1
|
Kontoghiorghes GJ. The Vital Role Played by Deferiprone in the Transition of Thalassaemia from a Fatal to a Chronic Disease and Challenges in Its Repurposing for Use in Non-Iron-Loaded Diseases. Pharmaceuticals (Basel) 2023; 16:1016. [PMID: 37513928 PMCID: PMC10384919 DOI: 10.3390/ph16071016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The iron chelating orphan drug deferiprone (L1), discovered over 40 years ago, has been used daily by patients across the world at high doses (75-100 mg/kg) for more than 30 years with no serious toxicity. The level of safety and the simple, inexpensive synthesis are some of the many unique properties of L1, which played a major role in the contribution of the drug in the transition of thalassaemia from a fatal to a chronic disease. Other unique and valuable clinical properties of L1 in relation to pharmacology and metabolism include: oral effectiveness, which improved compliance compared to the prototype therapy with subcutaneous deferoxamine; highly effective iron removal from all iron-loaded organs, particularly the heart, which is the major target organ of iron toxicity and the cause of mortality in thalassaemic patients; an ability to achieve negative iron balance, completely remove all excess iron, and maintain normal iron stores in thalassaemic patients; rapid absorption from the stomach and rapid clearance from the body, allowing a greater frequency of repeated administration and overall increased efficacy of iron excretion, which is dependent on the dose used and also the concentration achieved at the site of drug action; and its ability to cross the blood-brain barrier and treat malignant, neurological, and microbial diseases affecting the brain. Some differential pharmacological activity by L1 among patients has been generally shown in relation to the absorption, distribution, metabolism, elimination, and toxicity (ADMET) of the drug. Unique properties exhibited by L1 in comparison to other drugs include specific protein interactions and antioxidant effects, such as iron removal from transferrin and lactoferrin; inhibition of iron and copper catalytic production of free radicals, ferroptosis, and cuproptosis; and inhibition of iron-containing proteins associated with different pathological conditions. The unique properties of L1 have attracted the interest of many investigators for drug repurposing and use in many pathological conditions, including cancer, neurodegenerative conditions, microbial conditions, renal conditions, free radical pathology, metal intoxication in relation to Fe, Cu, Al, Zn, Ga, In, U, and Pu, and other diseases. Similarly, the properties of L1 increase the prospects of its wider use in optimizing therapeutic efforts in many other fields of medicine, including synergies with other drugs.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
2
|
Kontoghiorghes GJ. Deferiprone: A Forty-Year-Old Multi-Targeting Drug with Possible Activity against COVID-19 and Diseases of Similar Symptomatology. Int J Mol Sci 2022; 23:ijms23126735. [PMID: 35743183 PMCID: PMC9223898 DOI: 10.3390/ijms23126735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
The need for preparing new strategies for the design of emergency drug therapies against COVID-19 and similar diseases in the future is rather urgent, considering the high rate of morbidity and especially mortality associated with COVID-19, which so far has exceeded 18 million lives. Such strategies could be conceived by targeting the causes and also the serious toxic side effects of the diseases, as well as associated biochemical and physiological pathways. Deferiprone (L1) is an EMA- and FDA-approved drug used worldwide for the treatment of iron overload and also other conditions where there are no effective treatments. The multi-potent effects and high safety record of L1 in iron loaded and non-iron loaded categories of patients suggests that L1 could be developed as a “magic bullet” drug against COVID-19 and diseases of similar symptomatology. The mode of action of L1 includes antiviral, antimicrobial, antioxidant, anti-hypoxic and anti-ferroptotic effects, iron buffering interactions with transferrin, iron mobilizing effects from ferritin, macrophages and other cells involved in the immune response and hyperinflammation, as well as many other therapeutic interventions. Similarly, several pharmacological and other characteristics of L1, including extensive tissue distribution and low cost of production, increase the prospect of worldwide availability, as well as many other therapeutic approach strategies involving drug combinations, adjuvant therapies and disease prevention.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
3
|
