1
|
Rijken R, Pameijer EM, Gerritsen B, Hiddingh S, Stehouwer M, de Boer JH, Imhof SM, van Leeuwen R, Kuiper JJ. Blood integrin- and cytokine-producing T cells are associated with stage and genetic risk score in age-related macular degeneration. Exp Eye Res 2025; 250:110154. [PMID: 39547643 DOI: 10.1016/j.exer.2024.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Age-related macular degeneration (AMD) remains a leading cause of vision loss in the geriatric population. There are age-related changes in peripheral blood leukocyte composition, but their significance for AMD remains unclear. We aimed to determine changes in immune cell populations in the blood of AMD patients. A standardized 31-parameter flow cytometry analysis was conducted on peripheral blood mononuclear cells from 59 patients with early and advanced AMD and 39 controls without AMD, all older than 65 years. Fundus photography and optical coherence tomography were used to classify disease stages and a custom genotype array was used to compute an AMD genetic risk score based on 52 AMD disease risk variants (GRS-52). A generalized linear regression model corrected for age, sex, and smoking status revealed that AMD patients showed decreased frequencies of CD4+ T helper cell population expressing Integrin Alpha E (CD103) (Padj = 0.019). We further noted that early AMD was characterized by increased interleukin-4 (IL-4)-producing CD4+ T helper cells (Padj = 0.013; <0.001), as well as IL-4-producing cytotoxic CD8+ T cells (Padj = 0.016; <0.001). Reclassification of samples based on the GRS-52 revealed that IL-17-producing T cells decreased incrementally across GRS-52 categories. In AMD, alterations in peripheral blood leukocyte populations are associated with genetic risk score and disease stage and include specifically IL-4 and IL-17A cytokine-producing and CD103 integrin-expressing T cell populations.
Collapse
Affiliation(s)
- Rianne Rijken
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University Utrecht, the Netherlands
| | - Els M Pameijer
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University Utrecht, the Netherlands
| | - Bram Gerritsen
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University Utrecht, the Netherlands
| | - Sanne Hiddingh
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University Utrecht, the Netherlands
| | - Marilette Stehouwer
- Department of Ophthalmology, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Joke H de Boer
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands
| | - Saskia M Imhof
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands
| | - Redmer van Leeuwen
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands
| | - Jonas Jw Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University Utrecht, the Netherlands.
| |
Collapse
|
2
|
Liu C, Wang X, Cao X. IL-10: A Key Regulator and potential therapeutic target in uveitis. Cell Immunol 2024; 405-406:104885. [PMID: 39447525 DOI: 10.1016/j.cellimm.2024.104885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Uveitis is a prevalent inflammatory eye disease that primarily affects working-age individuals and can lead to blindness if untreated. Interleukin-10 (IL-10) is a multifunctional cytokine with broad immunosuppressive properties and plays a significant role in various pathological and physiological processes. However, its specific role and underlying mechanisms in uveitis remain incompletely understood. This review aims to shed light on the biological characteristics of IL-10, its involvement in the uveitis pathophysiology, and its potential as a novel therapeutic target. By examining existing literature, the review analyzes IL-10 expression levels and regulatory mechanisms in different types of uveitis, discussing its role in immune regulation. Despite IL-10 being expressed variably across various forms of autoimmune uveitis, studies consistently highlight its protective role, prompting research into ways to enhance its bioavailability in the eye. IL-10 is often upregulated in infectious uveitis, contributing to pathogen immune evasion. Furthermore, primary intraocular lymphoma (PIOL), which shares clinical similarities with uveitis, also shows upregulated IL-10 levels, whereas IL-6 is more commonly elevated in uveitis. This differential expression suggests that IL-6 and IL-10 could be diagnostic markers to distinguish between PIOL and uveitis. Future research should continue to focus on elucidating the molecular mechanisms of IL-10 in uveitis, exploring its potential therapeutic applications, and developing targeted treatments that leverage the immunomodulatory effects of IL-10 to prevent and manage this sight-threatening condition.
Collapse
Affiliation(s)
- Chengzhi Liu
- Institution: Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xinyu Wang
- Institution: Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xusheng Cao
- Institution: Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
3
|
Zong Y, Miyagaki M, Yang M, Zhang J, Zou Y, Ohno-Matsui K, Kamoi K. Ophthalmic Use of Targeted Biologics in the Management of Intraocular Diseases: Current and Emerging Therapies. Antibodies (Basel) 2024; 13:86. [PMID: 39449328 PMCID: PMC11503300 DOI: 10.3390/antib13040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Monoclonal antibodies (mAbs) have demonstrated substantial potential in the treatment of intraocular diseases. This review aimed to comprehensively evaluate the applications, efficacy, and safety of mAbs in the management of intraocular conditions. METHODS A comprehensive literature search was conducted in major medical databases through July 2024. Relevant studies on monoclonal antibodies for intraocular diseases were included. Two independent researchers screened the literature, extracted data, and assessed study quality. Cost-effectiveness analyses were also reviewed. RESULTS Anti-vascular endothelial growth factor (VEGF) antibodies, such as bevacizumab, ranibizumab, and aflibercept, showed significant therapeutic effects in neovascular age-related macular degeneration (NVAMD), diabetic macular edema (DME), and retinal vein occlusion (RVO). Tumor necrosis factor-alpha (TNF-α) inhibitors demonstrated promising results in treating noninfectious uveitis. Complement system-targeted therapies like pegcetacoplan offered new options for geographic atrophy. Anti-VEGF antibodies showed potential in managing retinopathy of prematurity (ROP). However, challenges persist, including high costs, potential drug resistance, and limited long-term safety data in certain scenarios. CONCLUSIONS Monoclonal antibodies are vital for treating intraocular diseases, but continuous innovation and rigorous clinical evaluation are essential. Future research should focus on developing novel delivery systems, exploring combination therapies, conducting long-term follow-up studies, and investigating personalized treatment strategies to provide safer, more effective, and cost-effective therapeutic solutions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Koju Kamoi
- Department of Ophthalmology & Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (Y.Z.); (M.M.); (M.Y.); (J.Z.); (Y.Z.); (K.O.-M.)
| |
Collapse
|
4
|
Saini C, Sapra L, Puri P, Mishra PK, Chawla R, Srivastava RK. Dysregulated Th17/Treg cell axis is correlated with local and systemic immune response in human intermediate uveitis. Immunol Lett 2024; 268:106888. [PMID: 38925441 DOI: 10.1016/j.imlet.2024.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Th17/Treg cell balance is essential for immune homeostasis and when disrupted, is associated with the occurrence and development of inflammation in numerous autoimmune diseases. However, its contribution in pathophysiology of uveitis remains unexplored. In this study, we deciphered the role of Th17/Treg cell balance in autoimmune uveitis subjects. Using flow cytometry, we detected the frequencies and absolute count of both Th17 and Treg cells in the aqueous humor and peripheral blood of patients and healthy controls. Our results for the first time reveal a significant increase (p < 0.01 and p < 0.005) in Th17 population alongside a significant decrease (p < 0.001 and p < 0.003) in Treg cell population in both the aqueous humor and PBMCs of uveitis patients. Further we analyzed the expression of Th17-Treg associated genes and cytokines via qPCR and ELISA respectively. These findings align with our flow cytometry results, as evident by a significant (p < 0.002) up-regulation of IL-17 and a concurrent down regulation of IL-10 at transcriptional levels. Moreover, IL-17A cytokine was found to be substantially high (p < 0.001) and IL-10 (p < 0.02) down regulated in serum. Interestingly, we demonstrated a significant correlation of Th17/Treg cells in aqueous humor with those in peripheral blood. Conclusively, our results suggest the pivotal role of Th17/Treg cell axis in the immuno-pathophysiology of human uveitis. Further we propose the therapeutic potential of targeting this novel axis for ameliorating the disease burden associated with uveitis.
