1
|
Kaushik A, Kaushik M, Kaur G, Gupta V. Perspective of Secondary Metabolites in Respect of Multidrug Resistance (MDR): A Review. Infect Disord Drug Targets 2024; 24:40-52. [PMID: 38031773 DOI: 10.2174/0118715265210606231113105225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Aberrant and haphazard use of antibiotics has created the development of antimicrobial resistance which is a bizarre challenge for human civilization. This emerging crisis of antibiotic resistance for microbial pathogens is alarming all the nations posing a global threat to human health. It is difficult to treat bacterial infections as they develop resistance to all antimicrobial resistance. Currently used antibacterial agents inhibit a variety of essential metabolic pathways in bacteria, including macro-molecular synthesis (MMS) pathways (e.g. protein, DNA, RNA, cell wall) most often by targeting a specific enzyme or subcellular component e.g. DNA gyrase, RNA polymerase, ribosomes, transpeptidase. Despite the availability of diverse synthetic molecules, there are still many complications in managing progressive and severe antimicrobial resistance. Currently not even a single antimicrobial agent is available for which the microbes do not show resistance. Thus, the lack of efficient drug molecules for combating microbial resistance requires continuous research efforts to overcome the problem of multidrug-resistant bacteria. The phytochemicals from various plants have the potential to combat the microbial resistance produced by bacteria, fungi, protozoa and viruses without producing any side effects. This review is a concerted effort to identify some of the major active phytoconstituents from various medicinal plants which might have the potential to be used as an alternative and effective strategy to fight against microbial resistance and can promote research for the treatment of MDR.
Collapse
Affiliation(s)
- Aditi Kaushik
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Manish Kaushik
- KC Group of Institutions, UNA, H.P, MMDU, Mullana, Ambala, Haryana, India
| | - Gagandeep Kaur
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Vrinda Gupta
- Chitkara Group of Institutions, Chitkara University, Chandigarh, India
| |
Collapse
|
2
|
Mazur O, Bałdysz S, Warowicka A, Nawrot R. Tap the sap - investigation of latex-bearing plants in the search of potential anticancer biopharmaceuticals. FRONTIERS IN PLANT SCIENCE 2022; 13:979678. [PMID: 36388598 PMCID: PMC9664067 DOI: 10.3389/fpls.2022.979678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Latex-bearing plants have been in the research spotlight for the past couple of decades. Since ancient times their extracts have been used in folk medicine to treat various illnesses. Currently they serve as promising candidates for cancer treatment. Up to date there have been several in vitro and in vivo studies related to the topic of cytotoxicity and anticancer activity of extracts from latex-bearing plants towards various cell types. The number of clinical studies still remains scarce, however, over the years the number is systematically increasing. To the best of our knowledge, the scientific community is still lacking in a recent review summarizing the research on the topic of cytotoxicity and anticancer activity of latex-bearing plant extracts. Therefore, the aim of this paper is to review the current knowledge on in vitro and in vivo studies, which focus on the cytotoxicity and anticancer activities of latex-bearing plants. The vast majority of the studies are in vitro, however, the interest in this topic has resulted in the substantial growth of the number of in vivo studies, leading to a promising number of plant species whose latex can potentially be tested in clinical trials. The paper is divided into sections, each of them focuses on specific latex-bearing plant family representatives and their potential anticancer activity, which in some instances is comparable to that induced by commonly used therapeutics currently available on the market. The cytotoxic effect of the plant's crude latex, its fractions or isolated compounds, is analyzed, along with a study of cell apoptosis, chromatin condensation, DNA damage, changes in gene regulation and morphology changes, which can be observed in cell post plant extract addition. The in vivo studies go beyond the molecular level by showing significant reduction of the tumor growth and volume in animal models. Additionally, we present data regarding plant-mediated biosynthesis of nanoparticles, which is regarded as a new branch in plant latex research. It is solely based on the green-synthesis approach, which presents an interesting alternative to chemical-based nanoparticle synthesis. We have analyzed the cytotoxic effect of these particles on cells. Data regarding the cytotoxicity of such particles raises their potential to be involved in the design of novel cancer therapies, which further underlines the significance of latex-bearing plants in biotechnology. Throughout the course of this review, we concluded that plant latex is a rich source of many compounds, which can be further investigated and applied in the design of anticancer pharmaceuticals. The molecules, to which this cytotoxic effect can be attributed, include alkaloids, flavonoids, tannins, terpenoids, proteases, nucleases and many novel compounds, which still remain to be characterized. They have been studied extensively in both in vitro and in vivo studies, which provide an excellent starting point for their rapid transfer to clinical studies in the near future. The comprehensive study of molecules from latex-bearing plants can result in finding a promising alternative to several pharmaceuticals on the market and help unravel the molecular mode of action of latex-based preparations.
