1
|
Nambison NKM, Sharma N, Dwivedi AD, Chakravarty N. Individualized Homeopathic and Organopathic Supportive Management of Sickle Cell Disorder: A Case Series of Six Patients from a Particularly Vulnerable Tribal Group in India. HOMEOPATHY 2024; 113:253-261. [PMID: 38290537 DOI: 10.1055/s-0043-1776908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
BACKGROUND Sickle cell disorder (SCD) is a hereditary blood disease characterized by an abnormality in the oxygen-carrying protein hemoglobin present in red blood cells. Genetic abnormality causes these cells to become sickle-shaped, with shorter lifespan. Vaso-occlusive crisis is a major symptom of SCD: it is a sudden and severe episode of pain, and occurs when sickle-shaped cells block blood flow. This blockage can lead to tissue damage, inflammation and pain. OBJECTIVES This case series aims to observe the clinical outcomes from prescribing individualized homeopathic medicines along with organopathic supportive medicine in the management of SCD through the analysis of case studies of six patients from a particularly vulnerable tribal group (PVTG) in India that manifests genetic predisposition for the disease. METHOD The patients were administered individualized homeopathic and organopathic supportive medicines, after a comprehensive door-to-door survey and subsequent screening, conducted between October 2020 and May 2023 in the Dindori and Mandla districts of the central Indian state, Madhya Pradesh. Clinical symptoms, laboratory parameters including hemoglobin, along with scores from a visual analogue scale (VAS) for pain and from the World Health Organization Quality of Life (WHOQoL) Questionnaire, were determined. RESULTS Individualized homeopathic and organopathic supportive management led to improvements in clinical symptoms for all six patients. Laboratory test results showed a statistically significant increase in hemoglobin level associated with treatment. The VAS for pain indicated decreased pain frequency and severity. WHOQoL scores also improved, indicating enhanced well-being for each patient. No adverse effects were reported during treatment. CONCLUSION This study suggests that individualized homeopathic medicine and organopathic supportive management have a beneficial role in managing SCD and may be valuable in the context of PVTGs in India. To establish a more comprehensive understanding of its efficacy, further studies should involve larger cohorts to allow for a thorough evaluation, including comparative analyses with standard therapies.
Collapse
Affiliation(s)
- Nisanth K M Nambison
- Department of AYUSH, Government Homeopathic Medical College and Hospital, Government of Madhya Pradesh, Bhopal, Madhya Pradesh, India
| | - Narendra Sharma
- Department of AYUSH, Government Homeopathic Medical College and Hospital, Government of Madhya Pradesh, Bhopal, Madhya Pradesh, India
| | - Abhishek D Dwivedi
- Department of AYUSH, Government Homeopathic Medical College and Hospital, Government of Madhya Pradesh, Bhopal, Madhya Pradesh, India
| | - Nisha Chakravarty
- Department of AYUSH, Government Homeopathic Medical College and Hospital, Government of Madhya Pradesh, Bhopal, Madhya Pradesh, India
| |
Collapse
|
2
|
Ilavarasan R, Arunadevi R, Kusuma G, Gaidhani SN, Thenmozhi M, Manikandan N. Evaluation of Anti-arthritic and in-vitro Anti-inflammatory activity of Vaisvanara Churna. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118774. [PMID: 39218128 DOI: 10.1016/j.jep.2024.118774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vaisvanara Churna used traditionally for the treatment of Amavata (Rheumatoid arthritis), Shotaprasamana (Anti-inflammatory) and as Saraka (Laxative). AIM Aim of the study is to evaluate anti arthritic activity and in vitro anti-inflammatory potential of Vaisvanara Churna in experimental animals. MATERIALS AND METHODS In-vitro anti-inflammatory activity of aqueous extract of Vaisvanara Churna (100-500 μg/ml) was evaluated by using membrane stabilization methods. Anti arthritic activity was evaluated by using 0.1 ml of Complete Freund's Adjuvant (CFA) injected into sub plantar surface of left hind paw of each wistar rat on day 1 followed by treatment with Vaisvanara Churna at various dose levels (450, 900, and 1800 mg/kg b.w) and standard drug Prednisolone (5 mg/kg) for 21 days. The following parameters namely change in the body weight of animals, paw volume, ankle joint thickness were measured at 0, 3, 8, 17 & 21 day intervals and radiographic changes were assessed. In addition to this, response to painful stimuli by application of forced pressure was measured by using Pressure Application Measurement (PAM) method. RESULTS In-vitro anti-inflammatory activity Vaisvanara Churna exhibited dose dependent membrane stabilizing activity. Treatment with Vaisvanara Churna showed significant (p < 0.05) inhibition of paw edema, reduction in ankle joint thickness and increase in the body weight of wistar albino rats was observed. There is a significant increase (p < 0.001) in the latency of limb withdrawal response, reduction in the organ indices (spleen and thymus) were noted. CONCLUSION This study demonstrates that Vaisvanara Churna possesses in vitro anti inflammatory and anti-arthritic potential and supports its folklore use in the treatment of arthritis.