Collapse
Affiliation(s)
- Chaman Saini
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Prabhav Puri
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, MP 462001, India
| | - Rohan Chawla
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
5
|
Slouma M, Kharrat L, Tezegdenti A, Dhahri R, Ghazouani E, Gharsallah I. Pro-inflammatory cytokines in spondyloarthritis: a case-control study. Expert Rev Clin Immunol 2024; 20:655-663. [PMID: 38205504 DOI: 10.1080/1744666x.2024.2304080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
OBJECTIVES We aimed to determine the discriminative values of pro-inflammatory cytokines to distinguish spondyloarthritis patients from healthy subjects and to assess the association between these cytokines and spondyloarthritis characteristics. METHODS We conducted a case-control study, including 144 subjects matched for age and sex: 72 spondyloarthritis patients(G1) and 72 controls (G2). The disease activity was assessed using ASDAS-CRP and BASDAI. Structural damage was assessed using BASRI. The levels of interleukin (IL) IL-1, IL-6, IL-8, IL-17, IL-23, and tumor necrosis factor α(TNFα) were measured. RESULTS Each group included 57 men. The mean age was 44.84 ± 13.42 years. Except for IL-8, all cytokine levels were significantly higher in patients compared to controls (IL-1: p = 0.05, IL-6: p = 0.021, TNFα: p = 0.039, IL-17 and IL-23: p < 0.001). Cutoff values of IL-17 and IL-23 distinguishing patients in G1 from those in G2 were 17.6 and 7.96 pg/mL, respectively. TNFα level correlated to BASDAI (p = 0.029) and BASRI (p = 0.002). Multivariate analysis showed that structural damage was associated with the male gender (p = 0.017), longer disease duration (p = 0.038), and high disease activity (p = 0.044). Disease activity was associated with longer disease duration (p = 0.012) and increased IL-6 levels (p = 0.05). CONCLUSION Our study showed that IL-17 was the ablest to distinguish between spondyloarthritis patients and controls, suggesting that IL-17 may be helpful for the diagnosis of spondyloarthritis.
Collapse
Affiliation(s)
- Maroua Slouma
- Department of Rheumatology, Military Hospital, Tunis, Tunisia
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
- Faculté des sciences de Tunis, Mycology, pathologies, and biomarkers laboratory, Tunis, Tunisia
| | - Lobna Kharrat
- Department of Rheumatology, Military Hospital, Tunis, Tunisia
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
| | - Aymen Tezegdenti
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
- Department of Immunology, Military Hospital, Tunis, Tunisia
| | - Rim Dhahri
- Department of Rheumatology, Military Hospital, Tunis, Tunisia
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
| | - Ezzeddine Ghazouani
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
- Department of Immunology, Military Hospital, Tunis, Tunisia
| | - Imen Gharsallah
- Department of Rheumatology, Military Hospital, Tunis, Tunisia
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
6
|
Thng ZX, Bromeo AJ, Mohammadi SS, Khatri A, Tran ANT, Akhavanrezayat A, T T Than N, Nguyen KS, Yoo WS, Mobasserian A, Or CCM, Nguyen QD. Recent advances in uveitis therapy: focus on selected phase 2 and 3 clinical trials. Expert Opin Emerg Drugs 2023; 28:297-309. [PMID: 38129984 DOI: 10.1080/14728214.2023.2293049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Uveitis is a heterogeneous group of ocular conditions characterized by inflammation of the uveal tract. It is a leading cause of blindness in developed countries and exerts significant psychological, social, and economic impact on both patients and the larger society. While there are numerous pharmacotherapy options, posterior segment noninfectious uveitis remains a significant challenge to treat due to its severity, chronicity, and high recurrence rates. AREAS COVERED The index review highlights the unmet needs of uveitis pharmacotherapy and its research and the shortcomings of existing ocular and systemic therapeutic options for noninfectious uveitis. The more promising novel ocular drug delivery methods and therapeutic targets/drugs are discussed, and evidence from the clinical trials is evaluated. EXPERT OPINION There has been incredible growth in the number of treatment options available to uveitis patients today, especially with the new generation of biologic drugs. Available evidence suggests that these newer options may be superior to conventional immunosuppressive therapies in terms of efficacy and side effect profiles. Further high-quality research and additional clinical trials will be needed to clarify their roles in the stepladder treatment approach of noninfectious uveitis.
Collapse
Affiliation(s)
- Zheng Xian Thng
- Byers Eye Institute, Stanford University, Palo Alto, California, USA
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Albert John Bromeo
- Byers Eye Institute, Stanford University, Palo Alto, California, USA
- Asian Eye Institute, Makati, Philippines
| | - S Saeed Mohammadi
- Byers Eye Institute, Stanford University, Palo Alto, California, USA
| | - Anadi Khatri
- Byers Eye Institute, Stanford University, Palo Alto, California, USA
- Birat Aankha Aspatal, Biratnagar, Nepal
- Department of Ophthalmology, Birat Medical College and Teaching Hospital, Kathmandu University, Biratnagar, Nepal
| | - Anh N T Tran
- Byers Eye Institute, Stanford University, Palo Alto, California, USA
| | | | - Ngoc T T Than
- Byers Eye Institute, Stanford University, Palo Alto, California, USA
| | - Khiem S Nguyen
- Byers Eye Institute, Stanford University, Palo Alto, California, USA
| | - Woong-Sun Yoo
- Byers Eye Institute, Stanford University, Palo Alto, California, USA
- Department of Ophthalmology, Gyeongsang National University College of Medicine, and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | | | | | - Quan Dong Nguyen
- Byers Eye Institute, Stanford University, Palo Alto, California, USA
| |
Collapse
|
7
|
Chang YH, Hsing CH, Chiu CJ, Wu YR, Hsu SM, Hsu YH. Protective role of IL-17-producing γδ T cells in a laser-induced choroidal neovascularization mouse model. J Neuroinflammation 2023; 20:279. [PMID: 38007487 PMCID: PMC10676594 DOI: 10.1186/s12974-023-02952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Vision loss in patients with wet/exudative age-related macular degeneration (AMD) is associated with choroidal neovascularization (CNV), and AMD is the leading cause of irreversible vision impairment in older adults. Interleukin-17A (IL-17A) is a component of the microenvironment associated with some autoimmune diseases. Previous studies have indicated that wet AMD patients have elevated serum IL-17A levels. However, the effect of IL-17A on AMD progression needs to be better understood. We aimed to investigate the role of IL-17A in a laser-induced CNV mouse model. METHODS We established a laser-induced CNV mouse model in wild-type (WT) and IL-17A-deficient mice and then evaluated the disease severity of these mice by using fluorescence angiography. We performed enzyme-linked immunosorbent assay (ELISA) and fluorescence-activated cell sorting (FACS) to analyze the levels of IL-17A and to investigate the immune cell populations in the eyes of WT and IL-17A-deficient mice. We used ARPE-19 cells to clarify the effect of IL-17A under oxidative stress. RESULTS In the laser-induced CNV model, the CNV lesions were larger in IL-17A-deficient mice than in WT mice. The numbers of γδ T cells, CD3+CD4+RORγt+ T cells, Treg cells, and neutrophils were decreased and the number of macrophages was increased in the eyes of IL-17A-deficient mice compared with WT mice. In WT mice, IL-17A-producing γδ T-cell numbers increased in a time-dependent manner from day 7 to 28 after laser injury. IL-6 levels increased and IL-10, IL-24, IL-17F, and GM-CSF levels decreased in the eyes of IL-17A-deficient mice after laser injury. In vitro, IL-17A inhibited apoptosis and induced the expression of the antioxidant protein HO-1 in ARPE-19 cells under oxidative stress conditions. IL-17A facilitated the repair of oxidative stress-induced barrier dysfunction in ARPE-19 cells. CONCLUSIONS Our findings provide new insight into the protective effect of IL-17A in a laser-induced CNV model and reveal a novel regulatory role of IL-17A-producing γδ T cells in the ocular microenvironment in wet AMD.