Chakurkar V, Rajapurkar M, Lele S, Mukhopadhyay B, Lobo V, Injarapu R, Sheikh M, Dholu B, Ghosh A, Jha V. Increased serum catalytic iron may mediate tissue injury and death in patients with COVID-19. Sci Rep 2021; 11:19618. [PMID: 34608227 PMCID: PMC8490366 DOI: 10.1038/s41598-021-99142-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology and the factors determining disease severity in COVID-19 are not yet clear, with current data indicating a possible role of altered iron metabolism. Previous studies of iron parameters in COVID-19 are cross-sectional and have not studied catalytic iron, the biologically most active form of iron. The study was done to determine the role of catalytic iron in the adverse outcomes in COVID-19. We enrolled adult patients hospitalized with a clinical diagnosis of COVID-19 and measured serum iron, transferrin saturation, ferritin, hepcidin and serum catalytic iron daily. Primary outcome was a composite of in-hospital mortality, need for mechanical ventilation, and kidney replacement therapy. Associations between longitudinal iron parameter measurements and time-to-event outcomes were examined using a joint model. We enrolled 120 patients (70 males) with median age 50 years. The primary composite outcome was observed in 25 (20.8%) patients-mechanical ventilation was needed in 21 (17.5%) patients and in-hospital mortality occurred in 21 (17.5%) patients. Baseline levels of ferritin and hepcidin were significantly associated with the primary composite outcome. The joint model analysis showed that ferritin levels were significantly associated with primary composite outcome [HR (95% CI) = 2.63 (1.62, 4.24) after adjusting for age and gender]. Both ferritin and serum catalytic iron levels were positively associated with in-hospital mortality [HR (95% CI) = 3.22 (2.05, 5.07) and 1.73 (1.21, 2.47), respectively], after adjusting for age and gender. The study shows an association of ferritin and catalytic iron with adverse outcomes in COVID-19. This suggests new pathophysiologic pathways in this disease, also raising the possibility of considering iron chelation therapy.
Collapse
Affiliation(s)
- Vipul Chakurkar
- Renal Unit, Department of Medicine, KEM Hospital, Sardar Moodliar Road, Rasta Peth, Pune, Maharashtra, 411011, India.
| | - Mohan Rajapurkar
- Muljibhai Patel Society for Research in Nephro-Urology, Nadiad, India
| | - Suhas Lele
- Muljibhai Patel Society for Research in Nephro-Urology, Nadiad, India
| | | | - Valentine Lobo
- Renal Unit, Department of Medicine, KEM Hospital, Sardar Moodliar Road, Rasta Peth, Pune, Maharashtra, 411011, India
| | | | | | | | - Arpita Ghosh
- The George Institute for Global Health, India, UNSW, New Delhi, India.,Manipal Academy of Higher Education, Manipal, India
| | - Vivekanand Jha
- The George Institute for Global Health, India, UNSW, New Delhi, India.,Manipal Academy of Higher Education, Manipal, India.,School of Public Health, Imperial College, London, UK
| |
Collapse
|
4
|
Shah SV, Shukla AM, Bose C, Basnakian AG, Rajapurkar M. Recent advances in understanding the pathogenesis of atherosclerosis in CKD patients. J Ren Nutr 2015; 25:205-8. [PMID: 25556310 DOI: 10.1053/j.jrn.2014.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 10/29/2014] [Indexed: 11/11/2022] Open
Abstract
A need exists for developing new therapies to improve cardiovascular outcomes in end-stage kidney disease. Three new areas that address novel pathophysiological mechanisms and/or therapeutic approaches toward cardiovascular events in chronic kidney disease patients include the use of an anti-inflammatory agent, the role of catalytic iron, and protein carbamylation. In preliminary studies, hydroxychloroquine, which has multiple anti-inflammatory properties, preserved vascular compliance for the aorta and major vessels, as well as reduced the extent of severity of atherosclerosis in ApoE-/- mice. The ability of iron to rapidly and reversibly cycle between 2 oxidation states makes iron potentially hazardous by enabling it to participate in the generation of powerful oxidant species. We have shown that high catalytic iron in the general population is associated with a 4-fold increase in prevalent cardiovascular disease (CVD), even after accounting for traditional risk factors. In addition, the highest levels of catalytic iron are present in dialysis patients and, more specifically, patients with prevalent CVD have several-fold higher catalytic iron levels compared with controls without CVD. These data suggest the utility of iron chelators for preventing and treating CVD in patients with chronic kidney disease and should be further investigated. Carbamylation of proteins results from nonenzymatic chemical modification by isocyanic acid derived from urea and an alternative route, the myeloperoxidase-catalyzed oxidation of thiocyanate. We have shown carbamylated low-density lipoprotein to have all the major biological effects relevant to atherosclerosis including endothelial cell injury, increased expression of cell adhesion molecules, and vascular smooth muscle cell proliferation. In 2 separate clinical studies, plasma levels of carbamylated protein independently predicted an increased risk of CVD and death.