Collapse
Affiliation(s)
- Oliwia Mazur
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Sophia Bałdysz
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Alicja Warowicka
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
3
|
Cigan E, Eggbauer B, Schrittwieser JH, Kroutil W. The role of biocatalysis in the asymmetric synthesis of alkaloids - an update. RSC Adv 2021; 11:28223-28270. [PMID: 35480754 PMCID: PMC9038100 DOI: 10.1039/d1ra04181a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
Alkaloids are a group of natural products with interesting pharmacological properties and a long history of medicinal application. Their complex molecular structures have fascinated chemists for decades, and their total synthesis still poses a considerable challenge. In a previous review, we have illustrated how biocatalysis can make valuable contributions to the asymmetric synthesis of alkaloids. The chemo-enzymatic strategies discussed therein have been further explored and improved in recent years, and advances in amine biocatalysis have vastly expanded the opportunities for incorporating enzymes into synthetic routes towards these important natural products. The present review summarises modern developments in chemo-enzymatic alkaloid synthesis since 2013, in which the biocatalytic transformations continue to take an increasingly 'central' role.
Collapse
Affiliation(s)
- Emmanuel Cigan
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Bettina Eggbauer
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Joerg H Schrittwieser
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| |
Collapse
|
4
|
Kumar P, Acharya V, Warghat AR. Comparative transcriptome analysis infers bulb derived in vitro cultures as a promising source for sipeimine biosynthesis in Fritillaria cirrhosa D. Don (Liliaceae, syn. Fritillaria roylei Hook.) - High value Himalayan medicinal herb. PHYTOCHEMISTRY 2021; 183:112631. [PMID: 33370713 DOI: 10.1016/j.phytochem.2020.112631] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Fritillaria cirrhosa D. Don (Liliaceae, syn. Fritillaria roylei Hook.) is a critically endangered medicinal herb of immense importance due to its pharmaceutical bioactive compound, especially sipeimine, used for the treatment of chronic respiratory disorders. However, the industrial demand for sipeimine solely depends on its endangered natural habitat. Therefore; there is an utmost need for its biodiversity conservation as well as for the sustainable utilization of phytochemicals. Plant cell culture and transcriptomics-based molecular bioprospection of key regulatory genes involved in sipeimine biosynthesis as such will play a crucial role in exploring the unexplored traits, that are in supply crisis or nearly in extinction stage. De novo comparative transcriptome sequencing of the bulb (in vivo), callus, and regenerated plantlets (in vitro) resulted in more than 150 million high-quality paired-end clean reads that assembled into final 31,428 transcripts. Functional annotation and unigenes classification with multiple public databases such as KEGG, Refseq, Uniprot, TAIR, GO, and COG, etc. along with chemical structures and functional biocatalytic activity analysis of different steroidal alkaloids facilitated the identification of 30 unigenes specific to sipeimine biosynthesis. Additionally, ABC transporters and TFs like bHLH, MYC, MYB, and WRKY suggests their possible role in metabolite translocation and regulation in vivo as well as in vitro tissues. Differential gene expression and quantitative analysis revealed that the MVA pathway probably the predominant route for 5C intermediate (IPP & DMAPP) biosynthesis. Further, the genes involved in the downstream biosynthesis pathway viz. SQLE, CAS1, SMT1, SMO1, SMO2, SC5DL, DHCR7, DHCR24, CYP710A, 3β-HSD, CYP90D2, and CYP374A6 shown similar expression pattern with RNA-Seq and qRT-PCR findings. The positive correlation between higher expression of proposed biosynthetic pathway genes and relatively higher accumulation of sipeimine in differentiated naturally grown bulb tissues (in vivo), undifferentiated cells (callus), and de-differentiated tissues i.e. regenerated plantlets (in vitro) has been evident from the present study. Comprehensive genomic resources created in F. cirrhosa will provide strong evidence of bulb derived in vitro culture as an alternative promising source for steroidal alkaloids biosynthesis and metabolite upscaling through genetic and metabolic engineering.