Collapse
Affiliation(s)
- Yu-Hsien Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chiao-Juno Chiu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Rou Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Antibody New Drug Research Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
8
|
Zhu M, Guo Q, Kang H, Peng R, Dong Y, Zhang Y, Wang S, Liu H, Zhao H, Dong Z, Song K, Xu S, Wang P, Chen L, Liu J, Li F. Inhibition of FAAH suppresses RANKL-induced osteoclastogenesis and attenuates ovariectomy-induced bone loss partially through repressing the IL17 pathway. FASEB J 2023; 37:e22690. [PMID: 36468880 DOI: 10.1096/fj.202200911r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Fatty amide hydrolase (FAAH) is a key degradation enzyme of the endocannabinoid system, mainly responsible for the hydrolysis of arachidonic acid ethanolamine (AEA). Previous investigations have shown that FAAH is involved in a series of biological processes, such as inflammation, immune regulation, and transmembrane signal transduction of neurons. Endogenous cannabinoids and cannabinoid receptors have been reported to participate in the regulation of bone homeostasis by regulating the differentiation of osteoblasts and osteoclasts. We hypothesized that FAAH may play an important role in osteoclastogenesis based on the above evidence. The present study found that the FAAH expression was increased at both mRNA and protein levels during RANKL-induced osteoclastogenesis. Pharmacological and genetic inhibition of FAAH in bone marrow-derived macrophages (BMMs) inhibited osteoclastogenesis, F-actin ring formation, bone resorption, and osteoclast-specific gene expression in vitro. Moreover, intragastric administration of the FAAH inhibitor PF-04457845(PF) ameliorated ovariectomy (OVX)-induced bone loss in mice. Further investigation revealed that nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways were inhibited by PF treatment and FAAH knockdown. RNAseq indicated that the IL17 pathway was blocked by PF, and administration of recombinant murine IL17 protein could partially restore osteoclastogenesis and activate NF-κB and MAPK pathways. To sum up, our findings demonstrate that targeting FAAH could be a promising candidate strategy for treating osteoclast-related diseases, especially osteoporosis.
Collapse
Affiliation(s)
- Meipeng Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renpeng Peng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yayun Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sibo Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjian Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zijian Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kehan Song
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shimeng Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengju Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangxi Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
DeMaio A, Mehrotra S, Sambamurti K, Husain S. The role of the adaptive immune system and T cell dysfunction in neurodegenerative diseases. J Neuroinflammation 2022; 19:251. [PMID: 36209107 PMCID: PMC9548183 DOI: 10.1186/s12974-022-02605-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
The adaptive immune system and associated inflammation are vital in surveillance and host protection against internal and external threats, but can secondarily damage host tissues. The central nervous system is immune-privileged and largely protected from the circulating inflammatory pathways. However, T cell involvement and the disruption of the blood-brain barriers have been linked to several neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, and multiple sclerosis. Under normal physiological conditions, regulatory T cells (Treg cells) dampen the inflammatory response of effector T cells. In the pathological states of many neurodegenerative disorders, the ability of Treg cells to mitigate inflammation is reduced, and a pro-inflammatory environment persists. This perspective review provides current knowledge on the roles of T cell subsets (e.g., effector T cells, Treg cells) in neurodegenerative and ocular diseases, including uveitis, diabetic retinopathy, age-related macular degeneration, and glaucoma. Many neurodegenerative and ocular diseases have been linked to immune dysregulation, but the cellular events and molecular mechanisms involved in such processes remain largely unknown. Moreover, the role of T cells in ocular pathologies remains poorly defined and limited literature is available in this area of research. Adoptive transfer of Treg cells appears to be a vital immunological approach to control ocular pathologies. Similarities in T cell dysfunction seen among non-ocular neurodegenerative diseases suggest that this area of research has a great potential to develop better therapeutic agents for ocular diseases and warrants further studies. Overall, this perspective review article provides significant information on the roles of T cells in numerous ocular and non-ocular neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexa DeMaio
- Department of Ophthalmology, Storm Eye Institute, Room 713, Medical University of South Carolina, 167 Ashley Ave, SC, 29425, Charleston, USA
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, SC, 29425, Charleston, USA
| | - Kumar Sambamurti
- Department of Neuroscience, Medical University of South Carolina, SC, 29425, Charleston, USA
| | - Shahid Husain
- Department of Ophthalmology, Storm Eye Institute, Room 713, Medical University of South Carolina, 167 Ashley Ave, SC, 29425, Charleston, USA.
| |
Collapse
|
10
|
Kingsley NB, Sandmeyer L, Bellone RR. A review of investigated risk factors for developing equine recurrent uveitis. Vet Ophthalmol 2022; 26:86-100. [PMID: 35691017 DOI: 10.1111/vop.13002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 05/27/2022] [Indexed: 12/01/2022]
Abstract
Equine recurrent uveitis (ERU) is an ocular inflammatory disease that can be difficult to manage clinically. As such, it is the leading cause of bilateral blindness for horses. ERU is suspected to have a complex autoimmune etiology with both environmental and genetic risk factors contributing to onset and disease progression in some or all cases. Work in recent years has aimed at unraveling the primary triggers, such as infectious agents and inherited breed-specific risk factors, for disease onset, persistence, and progression. This review has aimed at encompassing those factors that have been associated, implicated, or substantiated as contributors to ERU, as well as identifying areas for which additional knowledge is needed to better understand risk for disease onset and progression. A greater understanding of the risk factors for ERU will enable earlier detection and better prognosis through prevention and new therapeutics.
Collapse
Affiliation(s)
- Nicole B Kingsley
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, California, USA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, California, USA
| | - Lynne Sandmeyer
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rebecca R Bellone
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, California, USA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, California, USA
| |
Collapse
|
11
|
Liu Z, Xu J, Li H, Shu J, Su G, Zhou C, Yang P. PD-1 Targeted Nanoparticles Inhibit Activated T Cells and Alleviate Autoimmunity via Suppression of Cellular Energy Metabolism Mediated by PKM2. Int J Nanomedicine 2022; 17:1711-1724. [PMID: 35444416 PMCID: PMC9014113 DOI: 10.2147/ijn.s349360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/31/2022] [Indexed: 12/17/2022] Open
Abstract
Background Effector T cells, especially T helper 1 (Th1) cells and T helper 17 (Th17) cells, are involved in the pathogenesis of many autoimmune diseases such as uveitis. Under hyperactive immune conditions, these effector T cells pathologically maintain a high expression level of programmed cell death protein 1 (PD-1) receptors and distinctively engage aerobic glycolysis via cellular energy metabolism mediated by pyruvate kinase M2 (PKM2). Therefore, we proposed that the synergy of metabolic inhibition and receptor guidance might target and down-regulate these hyperactive effector T cells to achieve anti-immune effects. Methods PD-1 antibody and TEPP-46 were integrated by polyethylene glycol (PEG) modified poly (lactic-co-glycolic acid) (PLGA) as a nanoplatform (TPP). Characteristics of TPP were basically detected. The biosafety of TPP was evaluated in vitro and in vivo. The targeting effect of TPP was detected by laser scanning confocal microscopy and flow cytometry (FCM). Interleukin-2 (IL-2)/interleukin-17A (IL-17A)/interferon-gamma (IFN-γ) producing cells were detected by FCM. Experimental autoimmune uveoretinitis (EAU) was induced in C57BL/6J mice as the inflammatory model. Results TPP had homogeneous distribution, good stability in vitro, and high biosafety in vitro and in vivo. Encapsulated TEPP-46 showed a sustained release profile with burst, steady and slow release periods. Early activation and proliferation of effector T cells was inhibited by TPP treatment in vitro. Th1 and Th17 cells were suppressed by TPP in vitro and in vivo. EAU was alleviated in mice by systemic administration of TPP. Conclusion The novel nanoplatform TPP could suppress Th1 and Th17 cells and exhibited an anti-inflammatory effect on EAU, providing an alternative approach to ameliorate autoimmune diseases mediated by these cells.