Collapse
Affiliation(s)
- R Ilavarasan
- Department of Pharmacology, Captain Srinivasa Murthy Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Govt. of India, Chennai, 600 106, India
| | - R Arunadevi
- Department of Pharmacology, Captain Srinivasa Murthy Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Govt. of India, Chennai, 600 106, India.
| | - G Kusuma
- Department of Pharmacology, Captain Srinivasa Murthy Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Govt. of India, Chennai, 600 106, India
| | - Sudesh N Gaidhani
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, New Delhi, Govt. of India, 110058, India
| | - M Thenmozhi
- Department of Pharmacology, Captain Srinivasa Murthy Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Govt. of India, Chennai, 600 106, India
| | - N Manikandan
- Department of Pharmacology, Captain Srinivasa Murthy Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Govt. of India, Chennai, 600 106, India
| |
Collapse
|
3
|
Shrivastava AK, Keshari M, Neupane M, Chaudhary S, Dhakal PK, Shrestha L, Palikhey A, Yadav CK, Lamichhane G, Shekh MU, Yadav RK. Evaluation of Antioxidant and Anti-Inflammatory Activities, and Metabolite Profiling of Selected Medicinal Plants of Nepal. J Trop Med 2023; 2023:6641018. [PMID: 37954133 PMCID: PMC10637841 DOI: 10.1155/2023/6641018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023] Open
Abstract
This study aimed to evaluate the antioxidant, antiarthritic, and anti-inflammatory properties of extracts from the leaves of twelve different medicinal plants in Nepal. We then evaluated the total phenolic, flavonoid, and tannin contents of the extract using in-vitro assays and characterized it using GC-MS analysis. Results revealed that most of the leaf extracts contained phenolic compounds, flavonoids, tannins, alkaloids, and saponins. Few plants also showed the presence of glycosides, phytate, and vitamin C. Among the studied plants, Neolamarckia cadamba exhibited the highest total phenolic and tannin contents, as 241.53 ± 0.20 µg of gallic acid equivalent/mg and 74.48 ± 1.081 µg of tannic acid equivalent/mg, respectively. Ipomoea batatas exhibited the highest total flavonoid content, as 53.051 ± 1.11 µg of quercetin equivalent/mg. Moreover, Raphanus sativus demonstrated significant ferrous ion chelating, 2,2-diphenyl-1-picrylhydrazyl, hydrogen peroxide scavenging, and total antioxidant activities with IC50 value of 4.76 ± 0.68 µg/mL, 5.84 ± 0.14 µg/mL, 6.89 ± 0.16 µg/mL, and 8.99 ± 0.20 µg/mL, respectively. Similarly, Colocasia esculenta and Cicer arietinum exhibited the highest hydroxyl radical and nitric oxide scavenging activities, measuring IC50 value of 7.22 ± 0.56 µg/mL and 9.06 ± 0.10 µg/mL, respectively. Among all the extracts, Amorphophallus paeoniifolius displayed significant human red blood cell (HRBC) membrane stabilization activity (IC50 = 6.22 ± 0.78 µg/mL). Furthermore, Raphanus sativus, Chenopodium album, Cicer arietinum, and Murraya koenigii exhibited the highest inhibitory activities against protein denaturation with bovine serum albumin, antiarthritic, lipoxygenase inhibitory, and proteinase inhibitory, measuring IC50 of 7.48 ± 0.48 µg/mL, 9.44 ± 1.62 µg/mL, 14.67 ± 1.94 µg/mL, and 28.57 ± 2.39 µg/mL, respectively. In conclusion, this study demonstrated the twelve leaf extracts' significant antioxidant, antiarthritic, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Amit Kumar Shrivastava
- Department of Pharmacology, Universal College of Medical Sciences, Bhairahawa, Rupandehi 32900, Nepal