Collapse
Affiliation(s)
- Pankaj Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.
| | - Vishal Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Ashish R Warghat
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
5
|
Mass propagation through direct and indirect organogenesis in three species of genus Zephyranthes and ploidy assessment of regenerants through flow cytometry. Mol Biol Rep 2021; 48:513-526. [PMID: 33442831 DOI: 10.1007/s11033-020-06083-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022]
Abstract
Genus Zephyranthes consists of economically important plant species due to their high ornamental value and presence of valuable bioactive compounds. However, this genus propagates by asexual division only which gives slow propagation rate. Plant tissue culture has the potential to provide efficient techniques for rapid multiplication and genetic improvement of the genus. In this work, a dual in vitro regeneration system through callus mediated shoot regeneration and direct shoot regeneration in species Zephyranthes candida, Zephyranthes grandiflora and Zephyranthes citrina was investigated. Bulb, leaf and root explants were cultured on Murashige and Skoog (MS) medium amended with different plant growth regulators (PGR's) viz. 2,4-dichlorophenoxyacetic acid (2,4-D), 1-Naphthalene acetic acid (NAA), 6-benzyl amino purine (BAP), N-phenyl-N'-1,2,3 -thiadiazol-5-ylurea (TDZ), 6-Furfuryl- aminopurine (KIN) alone or in combinations for callus induction and regeneration. Only bulb explants showed callus induction and regeneration response on different PGR combinations with a varied response in callus induction percentage, callus color and callus texture. Creamish compact callus (CC) was induced on 2 mg L[Formula: see text] 2,4-D, brown friable callus (BF) on 2 mg L[Formula: see text] NAA + 1 mg L[Formula: see text] BAP and green friable callus (GF) callus on 1 mg L[Formula: see text] KIN + 3 mg L[Formula: see text] NAA. The maximum shoot multiplication from different callus types (indirect organogenesis) was achieved on 2 mg L[Formula: see text] BAP alone without combinations. Bulb explants of Z. grandiflora induced maximum callus induction percentage (86.4%) and shoot regeneration percentage (83.5%) with the maximum 08 shoots per 150 mg callus mass. The induction and regeneration response was followed in the order of Z. grandiflora > Z. candida > Z. citrina. Similarly, maximum direct organogenesis from bulb explants was obtained in Z. grandiflora (93.3%) followed by Z. candida (91.5%) and Z. citrina (90.4%) on 3 mg L[Formula: see text] TDZ amended MS media. Adventitious root induction was achieved on 2 mg L[Formula: see text] IBA with a maximum of 8 roots per shoot. The in vitro raised plantlets were successfully acclimatized in the field with 85% survival efficiency. The genome size (2C DNA content) of the field-grown plants and in vitro regenerated plants, evaluated through flow cytometry technique, were similar and showed no ploidy changes. An efficient mass propagation protocol was established for obtaining plants with unaltered genome size in the three species of Zephyranthes.
Collapse
|
6
|
Natural Ergot Alkaloids in Ocular Pharmacotherapy: Known Molecules for Novel Nanoparticle-Based Delivery Systems. Biomolecules 2020; 10:biom10070980. [PMID: 32630018 PMCID: PMC7408209 DOI: 10.3390/biom10070980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Several pharmacological properties are attributed to ergot alkaloids as a result of their antibacterial, antiproliferative, and antioxidant effects. Although known for their biomedical applications (e.g., for the treatment of glaucoma), most ergot alkaloids exhibit high toxicological risk and may even be lethal to humans and animals. Their pharmacological profile results from the structural similarity between lysergic acid-derived compounds and noradrenalin, dopamine, and serotonin neurotransmitters. To reduce their toxicological risk, while increasing their bioavailability, improved delivery systems were proposed. This review discusses the safety aspects of using ergot alkaloids in ocular pharmacology and proposes the development of lipid and polymeric nanoparticles for the topical administration of these drugs to enhance their therapeutic efficacy for the treatment of glaucoma.