Collapse
Affiliation(s)
- Zhangluxi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Jing Xu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Hongxi Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Jia Shu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Chunjiang Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| |
Collapse
|
12
|
Gupta S, Shyamsundar K, Agrawal M, Vichare N, Biswas J. Current Knowledge of Biologics in Treatment of Noninfectious Uveitis. J Ocul Pharmacol Ther 2022; 38:203-222. [DOI: 10.1089/jop.2021.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Simple Gupta
- Department of Ophthalmology, Command Hospital, Pune, India
| | - K. Shyamsundar
- Department of Ophthalmology, Command Hospital, Pune, India
| | - Mohini Agrawal
- Department of Ophthalmology, Command Hospital, Pune, India
| | - Nitin Vichare
- Department of Ophthalmology, Command Hospital, Pune, India
| | - Jyotirmay Biswas
- Department of Uveitis and Ocular Pathology, Sankara Netralaya, Chennai, India
| |
Collapse
|
13
|
Razumova IY, Godzenko AA. [New possibilities in therapy of ocular inflammation in rheumatic diseases]. Vestn Oftalmol 2022; 138:108-114. [PMID: 36573954 DOI: 10.17116/oftalma2022138061108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review is devoted to the potential application of genetically engineered biological drugs of different classes in the treatment of main forms of uveitis and other types of non-infectious ocular inflammation in immunoinflammatory rheumatic diseases. The article presents the results of studies demonstrating the influence of interleukin-17 inhibitor secukinumab on the course of uveitis in spondylarthritis, shows the possibilities of treating uveitis in juvenile idiopathic arthritis with inhibitors of interleukin-6, co-stimulation of T-lymphocytes. Inhibition of interleukin-1 is considered an effective method of influencing the ocular inflammation in monogenic autoinflammatory syndromes and Behcet's disease. Rituximab is considered as an option for immunosuppressive therapy of non-infectious uveitis and scleritis.
Collapse
Affiliation(s)
- I Yu Razumova
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - A A Godzenko
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
14
|
Berry SPDG, Dossou C, Kashif A, Sharifinejad N, Azizi G, Hamedifar H, Sabzvari A, Zian Z. The role of IL-17 and anti-IL-17 agents in the immunopathogenesis and management of autoimmune and inflammatory diseases. Int Immunopharmacol 2021; 102:108402. [PMID: 34863654 DOI: 10.1016/j.intimp.2021.108402] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
Interleukin-17 (IL-17) is a proinflammatory cytokine involved in chronic inflammation occurring during the pathogenesis of allergy, malignancy, and autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and psoriasis. IL-17 is produced by multiple cell types of adaptive and innate immunity, including T helper 17 cells, CD8 + T cells, γδ T cells, natural killer T cells, and innate lymphoid cells. Monoclonal antibodies (mAbs) targeting IL-17 and/or IL-17R would be a potential approach to study this therapeutic tool for these diseases. In the current review, we aimed to highlight the characteristics of IL-17 and its important role in the pathogenesis of related diseases. Critical evaluation of the mAbs targeting IL-17A and IL-17 receptors (e.g., Ixekizumab, Secukinumab, and Brodalumab) in various immune-mediated diseases will be provided, and finally, their clinical efficacy and safety will be reported.
Collapse
Affiliation(s)
- S P Déo-Gracias Berry
- Centre de Recherches Médicales (CERMEL) de Lambaréné, B.P: 242, Gabon; Technical University of Munich, 80333, Germany
| | - Camille Dossou
- Laboratory of Biology and Molecular Typing in Microbiology. Faculty of Sciences and Techniques/University of Abomey-Calavi, Cotonou 05 BP 1604, Benin
| | - Ali Kashif
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Niusha Sharifinejad
- Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj 3149779453, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran; CinnaGen Research and Production Co, Alborz, Iran
| | - Araz Sabzvari
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran; Orchid Pharmed Company, Tehran, Iran.
| | - Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, P.B. 416, Abdelmalek Essaadi University, Tetouan, Morocco.
| |
Collapse
|
15
|
Abstract
This literature review is dedicated to the Behçet's disease - a multi-symptom, severe autoimmune condition, relatively rare among the population of the former Soviet republics, and to one of its three most frequent manifestations - uveitis.
Collapse
Affiliation(s)
| | - A A Godzenko
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
16
|
Mu Y, Xu W, Liu J, Wang Y, Chen J, Zhou Q. Mesenchymal stem cells moderate experimental autoimmune uveitis by dynamic regulating Th17 and Breg cells response. J Tissue Eng Regen Med 2021; 16:26-35. [PMID: 34674378 DOI: 10.1002/term.3259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells from mesoderm with multi potential differentiation, and are being widely studied as a promising treatment for autoimmune diseases. The main inflammatory factors of experimental autoimmune uveitis (EAU) are T helper type 1 (Th1) and Th17. Regulatory B cells (Bregs) are a newly designated B cell subgroup, which has been proved to play a key role in regulating inflammation, autoimmunity and cancer. In this regard, we establish the EAU model by injecting interphotoreceptor retinoid-binding protein combined with complete Freund's adjuvant into the tail vein and bilateral thighs of rats, and inject MSCs or equal volume of phosphate buffer saline intraperitoneally on the day of immunization. Dynamic changes of cell subsets and cytokine expression are tested at different time periods to explore the relationship between MSCs treatment and disease prognosis during EAU course. Our results suggest that compared with the model control group, MSCs treatment can significantly reduce the production of Th1 and Th17 cytokines during EAU, while the production of regulatory B cells (Bregs) cytokines is significantly increased. At the same time, MSCs can reduce the proportion of Th17 in lymphocytes while the proportion of Bregs is elevated, thus inhibiting the differentiation and activity of interleukin in EAU rats. All this results provide more powerful evidence for cell therapy of autoimmune uveitis.