| | - Muskan Keshari
- Department of Pharmacy, Universal College of Medical Sciences, Bhairahawa, Rupandehi 32900, Nepal
| | - Manisha Neupane
- Department of Pharmacy, Universal College of Medical Sciences, Bhairahawa, Rupandehi 32900, Nepal
| | - Sheshbhan Chaudhary
- Department of Pharmacy, Universal College of Medical Sciences, Bhairahawa, Rupandehi 32900, Nepal
| | - Purna Kala Dhakal
- Department of Pharmacy, Universal College of Medical Sciences, Bhairahawa, Rupandehi 32900, Nepal
| | - Laxmi Shrestha
- Department of Pharmacology, Universal College of Medical Sciences, Bhairahawa, Rupandehi 32900, Nepal
| | - Anjan Palikhey
- Department of Pharmacology, Universal College of Medical Sciences, Bhairahawa, Rupandehi 32900, Nepal
| | - Chandrajeet Kumar Yadav
- Department of Pharmacology, Universal College of Medical Sciences, Bhairahawa, Rupandehi 32900, Nepal
| | - Gopal Lamichhane
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mohammad Ujair Shekh
- School of Health and Allied Sciences, Pokhara University, Pokhara-30, Kaski, Nepal
| | - Rakesh Kumar Yadav
- Institute of Agriculture and Animal Science, Tribhuvan University, Paklihawa, Rupandehi, Nepal
| |
Collapse
|
4
|
Bekkouch O, Zengin G, Harnafi M, Touiss I, Khoulati A, Saalaoui E, Harnafi H, Abdellattif MH, Amrani S. Anti-Inflammatory Study and Phytochemical Characterization of Zingiber officinale Roscoe and Citrus limon L. Juices and Their Formulation. ACS OMEGA 2023; 8:26715-26724. [PMID: 37546676 PMCID: PMC10398691 DOI: 10.1021/acsomega.2c04263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/09/2023] [Indexed: 08/08/2023]
Abstract
Zingiber officinale and Citrus limon, well known as ginger and lemon, are two vegetals widely used in traditional medicine and the culinary field. The juices of the two vegetals were evaluated based on their inflammation, both in vivo and in vitro. High-performance liquid chromatography (HPLC) was used to characterize different juices from Zingiber officinale Roscoe and Citrus limon. After the application of the HPLC method, different compounds were identified, such as 6-gingerol and 6-gingediol from the ginger juice and isorhamnetin and hesperidin from the lemon juice. In addition, the two juices and their formulation were assessed for their anti-inflammatory activity, in vitro by utilizing the BSA denaturation test, in vivo using the carrageenan-induced inflammation test, and the vascular permeability test. Important and statistically significant anti-inflammatory activities were observed for all juices, especially the formulation. The results of our work showed clearly that the Zingiber officinale and Citrus limon juices protect in vivo the development of the rat paw edema, especially the formulation F composed of the Zingiber officinale and Citrus limon juices, which shows an anti-inflammatory activity equal to -35.95% and -44.05% using 10 and 20 mg/kg of the dose, respectively. Our work also showed that the formulation was the most effective tested extract since it inhibits the vascular permeability by -37% and -44% at the doses of 200 and 400 mg/kg, respectively, and in vitro via the inhibition of the denaturation of BSA by giving a synergetic effect with the highest IC50 equal to 684.61 ± 7.62 μg/mL corresponding to the formulation F. This work aims to develop nutraceutical preparations in the future and furnishes the support for a new investigation into the activities of the various compounds found in Zingiber officinale Roscoe and Citrus limon.
