approved a number of peptide-based drugs and several are in various stages of drug development. Though peptides are proven good drug candidates, their usage is still hindered mainly because of their high susceptibility towards proteases degradation. We have developed an in silico method to predict the half-life of peptides in intestine-like environment and to design better peptides having optimized physicochemical properties and half-life. RESULTS In this study, we have used 10mer (HL10) and 16mer (HL16) peptides dataset to develop prediction models for peptide half-life in intestine-like environment. First, SVM based models were developed on HL10 dataset which achieved maximum correlation R/R2 of 0.57/0.32, 0.68/0.46, and 0.69/0.47 using amino acid, dipeptide and tripeptide composition, respectively. Secondly, models developed on HL16 dataset showed maximum R/R2 of 0.91/0.82, 0.90/0.39, and 0.90/0.31 using amino acid, dipeptide and tripeptide composition, respectively. Furthermore, models that were developed on selected features, achieved a correlation (R) of 0.70 and 0.98 on HL10 and HL16 dataset, respectively. Preliminary analysis suggests the role of charged residue and amino acid size in peptide half-life/stability. Based on above models, we have developed a web server named HLP (Half Life Prediction), for predicting and designing peptides with desired half-life. The web server provides three facilities; i) half-life prediction, ii) physicochemical properties calculation and iii) designing mutant peptides. CONCLUSION In summary, this study describes a web server 'HLP' that has been developed for assisting scientific community for predicting intestinal half-life of peptides and to design mutant peptides with better half-life and physicochemical properties. HLP models were trained using a dataset of peptides whose half-lives have been determined experimentally in crude intestinal proteases preparation. Thus, HLP server will help in designing peptides possessing the potential to be administered via oral route (http://www.imtech.res.in/raghava/hlp/).
Collapse
|
34
|
Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv 2013; 4:1443-67. [PMID: 24228993 PMCID: PMC3956587 DOI: 10.4155/tde.13.104] [Citation(s) in RCA: 479] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
While the peptide and protein therapeutic market has developed significantly in the past decades, delivery has limited their use. Although oral delivery is preferred, most are currently delivered intravenously or subcutaneously due to degradation and limited absorption in the gastrointestinal tract. Therefore, absorption enhancers, enzyme inhibitors, carrier systems and stability enhancers are being studied to facilitate oral peptide delivery. Additionally, transdermal peptide delivery avoids the issues of the gastrointestinal tract, but also faces absorption limitations. Due to proteases, opsonization and agglutination, free peptides are not systemically stable without modifications. This review discusses oral and transdermal peptide drug delivery, focusing on barriers and solutions to absorption and stability issues. Methods to increase systemic stability and site-specific delivery are also discussed.
Collapse
Affiliation(s)
- Benjamin J Bruno
- Department of Pharmaceutics & Pharmaceutical Chemistry, College of
Pharmacy, University of Utah. 30 South 2000 East, Room 301, Salt Lake City, UT
84112, USA
| | - Geoffrey D Miller
- Department of Pharmaceutics & Pharmaceutical Chemistry, College of
Pharmacy, University of Utah. 30 South 2000 East, Room 301, Salt Lake City, UT
84112, USA
| | - Carol S Lim
- Department of Pharmaceutics & Pharmaceutical Chemistry, College of
Pharmacy, University of Utah. 30 South 2000 East, Room 301, Salt Lake City, UT
84112, USA
| |
Collapse
|
35
|
Renukuntla J, Vadlapudi AD, Patel A, Boddu SHS, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 2013; 447:75-93. [PMID: 23428883 DOI: 10.1016/j.ijpharm.2013.02.030] [Citation(s) in RCA: 414] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/28/2012] [Accepted: 02/12/2013] [Indexed: 12/20/2022]
Abstract
Oral delivery of peptide and protein drugs faces immense challenge partially due to the gastrointestinal (GI) environment. In spite of considerable efforts by industrial and academic laboratories, no major breakthrough in the effective oral delivery of polypeptides and proteins has been accomplished. Upon oral administration, gastrointestinal epithelium acts as a physical and biochemical barrier for absorption of proteins resulting in low bioavailability (typically less than 1-2%). An ideal oral drug delivery system should be capable of (a) maintaining the integrity of protein molecules until it reaches the site of absorption, (b) releasing the drug at the target absorption site, where the delivery system appends to that site by virtue of specific interaction, and (c) retaining inside the gastrointestinal tract irrespective of its transitory constraints. Various technologies have been explored to overcome the problems associated with the oral delivery of macromolecules such as insulin, gonadotropin-releasing hormones, calcitonin, human growth factor, vaccines, enkephalins, and interferons, all of which met with limited success. This review article intends to summarize the physiological barriers to oral delivery of peptides and proteins and novel pharmaceutical approaches to circumvent these barriers and enhance oral bioavailability of these macromolecules.
Collapse
Affiliation(s)
- Jwala Renukuntla
- Division of Pharmaceutical Sciences, South College School of Pharmacy, 400 Goody's Lane, Knoxville, TN 37931, USA
| | | | | | | | | |
Collapse
|