Collapse
Affiliation(s)
- Yajun Mu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wei Xu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Ophthalmology, Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China
| | - Jue Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yingwei Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jian Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qing Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Novelli L, Lubrano E, Venerito V, Perrotta FM, Marando F, Curradi G, Iannone F. Extra-Articular Manifestations and Comorbidities in Psoriatic Disease: A Journey Into the Immunologic Crosstalk. Front Med (Lausanne) 2021; 8:737079. [PMID: 34631754 PMCID: PMC8495009 DOI: 10.3389/fmed.2021.737079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory disease primarily affecting peripheral and axial joints, with the possible presence of extra-articular manifestations (EAMs), such as psoriasis, uveitis, and inflammatory bowel disease. Recently, the concept of psoriatic disease (PsD) has been proposed to define a systemic condition encompassing, in addition to joints and EAMs, some comorbidities (e.g., metabolic syndrome, type II diabetes, hypertension) that can affect the disease outcome and the achievement of remission. EAMs and comorbidities in PsA share common immunopathogenic pathways linked to the systemic inflammation of this disease; these involve a broad variety of immune cells and cytokines. Currently, various therapeutics are available targeting different cytokines and molecules implicated in the inflammatory response of this condition; however, despite an improvement in the management of PsA, comprehensive disease control is often not achievable. There is, therefore, a big gap to fill especially in terms of comorbidities and EAMs management. In this review, we summarize the clinical aspects of the main comorbidities and EAMs in PsA, and we focus on the immunopathologic features they share with the articular manifestations. Moreover, we discuss the effect of a diverse immunomodulation and the current unmet needs in PsD.
Collapse
Affiliation(s)
| | - Ennio Lubrano
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Vincenzo Venerito
- Rheumatology Unit-Department of Emergency and Organ Transplantations, University of Bari "Aldo Moro", Bari, Italy
| | - Fabio Massimo Perrotta
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | | | | | - Florenzo Iannone
- Rheumatology Unit-Department of Emergency and Organ Transplantations, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
18
|
Byrne EM, Llorián-Salvador M, Tang M, Margariti A, Chen M, Xu H. IL-17A Damages the Blood-Retinal Barrier through Activating the Janus Kinase 1 Pathway. Biomedicines 2021; 9:831. [PMID: 34356895 PMCID: PMC8301352 DOI: 10.3390/biomedicines9070831] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022] Open
Abstract
Blood-retinal barrier (BRB) dysfunction underlies macular oedema in many sight-threatening conditions, including diabetic macular oedema, neovascular age-related macular degeneration and uveoretinitis. Inflammation plays an important role in BRB dysfunction. This study aimed to understand the role of the inflammatory cytokine IL-17A in BRB dysfunction and the mechanism involved. Human retinal pigment epithelial (RPE) cell line ARPE19 and murine brain endothelial line bEnd.3 were cultured on transwell membranes to model the outer BRB and inner BRB, respectively. IL-17A treatment (3 days in bEnd.3 cells and 6 days in ARPE19 cells) disrupted the distribution of claudin-5 in bEnd.3 cells and ZO-1 in ARPE19 cells, reduced the transepithelial/transendothelial electrical resistance (TEER) and increased permeability to FITC-tracers in vitro. Intravitreal (20 ng/1 μL/eye) or intravenous (20 ng/g) injection of recombinant IL-17A induced retinal albumin leakage within 48 h in C57BL/6J mice. Mechanistically, IL-17A induced Janus kinase 1 (JAK1) phosphorylation in bEnd.3 but not ARPE19 cells. Blocking JAK1 with Tofacitinib prevented IL-17A-mediated claudin-5 dysmorphia in bEnd.3 cells and reduced albumin leakage in IL-17A-treated mice. Our results suggest that IL-17A can damage the BRB through the activating the JAK1 signaling pathway, and targeting this pathway may be a novel approach to treat inflammation-induced macular oedema.
Collapse
Affiliation(s)
| | | | | | | | | | - Heping Xu
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (E.M.B.); (M.L.-S.); (M.T.); (A.M.); (M.C.)
| |
Collapse
|
19
|
Tang M, Lu L, Yu X. Interleukin-17A Interweaves the Skeletal and Immune Systems. Front Immunol 2021; 11:625034. [PMID: 33613566 PMCID: PMC7890031 DOI: 10.3389/fimmu.2020.625034] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
The complex crosstalk between the immune and the skeletal systems plays an indispensable role in the maintenance of skeletal homeostasis. Various cytokines are involved, including interleukin (IL)-17A. A variety of immune and inflammatory cells produces IL-17A, especially Th17 cells, a subtype of CD4+ T cells. IL-17A orchestrates diverse inflammatory and immune processes. IL-17A induces direct and indirect effects on osteoclasts. The dual role of IL-17A on osteoclasts partly depends on its concentrations and interactions with other factors. Interestingly, IL-17A exerts a dual role in osteoblasts in vitro. IL-17A is a bone-destroying cytokine in numerous immune-mediated bone diseases including postmenopausal osteoporosis (PMOP), rheumatoid arthritis (RA), psoriatic arthritis (PsA) and axial spondylarthritis (axSpA). This review will summarize and discuss the pathophysiological roles of IL-17A on the skeletal system and its potential strategies for application in immune-mediated bone diseases.
Collapse
Affiliation(s)
- Mengjia Tang
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyun Lu
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Maleki A, Gomez S, Asgari S, Bosenberg Z, Manhapra A, Walsh M, Weng A, Tseng C, He C, Anesi SD, Foster CS. Diagnostic and Prognostic Roles of Serum Interleukin-6 Levels in Patients with Uveitis. Ocul Immunol Inflamm 2020; 30:457-462. [PMID: 32965154 DOI: 10.1080/09273948.2020.1815799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To examine the diagnostic and prognostic roles of serum interleukin-6 levels in patients with uveitis. METHODS This was a retrospective observational case series. Demographic and clinical characteristics were compared between Group One (sixty patients) with normal serum IL-6 levels and Group Two (twenty patients) with high serum interleukin-6 levels. RESULTS Mean IL-6 level was 1.77 ± 0.97 pg/ml and 10.2 ± 9.7 pg/ml in Group One and Group Two respectively. Age, presence of systemic disease, and mean number of flare-ups were statistically significant (p = .015, p = .000, p = .03, respectively). Multivariate analysis was performed on variables that were statistically significant in univariate analysis and showed that three variables had significant correlation with IL-6 levels in both groups: systemic disease (OR = 10.83, p < .001), Age (OR = 0.95, p = .03) and number of flare-ups (OR = 2.9, p = .02). CONCLUSION Serum IL-6 levels can provide diagnostic and prognostic information in regard to the course of disease and its treatment.
Collapse
Affiliation(s)
- Arash Maleki
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, USA.,The Ocular Immunology and Uveitis Foundation, Waltham, MA, USA
| | - Sebastian Gomez
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, USA.,The Ocular Immunology and Uveitis Foundation, Waltham, MA, USA
| | - Soheila Asgari
- Noor Ophthalmology Research Center, Noor Eye Hospital, Tehran, Iran
| | - Zoe Bosenberg
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, USA.,The Ocular Immunology and Uveitis Foundation, Waltham, MA, USA
| | - Ambika Manhapra
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, USA.,The Ocular Immunology and Uveitis Foundation, Waltham, MA, USA
| | - Marisa Walsh
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, USA.,The Ocular Immunology and Uveitis Foundation, Waltham, MA, USA
| | - Angelina Weng
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, USA.,The Ocular Immunology and Uveitis Foundation, Waltham, MA, USA
| | - Catherine Tseng
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, USA.,The Ocular Immunology and Uveitis Foundation, Waltham, MA, USA
| | - Celestine He
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, USA.,The Ocular Immunology and Uveitis Foundation, Waltham, MA, USA
| | - Stephen Damien Anesi
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, USA.,The Ocular Immunology and Uveitis Foundation, Waltham, MA, USA
| | - C Stephen Foster
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, USA.,The Ocular Immunology and Uveitis Foundation, Waltham, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Gaggiano C, Sota J, Gentileschi S, Caggiano V, Grosso S, Tosi GM, Frediani B, Cantarini L, Fabiani C. The current status of biological treatment for uveitis. Expert Rev Clin Immunol 2020; 16:787-811. [PMID: 32700605 DOI: 10.1080/1744666x.2020.1798230] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Noninfectious uveitis represents one of the leading causes of blindness in developed Countries, compromising patients' quality of life and social functioning. The main treatment goals are the control of ocular inflammation, to avert and treat sight-threatening complications, thus preserving and/or restoring visual function. AREAS COVERED This manuscript deals with systemic therapy with biologic drugs for noninfectious uveitis. An extensive literature search in the MEDLINE database (via PubMed) has been performed up to June 2020. The major classes of biologic molecules employed in ocular inflammatory diseases have been reviewed, focusing on TNF inhibitors, IL-1, IL-6, IL-17, IL-23 inhibitors, interferons, rituximab, and abatacept efficacy and safety. An overview of most recent developments in the field has been provided as well, with reference to the experience with JAK inhibitors and with biosimilar drugs. EXPERT OPINION The development of the concept of targeted therapy and the subsequent introduction of biologic molecules in clinical practice have revolutionized the prognosis of uveitis. The target of a rapid and sustained steroid-free remission of ocular inflammation should be pursued for all patients early in the disease course, in order to have a better chance to improve the final visual outcome.