Collapse
Affiliation(s)
- Oussama Bekkouch
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| | - Gökhan Zengin
- Physiology
and Biochemistry Research Laboratory, Department of Biology, Science
Faculty, Selcuk University, 42130Konya, Turkey
| | - Mohamed Harnafi
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| | - Ilham Touiss
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| | - Amine Khoulati
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| | - Ennouamane Saalaoui
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| | - Hicham Harnafi
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| | - Magda H. Abdellattif
- Chemistry
Department, Sciences College, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Souliman Amrani
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| |
Collapse
|
5
|
Mishra KP, Bakshi J, Sharma G, Singh S, Panjwani U. A Comparative Analysis of Effectiveness of Recombinant Interleukin-11 Versus Papaya Leaf Extract for Treatment of Thrombocytopenia: A Review. Indian J Clin Biochem 2023; 38:297-304. [PMID: 37234180 PMCID: PMC10205934 DOI: 10.1007/s12291-022-01097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022]
Abstract
Platelets or thrombocytes play an important role in thrombosis and maintaining hemostasis. Thrombocytes help in forming blood clots at the site of the wound. When the level of platelets decreases, uncontrolled bleeding occurs which can result in mortality. A decrease in the blood platelet level is known as thrombocytopenia which can be caused due to various reasons. A variety of treatment options are available for thrombocytopenia like platelet transfusion, splenectomy, platelet management with various types of corticosteroids, and recombinant interleukin-11 (rhIL-11). The use of rhIL-11 is approved by FDA for the treatment of thrombocytopenia. rhIL-11 is a recombinant cytokine that is administered to patients suffering from chemotherapy-induced thrombocytopenia as it enhances megakaryocytic proliferation which aids in platelet production. But this treatment has various side effects and is costly. Hence, there is a crucial need to identify cost-effective alternative strategies that present no side effects. The majority of the population in low-income countries requires a functional and cost-effective treatment for low thrombocyte count. Carica papaya is a tropical herbaceous plant that has been reported in recovering low platelet count during dengue virus infection. Even though multiple benefits of the Carica papaya leaf extract (CPLE) are popular, the active compound present in it, which mediates these benefits, remains to be identified. This review aims to highlight the different aspects of rhIL-11 and CPLE-induced platelet counts and their limitations and benefits in the treatment of thrombocytopenia. The literature related to the treatment of thrombocytopenia using rhIL-11 and CPLE from 1970 to 2022 was searched using PubMed and Google Scholar databases with the keywords Recombinant Interleukin-11, Papaya Leaf Extract, Thrombocytopenia, and Platelets.
Collapse
Affiliation(s)
- K. P. Mishra
- Defence Institute of Physiology and Allied Sciences, Delhi, 110054 India
| | - Jyotsana Bakshi
- Defence Institute of Physiology and Allied Sciences, Delhi, 110054 India
| | - Gitika Sharma
- Defence Institute of Physiology and Allied Sciences, Delhi, 110054 India
| | - Somnath Singh
- Defence Institute of Physiology and Allied Sciences, Delhi, 110054 India
| | - Usha Panjwani
- Defence Institute of Physiology and Allied Sciences, Delhi, 110054 India
| |
Collapse
|
6
|
Zamora-Mendoza L, Vispo SN, De Lima L, Mora JR, Machado A, Alexis F. Hydrogel for the Controlled Delivery of Bioactive Components from Extracts of Eupatorium glutinosum Lam. Leaves. Molecules 2023; 28:molecules28041591. [PMID: 36838578 PMCID: PMC9960609 DOI: 10.3390/molecules28041591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
This research reported a hydrogel loaded with the ethanolic and methanolic extracts of Eupatorium glutinosum Lam. The E. glutinosum extracts were characterized by phytochemical screening, Fourier-transform infrared spectroscopy (FTIR), thin-layer chromatography (TLC), and UV/Vis profile identification. This research also evaluated the pharmacological activity of the extracts using antimicrobial, antioxidant, and anti-inflammatory assays prior to polymeric encapsulation. Results indicate that extracts inhibit the Escherichia colii DH5-α (Gram negative) growth; excellent antioxidant activity was evaluated by the ferric reducing power and total antioxidant activity assays, and extracts showed an anti-hemolytic effect. Moreover, the cotton and microcrystalline cellulose hydrogels demonstrate successful encapsulation based on characterization and kinetics studies such as FTIR, extract release, and swelling degree. Moreover, effective antibacterial activity was registered by the loaded hydrogel. The overall results encourage and show that Eupatorium glutinosum-loaded hydrogel may find a wide range of bandage and wound healing applications in the biomedical area.