Collapse
Affiliation(s)
- Sudhir V Shah
- Renal Medicine Section, Medical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| | - Ashutosh M Shukla
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida and Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Chhanda Bose
- Renal Medicine Section, Medical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Alexei G Basnakian
- Renal Medicine Section, Medical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mohan Rajapurkar
- Nephrology Department, Muljibhai Patel Urological Hospital in Nadiad, Gujarat, India
| |
Collapse
|
5
|
Leaf DE, Rajapurkar M, Lele SS, Mukhopadhyay B, Waikar SS. Plasma catalytic iron, AKI, and death among critically ill patients. Clin J Am Soc Nephrol 2014; 9:1849-56. [PMID: 25189925 DOI: 10.2215/cjn.02840314] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND OBJECTIVES Catalytic iron has been hypothesized to be a key mediator of AKI. However, the association between plasma catalytic iron levels and AKI has not been well studied in humans. DESIGN, SETTINGS, PARTICIPANTS, & MEASUREMENTS A single-center, prospective, nonconsecutive cohort study of 121 critically ill patients admitted to intensive care units (ICUs) between 2008 and 2012 was performed. Plasma catalytic iron, free hemoglobin, and other iron markers were measured on ICU days 1 and 4. The primary end point was in-hospital mortality or AKI requiring RRT. Secondary end points included mortality (assessed during hospitalization, at 30 days, and 1 year) and incident AKI, defined by modified Kidney Disease Improving Global Outcomes criteria. RESULTS ICU day 1 plasma catalytic iron levels were higher among patients who reached the primary end point (median, 0.74 µmol/l [interquartile range, 0.31-3.65] versus 0.29 µmol/l [0.22-0.46]; P<0.01). ICU day 1 plasma catalytic iron levels were associated with number of packed red blood cell transfusions before ICU arrival (rs=0.29; P<0.001) and plasma free hemoglobin levels on ICU day 1 (rs=0.32; P<0.001). Plasma catalytic iron levels on ICU day 1 were significantly associated with in-hospital mortality or AKI requiring RRT, even after adjusting for age, enrollment eGFR, and number of packed red blood cell transfusions before ICU arrival (13 events; adjusted odds ratio per 1-SD higher ln[catalytic iron], 3.33; 95% confidence interval, 1.79 to 6.20). ICU day 1 plasma catalytic iron levels were also significantly associated with incident AKI, RRT, hospital mortality, and 30-day mortality. CONCLUSIONS Among critically ill patients, elevated plasma catalytic iron levels on arrival to the ICU are associated with a greater risk of incident AKI, RRT, and hospital mortality.
Collapse
Affiliation(s)
- David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts; and
| | | | - Suhas S Lele
- Department of Cardiology, Muljibhai Patel Urological Hospital, Gujarat, India
| | | | - Sushrut S Waikar
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts; and
| |
Collapse
|