Collapse
|
7
|
Sahakyan N, Petrosyan M, Trchounian A. The Activity of Alkanna Species in vitro Culture and Intact Plant Extracts Against Antibiotic Resistant Bacteria. Curr Pharm Des 2020; 25:1861-1865. [PMID: 31333091 DOI: 10.2174/1381612825666190716112510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/28/2019] [Indexed: 11/22/2022]
Abstract
Overcoming the antibiotic resistance is nowadays a challenge. There is still no clear strategy to combat this problem. Therefore, the urgent need to find new sources of antibacterial agents exists. According to some literature, substances of plant origin are able to overcome bacterial resistance against antibiotics. Alkanna species plants are among the valuable producers of these metabolites. But there is a problem of obtaining the standardized product. So, this review is focused on the discussion of the possibilities of biotechnological production of antimicrobial agents from Alkanna genus species against some microorganisms including antibiotic resistant bacterial strains.
Collapse
Affiliation(s)
- Naira Sahakyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Yerevan 0025, Armenia
| | - Margarit Petrosyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Yerevan 0025, Armenia
| | - Armen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Yerevan 0025, Armenia
| |
Collapse
|
8
|
Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). RECENT ADVANCES IN NATURAL PRODUCTS ANALYSIS 2020. [PMCID: PMC7153348 DOI: 10.1016/b978-0-12-816455-6.00015-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Enhancement of capsaicinoids in vitro production by abiotic elicitors in placenta-derived callus of Capsicum annuum L. Tunisian var. ‘Baklouti Medenine’. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00237-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Alqurashi M, Chiapello M, Bianchet C, Paolocci F, Lilley KS, Gehring C. Early Responses to Severe Drought Stress in the Arabidopsis thaliana Cell Suspension Culture Proteome. Proteomes 2018; 6:proteomes6040038. [PMID: 30279377 PMCID: PMC6313886 DOI: 10.3390/proteomes6040038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 01/18/2023] Open
Abstract
Abiotic stresses are considered the most deleterious factor affecting growth and development of plants worldwide. Such stresses are largely unavoidable and trigger adaptive responses affecting different cellular processes and target different compartments. Shotgun proteomic and mass spectrometry-based approaches offer an opportunity to elucidate the response of the proteome to abiotic stresses. In this study, the severe drought or water-deficit response in Arabidopsis thaliana was mimicked by treating cell suspension callus with 40% polyethylene glycol for 10 and 30 min. Resulting data demonstrated that 310 proteins were differentially expressed in response to this treatment with a strict ±2.0-fold change. Over-representation was observed in the gene ontology categories of 'ribosome' and its related functions as well as 'oxidative phosphorylation', indicating both structural and functional drought responses at the cellular level. Proteins in the category 'endocytosis' also show significant enrichment and this is consistent with increased active transport and recycling of membrane proteins in response to abiotic stress. This is supported by the particularly pronounced enrichment in proteins of the endosomal sorting complexes that are required for membrane remodelling. Taken together, the findings point to rapid and complex physiological and structural changes essential for survival in response to sudden severe drought stress.
Collapse
Affiliation(s)
- May Alqurashi
- Department of Biochemistry, Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Marco Chiapello
- Department of Biochemistry, Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| | - Chantal Bianchet
- Department of Chemistry, Biology & Biotechnology, Borgo XX giugno 74, 06121 Perugia, Italy.
| | - Francesco Paolocci
- CNR, Institute of Biosciences and Bioresources, Perugia Division, Via Madonna Alta, 130 06128 Perugia, Italy.
| | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| | - Christoph Gehring
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
- Department of Chemistry, Biology & Biotechnology, Borgo XX giugno 74, 06121 Perugia, Italy.
| |
Collapse
|
11
|
Meristem Plant Cells as a Sustainable Source of Redox Actives for Skin Rejuvenation. Biomolecules 2017; 7:biom7020040. [PMID: 28498360 PMCID: PMC5485729 DOI: 10.3390/biom7020040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 12/30/2022] Open
Abstract
Recently, aggressive advertisement claimed a “magic role” for plant stem cells in human skin rejuvenation. This review aims to shed light on the scientific background suggesting feasibility of using plant cells as a basis of anti-age cosmetics. When meristem cell cultures obtained from medicinal plants are exposed to appropriate elicitors/stressors (ultraviolet, ultrasound ultraviolet (UV), ultrasonic waves, microbial/insect metabolites, heavy metals, organic toxins, nutrient deprivation, etc.), a protective/adaptive response initiates the biosynthesis of secondary metabolites. Highly bioavailable and biocompatible to human cells, low-molecular weight plant secondary metabolites share structural/functional similarities with human non-protein regulatory hormones, neurotransmitters, pigments, polyamines, amino-/fatty acids. Their redox-regulated biosynthesis triggers in turn plant cell antioxidant and detoxification molecular mechanisms resembling human cell pathways. Easily isolated in relatively large quantities from contaminant-free cell cultures, plant metabolites target skin ageing mechanisms, above all redox imbalance. Perfect modulators of cutaneous oxidative state via direct/indirect antioxidant action, free radical scavenging, UV protection, and transition-metal chelation, they are ideal candidates to restore photochemical/redox/immune/metabolic barriers, gradually deteriorating in the ageing skin. The industrial production of plant meristem cell metabolites is toxicologically and ecologically sustainable for fully “biological” anti-age cosmetics.