Collapse
Affiliation(s)
- Lizbeth Zamora-Mendoza
- School of Biological Sciences & Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Santiago Nelson Vispo
- School of Biological Sciences & Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
- Correspondence: (S.N.V.); (F.A.)
| | - Lola De Lima
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - José R. Mora
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - António Machado
- Laboratorio de Bacteriología, Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Frank Alexis
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
- Correspondence: (S.N.V.); (F.A.)
| |
Collapse
|
7
|
Waickman AT, Newell K, Endy TP, Thomas SJ. Biologics for dengue prevention: up-to-date. Expert Opin Biol Ther 2023; 23:73-87. [PMID: 36417290 DOI: 10.1080/14712598.2022.2151837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Dengue is a worsening global public health problem. The vector-viral-host interactions driving the pathogenesis of dengue are multi-dimensional. Sequential dengue virus (DENV) infections with different DENV types significantly increase the risk of severe disease. Treatment is supportive in nature as there are no licensed anti-DENV antivirals or immuno-therapeutics. A single dengue vaccine has widely been licensed with two others in advanced clinical development. Dengvaxia® has been licensed in numerous countries but uptake has been slow as a result of safety signals noted in the youngest recipients and those who were dengue naïve at the time of vaccination. AREAS COVERED In this review, the current state of dengue vaccine and antiviral drug development will be discussed as well as new developments in controlled human infection models to support product development. EXPERT OPINION The world needs a safe and efficacious tetravalent dengue vaccine capable of protecting multiple different populations across a broad age range and different flavivirus immunologic backgrounds. Safe and effective antivirals are also needed to prevent or attenuate dengue disease in the unvaccinated, in cases of vaccine failure, or in high-risk populations.
Collapse
Affiliation(s)
- Adam T Waickman
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY USA
| | - Krista Newell
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY USA
| | - Timothy P Endy
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY USA
| | - Stephen J Thomas
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY USA
| |
Collapse
|
8
|
Sarkar P, Arockiaraj J. TL15 Peptide of Sulphite Reductase from Spirulina, Arthrospira platensis Exhibited Anti-inflammatory and Antioxidant Defence Role in CuSO4-Stressed Zebrafish Embryo Through Pro-inflammatory Cytokine and Glutathione Redox Mechanism. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10471-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Jayasinghe CD, Ratnasooriya WD, Premakumara S, Udagama PV. Platelet augmentation activity of mature leaf juice of Sri Lankan wild type cultivar of Carica papaya L: Insights into potential cellular mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115511. [PMID: 35781007 DOI: 10.1016/j.jep.2022.115511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Carica papaya L., a common fruit crop of the family Caricaceae and its leaf juice/extract is a traditionally commended preparation against dengue and other thrombocytopenic diseases by many Asian countries. AIM OF THE STUDY The present study posits the potential cellular mechanisms of platelet augmentation activity of mature leaf juice of Sri Lankan wild-type Carica papaya. MATERIALS AND METHODS C. papaya leaf juice prepared from different cultivar types, maturity of the leaf, agro-climatic region, and preparation methods were orally administered to hydroxyurea-induced thrombocytopenic rats at 0.72 ml/100 g BW dosage to investigate the most potent platelet increasing preparation. The papaya juice doses; low dose (LD-0.18 ml/100 g BW), human equivalent dose (HED-0.36 ml/100 g BW), and high dose (HD-0.72 ml/100 g BW), were administered to thrombocytopenic rats (N = 6/group) daily for three consecutive days and post-treatment plasma levels of interleukin 6 (IL-6), thrombopoietin (TPO), and platelet-activating factor (PAF) were quantified using specific rat ELISA kits. The mature leaf juice of C. papaya induced IL-6 secretion from bone marrow cell (BMC) cultures was quantified using ELISA. The ability of papaya juice to protect the platelet membrane, from the damage caused by the lytic agent was analyzed in vitro using the