Collapse
Affiliation(s)
- Carla Gaggiano
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease, and Rheumatology-Ophthalmology Collaborative Uveitis Center, Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena, Italy.,Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena , Siena, Italy
| | - Jurgen Sota
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease, and Rheumatology-Ophthalmology Collaborative Uveitis Center, Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena, Italy
| | - Stefano Gentileschi
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease, and Rheumatology-Ophthalmology Collaborative Uveitis Center, Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena, Italy.,Rheumatology Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena, Italy
| | - Valeria Caggiano
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease, and Rheumatology-Ophthalmology Collaborative Uveitis Center, Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena, Italy
| | - Salvatore Grosso
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena , Siena, Italy
| | - Gian Marco Tosi
- Ophthalmology Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Italy
| | - Bruno Frediani
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease, and Rheumatology-Ophthalmology Collaborative Uveitis Center, Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena, Italy.,Rheumatology Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena, Italy
| | - Luca Cantarini
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease, and Rheumatology-Ophthalmology Collaborative Uveitis Center, Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena, Italy.,Rheumatology Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena, Italy
| | - Claudia Fabiani
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease, and Rheumatology-Ophthalmology Collaborative Uveitis Center, Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena, Italy.,Ophthalmology Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Italy
| |
Collapse
|
22
|
The Protective Effect of Low Dose of Lipopolysaccharide Pretreatment on Endotoxin-Induced Uveitis in Rats Is Associated with Downregulation of CSF-1 and Upregulation of LRR-1. J Immunol Res 2020; 2020:9314756. [PMID: 32671118 PMCID: PMC7350171 DOI: 10.1155/2020/9314756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose To observe the effect of low dose of lipopolysaccharide (LPS) pretreatment on the expression of CSF-1 and LRR-1 in rats with endotoxin-induced uveitis (EIU), and to explore the possible role of TLR4. Method EIU was induced by a single subcutaneous injection of 200 μg LPS. For the endotoxin tolerance group, the induction of EIU was preceded by a daily subcutaneous injection of 0.1 mg/kg LPS for five days. Clinical scores were graded at 24 h after EIU under a slit lamp microscope. HE stain was performed to observe the histopathology. The concentrations of IL-17, INF-γ, and IL-6 in aqueous humor were quantified with enzyme-linked immunosorbent assay. Real-time PCR, Western blot, and immunofluorescence analysis were used to determine the expression of NF-κB P65 and the activation of CSF-1, LRR-1. Results : Low dose of LPS pretreatment produced a suppressive effect by significantly reducing the inflammatory reaction of anterior segment as measured by slit lamp and histopathology. It also significantly reduced the concentrations of IL-17, INF-γ, and IL-6 in aqueous humor and the expression of CSF-1 and NF-κB P65, while increased the expression of LRR-1 compared to the EIU group. Conclusions Low dose of LPS pretreatment can ameliorate endotoxin-induced uveitis in rats. This protection may be associated with upregulation of LRR-1 and downregulation of CSF-1, which is regulated by TLR4 signaling pathway.
Collapse
|
23
|
Li CR, Chen L, Wang LF, Yan B, Liang YL, Luo J. Association between uveitis and psoriatic disease: a systematic review and Meta-analysis based on the evidence from cohort studies. Int J Ophthalmol 2020; 13:650-659. [DOI: 10.18240/ijo.2020.04.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 01/22/2023] Open
Affiliation(s)
| | - Lang Chen
- General Surgery Department, the Third Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Long-Fei Wang
- Cardiovascular Department, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Bin Yan
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - You-Ling Liang
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Jing Luo
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
24
|
Guedes MCE, Arroz MJ, Martins C, Angelo-Dias M, Proença RD, Borrego LM. Regulatory T cells and IL-17A levels in noninfectious uveitis. Graefes Arch Clin Exp Ophthalmol 2020; 258:1269-1278. [PMID: 32200408 DOI: 10.1007/s00417-020-04649-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/06/2020] [Accepted: 03/13/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Regulatory T cells (Tregs) have been intensively studied in a myriad of autoimmune diseases. As for noninfectious uveitis (NIU), results have been contradictory, and studies have failed to demonstrate a consistent reduction in Treg cell frequency in patients with active disease. The present study aims to characterize T lymphocyte subsets, including naïve and memory Tregs as well as their respective CD39 expression, in the peripheral blood of NIU patients. Inflammatory as well as suppressive cytokine profiles were also evaluated. METHODS T cell subpopulations were evaluated by multiparametric flow cytometry using anti-CD3, anti-CD4, anti-CD45, anti-CD45RA, anti-CD197, anti-CD25, anti-CD127, and anti-CD39. Treg cells were defined as CD3 + CD4+CD25hiCD127low. A multiplex bead-based immunoassay was used to determine TNF-α, IFN-ɣ, IL-17A, IL-10, and TGF-β levels. RESULTS Twenty-nine patients with active NIU were included as well as 15 sex- and age-matched controls. There were no significant differences in T lymphocyte subsets, including Tregs, between patients and controls. However, patients with a lower grade of anterior chamber or vitreous inflammatory cellular reaction showed higher memory Treg counts than controls, with no respective increase in CD39+ expression, and a tendency for higher IL-17A levels (p = 0.06). This IL-17A elevation was present in the total NIU group (p = 0.08) as well as a positive correlation between IL-17A levels and the absolute counts of memory Tregs (p = 0.013; R = 0.465). Patients with higher IL-17A levels also showed higher serum concentrations of memory (p = 0.001) and naïve (p = 0.003) Tregs as well as elevated TNF-α (p < 0.0001) and IFN-ɣ (p = 0.016) levels. Negative correlations were observed between IL-10 and TGF-β levels and the percentages of memory (p = 0.030; R = - 0.411) and total CD39+ Tregs (p = 0.051; R = - 0.373) in the peripheral blood of NIU patients. CONCLUSION Our results showed that total Treg levels were not reduced in patients with NIU. Further characterization of Treg subsets, including memory Tregs and respective CD39 expression, may provide additional insight on the role of Treg cells in NIU. Consistent high levels of circulating IL-17A in NIU patients are in accordance with previous studies and reinforce this cytokine's vital role in uveitis pathogenesis and its possible use as a therapeutic target.