Collapse
|
12
|
Malik S. Enhancement of Medicinally Important Bioactive Compounds in Hairy Root Cultures of Glycyrrhiza, Rauwolfia, and Solanum Through In Vitro Stress Application. PRODUCTION OF PLANT DERIVED NATURAL COMPOUNDS THROUGH HAIRY ROOT CULTURE 2017. [PMCID: PMC7121597 DOI: 10.1007/978-3-319-69769-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Enhancement of secondary metabolites through elicitation in hairy root culture is a very effective method which is broadly used to simulate the stress responses in plants. Elicitors are compounds that induce plants to produce secondary metabolites at elevated levels and reduce the processing time required to achieve high product concentrations. Hairy root cultures are considered as an excellent alternative for the supply of pharmaceutically important secondary metabolites/bioactives, due to their inherent genetic and biochemical stability. Plant-based secondary metabolites are well accepted in India as well as other countries to cure even the serious medical problems. In this chapter, three medicinally important plants are discussed in which stress-based elicitation of secondary metabolites has been achieved in hairy root cultures. These three plants contain important secondary metabolites in their different parts. Glycyrrhizin found in Glycyrrhiza glabra plant is used as antiulcer, immunomodulatory, antiallergic, and anti-inflammatory. Glycyrrhizin is also effective against HIV and severe acute respiratory syndrome (SARS)-like viruses. In Solanum plant, steroidal glycoalkaloids contain pharmaceutically important secondary metabolites. Solasodine, a major alkaloid of Solanum plant, is used as a contraceptive in different parts of the world. Ajmaline and ajmalicine are important root-specific indole alkaloids of Rauwolfia serpentina. Ajmalicine is useful in circulatory disorders, while ajmaline is principally known for its antiarrhythmic and antihypertensive activities. The main objective of this chapter is to provide knowledge in these plants regarding elicitation-based enhancement of valuable secondary metabolites in the form of research studies conducted till date (as per author’s knowledge).
Collapse
Affiliation(s)
- Sonia Malik
- Biological and Health Sciences Center, Federal University of Maranhao, Sao Luis, Maranhão Brazil
| |
Collapse
|
13
|
Chemical Elicitor-Induced Modulation of Antioxidant Metabolism and Enhancement of Secondary Metabolite Accumulation in Cell Suspension Cultures of Scrophularia kakudensis Franch. Int J Mol Sci 2016; 17:399. [PMID: 26999126 PMCID: PMC4813254 DOI: 10.3390/ijms17030399] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 01/28/2023] Open
Abstract
Scrophularia kakudensis is an important medicinal plant with pharmaceutically valuable secondary metabolites. To develop a sustainable source of naturaceuticals with vital therapeutic importance, a cell suspension culture was established in S. kakudensis for the first time. Friable calli were induced from the leaf explants cultured on a Murashige and Skoog (MS) medium containing 3.0 mg·L−1 6-benzyladenine (BA) in a combination with 2 mg·L−1 2,4-dichlorophenoxy acetic acid (2,4-D). From the callus cultures, a cell suspension culture was initiated and the cellular differentiation was investigated. In addition, the effect of biotic elicitors such as methyl jasmonate (MeJa), salicylic acid (SA), and sodium nitroprusside (SNP) on the accumulation of secondary metabolites and antioxidant properties was demonstrated. Among the elicitors, the MeJa elicited the accumulation of total phenols, flavonoids, and acacetin, a flavonoid compound with multiple pharmaceutical values. Similarly, the higher concentrations of the MeJa significantly modulated the activities of antioxidant enzymes and enhanced the scavenging potentials of free radicals of cell suspension extracts. Overall, the outcomes of this study can be utilized for the large scale production of pharmaceutically important secondary metabolites from S. kakudensis through cell suspension cultures.
Collapse
|