lactate dehydrogenase (LDH) assay. The effect of the mature leaf juice of C. papaya on secondary hemostasis was investigated using blood coagulation and clot hydrolyzing activity. RESULTS The comparative analysis revealed that the platelet increasing activity of C. papaya leaf did not significantly differ among different types of cultivar, maturity of the leaf, agro-climatic regions and preparation methods (p > 0.05). Both TPO and PAF levels in thrombocytopenic rats diminished when treated with all three doses of the mature leaf juice of C. papaya (p < 0.05), yet IL-6 plasma level was unaltered (p > 0.05). Nevertheless, ex vivo treatment of the mature leaf juice of C. papaya had significantly enhanced IL-6 levels of rat BMC cultures (p < 0.05). Pre-treatment of platelets with the mature leaf juice of C. papaya at different concentrations significantly inhibited LDH leakage from platelets and may have reduced the membrane damage caused by the lytic agent (p < 0.05). Treatment of mature leaf juice of C. papaya also significantly reduced blood clotting time through the extrinsic pathway of the blood coagulation cascade (p < 0.05). Further, prolonged incubation of the plasma clot with different concentrations of the papaya leaf juice revealed dose-dependent hydrolysis of the blood clot, indicating fibrinolysis activity. CONCLUSIONS The current study exceeded the traditional medicinal claims, and scientifically affirmed the platelet augmentation activity of mature leaf juice of C. papaya. The mechanistic rationale tested herein explicated that the platelet augmentation activity of the papaya leaf juice can be partially attributed to the stimulation of bone marrow megakaryocytes via modulating thrombopoietic cytokines TPO and IL-6, and by inhibiting the secretion of PAF, while reducing the peripheral platelet destruction by stabilizing the platelet membrane. Further, mature leaf juice of C. papaya imparted both pro-coagulation and fibrinolysis activity of secondary hemostasis endorsing its potential against thrombocytopenia.
Collapse
Affiliation(s)
- Chanika D Jayasinghe
- Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo 3, Sri Lanka
| | - Wanigasekera D Ratnasooriya
- Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo 3, Sri Lanka
| | - Sirimal Premakumara
- Industrial Technology Institute, Colombo 7, Sri Lanka; Department of Basic Science and Social Science, Faculty of Nursing, University of Colombo, Sri Jayewardenepura, Thalapathpitiya, Nugegoda, Sri Lanka
| | - Preethi V Udagama
- Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo 3, Sri Lanka.
| |
Collapse
|
10
|
In Vitro Metabolite Profiling and Anti-Inflammatory Activities of Rhodomyrtus Tomentosa with Red Blood Cell Membrane Stabilization Methods. Rep Biochem Mol Biol 2022; 11:502-510. [PMID: 36718296 PMCID: PMC9883021 DOI: 10.52547/rbmb.11.3.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/12/2022] [Indexed: 01/18/2023]
Abstract
Background Rhodomyrtus Tomentosa (Karamunting) is one of South Kalimantan's biodiversity. In previous research on asthma and coal dust exposure models, nebulization with an ethanol extract of R. tomentosa leaves has been shown to reduce inflammatory cells. This study aimed to investigate the anti-inflammatory activity on the stabilization of red blood cell membranes and to identify the chemical compounds present in extracts of R. tomentosa leaves. Methods Anti-inflammatory effect of R. tomentosa leaves was evaluated by in vitro red blood cell membrane stabilization methods. Nonsteroidal anti-inflammatory sodium diclofenac was used as the reference drug. The content of chemical compounds in the ethanol extract of R. tomentosa leaves was identified using Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS). Results The results of inhibition of red blood cells membrane lysis showed the n-hexane fraction (concentration 25 ppm), ethyl acetate fraction (concentration 50 ppm), and a fraction of water (concentration 50 ppm) with an inhibition level of 54.5%, 81.8%, 63.6%, respectively. The ethyl acetate fraction showed the highest inhibition of hemolysis. This result is not significantly different from the standard anti-inflammatory sodium diclofenac (90.09%). Oleanonic acid and ursonic acid were two similar metabolites in subfractions ethyl acetate 1, 2, and 3, which may have anti-inflammatory properties. Conclusion R. Tomentosa leaves can have potency as an anti-inflammatory by increasing the red blood cell membrane stability equal to lysosome cells, depending on the concentration.