Collapse
Affiliation(s)
| | - Maria Jorge Arroz
- Clinical Pathology Department, Western Lisbon Hospital Center-São Francisco Xavier Hospital, Lisbon, Portugal
| | - Catarina Martins
- CEDOC, NOVA Medical School and Comprehensive Health Research Center (CHRC), Lisbon, Portugal
| | - Miguel Angelo-Dias
- CEDOC, NOVA Medical School and Comprehensive Health Research Center (CHRC), Lisbon, Portugal
| | - Rui Daniel Proença
- Coimbra Surgical Center and Coimbra Hospital and Universitary Center, Coimbra, Portugal
| | - Luis Miguel Borrego
- Luz Lisbon Hospital and CEDOC, NOVA Medical School and Comprehensive Health Research Center (CHRC), Lisbon, Portugal
| |
Collapse
|
25
|
Signaling mechanisms of growth hormone-releasing hormone receptor in LPS-induced acute ocular inflammation. Proc Natl Acad Sci U S A 2020; 117:6067-6074. [PMID: 32123064 DOI: 10.1073/pnas.1904532117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ocular inflammation is a major cause of visual impairment attributed to dysregulation of the immune system. Previously, we have shown that the receptor for growth-hormone-releasing hormone (GHRH-R) affects multiple inflammatory processes. To clarify the pathological roles of GHRH-R in acute ocular inflammation, we investigated the inflammatory cascades mediated by this receptor. In human ciliary epithelial cells, the NF-κB subunit p65 was phosphorylated in response to stimulation with lipopolysaccharide (LPS), resulting in transcriptional up-regulation of GHRH-R. Bioinformatics analysis and coimmunoprecipitation showed that GHRH-R had a direct interaction with JAK2. JAK2, but not JAK1, JAK3, and TYK2, was elevated in ciliary body and iris after treatment with LPS in a rat model of endotoxin-induced uveitis. This elevation augmented the phosphorylation of STAT3 and production of proinflammatory factors, including IL-6, IL-17A, COX2, and iNOS. In explants of iris and ciliary body, the GHRH-R antagonist, MIA-602, suppressed phosphorylation of STAT3 and attenuated expression of downstream proinflammatory factors after LPS treatment. A similar suppression of STAT3 phosphorylation was observed in human ciliary epithelial cells. In vivo studies showed that blocking of the GHRH-R/JAK2/STAT3 axis with the JAK inhibitor Ruxolitinib alleviated partially the LPS-induced acute ocular inflammation by reducing inflammatory cells and protein leakage in the aqueous humor and by repressing expression of STAT3 target genes in rat ciliary body and iris and in human ciliary epithelial cells. Our findings indicate a functional role of the GHRH-R/JAK2/STAT3-signaling axis in acute anterior uveitis and suggest a therapeutic strategy based on treatment with antagonists targeting this signaling pathway.
Collapse
|
26
|
Yin X, Wei H, Wu S, Wang Z, Liu B, Guo L, Bi H, Guo D. DAPT reverses the Th17/Treg imbalance in experimental autoimmune uveitis in vitro via inhibiting Notch signaling pathway. Int Immunopharmacol 2019; 79:106107. [PMID: 31863921 DOI: 10.1016/j.intimp.2019.106107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022]
Abstract
Uveitis is the most common cause in inflammatory eye diseases that can lead to visual impairment even blindness worldwide. T helper (Th) 17 and regulatory T (Treg) cells are critical mediators for immune response. Notch signaling can regulate the cell differentiation, playing a role in the pathogenesis of the diseases. In this study, we measured the expression levels of Notch1, DLL4, IL-10, IL-17, RORγt and Foxp3 in T cells from lymph node, spleen and eye tissues in experimental autoimmune uveitis (EAU) rats in vitro, determined the ratios of CD4+/CD8+ and Th17/Treg. Moreover, we also investigated the effect of Notch signaling inhibitor N-(N-(3,5-Difluorophenacetyl-L-alanyl))-S-phenylglycine t-Butyl Ester (DAPT) on Notch1, DLL4 expression and on Th17, Treg cell differentiation. The results indicated that the pathogenesis of uveitis accompanied by the elevated expression of Notch1, DLL4, IL-10, IL-17, RORγt, and Foxp3 as well as the imbalanced CD4+/CD8+ and Th17/Treg ratios. By contrast, inhibition of Notch signaling by DAPT can efficiently decrease Th17 cell response, downregulate the expression of Notch1, DLL4, IL-17 and the transcription of RORγt, reduce Th17 levels and restore the CD4+/CD8+, Th17/Treg balance. Moreover, DAPT can also inhibit Th17 cell differentiation in healthy rats, though the inhibitory capacity of Th17, Treg differentiation is less than that in EAU rats. Overall, Notch signaling activation can lead to the disturbed Th17/Treg balance in uveitis, whereas inhibition of Notch signaling can ameliorate the inflammatory response and may be a potential immunoregulatory strategy in patients with uveitis.
Collapse
Affiliation(s)
- Xuewei Yin
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Huixia Wei
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Shanshan Wu
- School of Ophthalmology & Optometry, Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Zhe Wang
- Department of Ophthalmology, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang 277000, China
| | - Bin Liu
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Lijie Guo
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan 250002, China.
| |
Collapse
|
27
|
Gaggiano C, Rigante D, Tosi GM, Vitale A, Frediani B, Grosso S, Fabiani C, Cantarini L. Treating juvenile idiopathic arthritis (JIA)-related uveitis beyond TNF-α inhibition: a narrative review. Clin Rheumatol 2019; 39:327-337. [PMID: 31823144 DOI: 10.1007/s10067-019-04763-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
Abstract
Chronic anterior uveitis is the most frequent among extra-articular manifestations of juvenile idiopathic arthritis (JIA) and a relevant cause of ocular morbidity in children. Asymmetric arthritis, early onset disease, female sex, and anti-nuclear antibody (ANA) positivity are counted among risk factors for developing this complication. It usually has insidious onset and asymptomatic chronic-relapsing course, but the persistence of low-grade chronic inflammation can lead to irreversible structural ocular damage and to vision-threatening complications. For such reasons, achieving a complete absence of inflammation through early targeted and aggressive treatments is a primary therapeutic goal in these patients. This review is aimed at summarizing scientific evidence about biologic rescue therapy of JIA-related uveitis in patients who fail to achieve clinical remission, in spite of being treated with conventional disease-modifying anti-rheumatic drugs (cDMARDs) and at least one biologic tumor necrosis factor (TNF)-α inhibitor. Interleukin (IL)-6 inhibition appears a promising and safe option for refractory JIA-related uveitis. Abatacept and rituximab proved to be beneficial as well, but their efficacy together with some safety concerns needs to be more extensively evaluated.
Collapse
Affiliation(s)
- Carla Gaggiano
- Clinical Pediatrics, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Donato Rigante
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
- Periodic Fever Research Center, Università Cattolica Sacro Cuore, Rome, Italy
| | - Gian Marco Tosi
- Ophthalmology Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Antonio Vitale
- Research Center of Systemic Autoinflammatory Diseases, Behçet's Disease and Rheumatology-Ophthalmology Collaborative Uveitis Center, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Bruno Frediani
- Research Center of Systemic Autoinflammatory Diseases, Behçet's Disease and Rheumatology-Ophthalmology Collaborative Uveitis Center, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Salvatore Grosso
- Clinical Pediatrics, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Claudia Fabiani
- Ophthalmology Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Luca Cantarini
- Research Center of Systemic Autoinflammatory Diseases, Behçet's Disease and Rheumatology-Ophthalmology Collaborative Uveitis Center, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy.
| |
Collapse
|
28
|
Fotiadou C, Lazaridou E. Psoriasis and uveitis: links and risks. PSORIASIS (AUCKLAND, N.Z.) 2019; 9:91-96. [PMID: 31696050 PMCID: PMC6717847 DOI: 10.2147/ptt.s179182] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/01/2019] [Indexed: 01/10/2023]
Abstract
Uveitis, an inflammatory disorder of the mid-portion of the eye, is considered a relatively rare but very serious ocular complication of psoriasis. Data on the specific characteristics of uveitis in the background of psoriasis are extremely limited. The presence of uveitis in the context of psoriasis has been estimated to occur in 7-20% of the psoriasis cases. This incidence tends to be higher in patients suffering from psoriasis and psoriatic arthritis (PsA) or PSA alone. Psoriatic uveitis is usually bilateral, chronic, and severe. In term of pathogenesis, both psoriasis and uveitis are considered as paradigms of T-helper 1/T-helper 17 (Th1/Th17) inflammatory reactions. Certain cytokines such as tumor necrosis factor-α (TNF- α), Interleukin-17 (IL-17), IL-23, and IL-6 play a significant role in the pathogenesis of both psoriasis and uveitis. As uveitis shares common pathogenetic mechanisms with psoriasis in certain circumstances, both diseases may benefit from the same targeted biologic therapies. Undiagnosed and under-treated cases of psoriatic uveitis may cause significant morbidity and even vision loss. Larger prospective studies are needed in order to further investigate the association between these two entities.
Collapse
Affiliation(s)
- Christina Fotiadou
- Second Department of Dermatology-Venereology, Aristotle University Medical School, Thessaloniki, Greece
| | - Elizabeth Lazaridou
- Second Department of Dermatology-Venereology, Aristotle University Medical School, Thessaloniki, Greece
| |
Collapse
|
29
|
|
30
|
Activation of the Notch signaling pathway disturbs the CD4 +/CD8 +, Th17/Treg balance in rats with experimental autoimmune uveitis. Inflamm Res 2019; 68:761-774. [PMID: 31209505 DOI: 10.1007/s00011-019-01260-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE AND DESIGN The present study aimed to investigate the relationship between the disturbed balance of CD4+/CD8+, Th17/Treg and the activation of the Notch signaling pathway in experimental autoimmune uveitis (EAU). METHODS An EAU rat model was induced in Lewis rats, and pathology analysis was performed by hematoxylin and eosin (H&E) staining. CD4+, CD8+, Th17, and Treg levels in spleen, lymph nodes and eye tissues were determined by flow cytometry. Meanwhile, the expression of Notch1, DLL4, IL-10, and IL-17 was determined by quantitative polymerase chain reaction (Q-PCR) and enzyme-linked immunosorbent assay (ELISA). In addition, the inhibitory effect of N-(N-(3,5-difluorophenacetyl-L-alanyl))-S-phenylglycine t-butyl ester (DAPT) on Th17 differentiation by Notch signaling in vitro was further investigated using T lymphocytes from EAU rats on day 12 post-immunization by flow cytometry. RESULTS The pathological results showed that inflammatory cell infiltration occurred in ocular tissues in EAU rats. The CD4+/CD8+ and Th17/Treg ratios in EAU rats were apparently higher than those in normal control individuals. Q-PCR and ELISA analyses indicated the expression of Notch1, DLL4, IL-10, and IL-17 in EAU rats gradually increased on day 6 after immunization, peaked on day 12, and then gradually decreased. The dynamic trends in Notch1 and DLL4 expression in EAU rats were identical to those of CD4+/CD8+ and Th17/Treg levels. DAPT can significantly inhibit the activation of Notch signaling, decrease Th17 cell differentiation, and attenuate the level of the Th17 cell lineage, contributing to the balance of the Th17/Treg ratio. CONCLUSION The activation of the Notch signaling pathway can regulate Th17 and Treg cell differentiation, disrupt the CD4+/CD8+ and Th17/Treg balance, and aggravate the severity of EAU; inactivation of the Notch signaling pathway contributes to the CD4+/CD8+ and Th17/Treg balance in EAU rats. Our findings highlighted that the dynamic change in the CD4+/CD8+ and Th17/Treg ratio was consistent with the expression trend of Notch signaling in EAU rats, suggesting that Notch signaling may be a potentially important therapeutic target in clinical practice.
Collapse
|
31
|
Potential Interplay between Hyperosmolarity and Inflammation on Retinal Pigmented Epithelium in Pathogenesis of Diabetic Retinopathy. Int J Mol Sci 2018; 19:ijms19041056. [PMID: 29614818 PMCID: PMC5979527 DOI: 10.3390/ijms19041056] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/21/2018] [Accepted: 03/30/2018] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy is a frequent eyesight threatening complication of type 1 and type 2 diabetes. Under physiological conditions, the inner and the outer blood-retinal barriers protect the retina by regulating ion, protein, and water flux into and out of the retina. During diabetic retinopathy, many factors, including inflammation, contribute to the rupture of the inner and/or the outer blood-retinal barrier. This rupture leads the development of macular edema, a foremost cause of sight loss among diabetic patients. Under these conditions, it has been speculated that retinal pigmented epithelial cells, that constitute the outer blood-retinal barrier, may be subjected to hyperosmolar stress resulting from different mechanisms. Herein, we review the possible origins and consequences of hyperosmolar stress on retinal pigmented epithelial cells during diabetic retinopathy, with a special focus on the intimate interplay between inflammation and hyperosmolar stress, as well as the current and forthcoming new pharmacotherapies for the treatment of such condition.
Collapse
|
32
|
Liu Z, Fu G, Liu A. The relationship between inflammatory mediator expression in the aqueous humor and secondary glaucoma incidence after silicone oil tamponade. Exp Ther Med 2017; 14:5833-5836. [PMID: 29285128 PMCID: PMC5740688 DOI: 10.3892/etm.2017.5269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/06/2017] [Indexed: 11/10/2022] Open
Abstract
The expression of inflammatory mediators in the aqueous humor and the incidence of secondary glaucoma after vitreous body resection combined with silicone oil tamponade for patients with retinal detachment were inestigated, and the roles of IL-17, IL-6 and TNF-α in secondary glaucoma after silicone oil tamponade were analyzed. Fifty-eight cases of retinal detachment treated by vitrectomy combined with silicone oil tamponade were examined at the time of silicone oil removal surgery. All patients underwent unilateral surgery. Patients were divided into observation (19 cases with) and control (39 cases without) groups depending on development of secondary glaucoma. Prior to silicone oil removal, expression levels of IL-17, IL-6 and TNF-α in the aqueous humor were examined. IL-17, IL-6 and TNF-α levels in the aqueous humor in the observation group were 204.2±18.3, 351.1±28.4 and 850.0±51.7 pg/ml, respectively, vs. 152.3±22.2, 254.4±26.8 and 625.6±61.2 pg/ml, respectively in the control group (P<0.001). The expression of IL-17 was positively correlated with those of IL-6 and TNF-α (r=0.687, 0.745; P<0.001). IL-17, IL-6 and TNF-α presented good diagnostic values for glaucoma. The receiver operating characteristic (ROC) areas were 0.957, 0.980 and 0.975, respectively (P<0.001). The expression of inflammatory mediators such as IL-17, IL-6 and TNF-α in the aqueous humor of patients with secondary glaucoma after silicone oil tamponade significantly increased relative to patients without secondary glaucoma. The resultant inflammation may be involved in the development of secondary glaucoma.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Ophthalmology, The Second People's Hospital of Liaocheng, Linqing, Shandong 252601, P.R. China
| | - Gang Fu
- Department of Ophthalmology, The Second People's Hospital of Shaanxi Province, Xi'an, Shaanxi 710005, P.R. China
| | - Aihua Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330003, P.R. China
| |
Collapse
|