Collapse
|
11
|
Murugan R, Rajesh R, Guru A, Haridevamuthu B, Almutairi BO, Almutairi MH, Juliet A, Renganayagi S, Gopinath P, Arockiaraj J. Deacetylepoxyazadiradione Derived from Epoxyazadiradione of Neem (Azadirachta indica A. Juss) Fruits Mitigates LPS-Induced Oxidative Stress and Inflammation in Zebrafish Larvae. Chem Biodivers 2022; 19:e202200041. [PMID: 36026548 DOI: 10.1002/cbdv.202200041] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/12/2022] [Indexed: 11/12/2022]
Abstract
Reactive oxygen species (ROS) produced by cell metabolism have a duplex role in oxidation and inflammation reactions which involve cell damage or repair responses. Excess ROS production has detrimental effects on the survival of cells. We examined the protective effect of a semi-natural compound NF2 (deacetylepoxyazadiradione), for its protective activity against free radical-mediated stress and inflammatory response to lipopolysaccharide (LPS) using zebrafish larvae. Preliminary antioxidant assays indicated an increase in scavenging of free radicals from NF2 than NF1 (Epoxyazadiradione) in a concentration-dependent manner. Cell cytotoxicity was determined using rat myoblast cell lines (L6), and more than 95 % of cell viability was obtained. Zebrafish developmental toxicity test indicated that NF2 is not toxic even at 150 μM. The percentage of ROS, lipid peroxidation, nitric oxide and apoptosis were reduced significantly in NF2 treated LPS-stressed zebrafish larvae. The reduced number of employed macrophages on NF2 treatment was observed in neutral red dye-marked macrophage localization images. Relative expression of antioxidant genes in zebrafish larvae after treatment with NF2 is significantly increased. The RT-PCR quantification of antioxidant and anti-inflammatory gene expression indicated decreased relative folds of pro-inflammatory cytokines, iNOS and increased relative folds of mitochondrial antioxidant genes (GR, GST and GPx) in LPS stressed zebrafish larvae after treatment with NF2. From the overall obtained results, it can be concluded that NF2 reduced the oxidative stress and inflammatory response by scavenging free radicals caused by LPS.
Collapse
Affiliation(s)
- Raghul Murugan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Ravi Rajesh
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - B Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Annie Juliet
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, Texas, 78712, USA
| | - S Renganayagi
- Department of Advanced Zoology and Biotechnology, Chellammal Women's College, Guindy, Chennai, 600 032, Tamil Nadu, India
| | - Pushparathinam Gopinath
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| |
Collapse
|
12
|
Carica papaya L. Leaves: Deciphering Its Antioxidant Bioactives, Biological Activities, Innovative Products, and Safety Aspects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2451733. [PMID: 35720184 PMCID: PMC9203216 DOI: 10.1155/2022/2451733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 01/02/2023]
Abstract
The prevalence of viral infections, cancer, and diabetes is increasing at an alarming rate around the world, and these diseases are now considered to be the most serious risks to human well-being in the modern period. There is a widespread practice in Asian countries of using papaya leaves (C. papaya L.) as herbal medicine, either alone or in combination with prescribed medications, to treat a variety of ailments. The importance of conducting the necessary descriptive studies in order to determine the safety of papaya leaf consumption is also emphasized in the context of their application in the healthcare sector. Electronic databases such as Google Scholar, Scopus, and PubMed were used to gather information on papaya leaves, their therapeutic potential, and clinical evidence-based studies. The literature was gathered from publications on papaya leaves, their therapeutic potential, and clinical evidence-based studies. The antidengue, anticancer, antidiabetic, neuroprotective, and anti-inflammatory effects of papaya leaves discussed in this article are supported by evidence from preclinical, in vivo, in vitro, and clinical trial studies, as well as from other sources. Leaves have been investigated for their mechanism of action as well as their potential to be used in the development of novel herbal products for the health business. According to the reports gathered, only a small number of research demonstrated that leaf extract at high concentrations was hazardous to certain organs. The collective literature reviewed in this review provides insights into the use of papaya leaves as a cure for epidemic diseases, highlighting the phytochemical composition and pharmacological attributes of papaya leaves, as well as the results of various preclinical and clinical studies that have been conducted so far on the subject. The review clearly demonstrates the successful medical evidence for the use of papaya leaf extracts in the healthcare system as a supplemental herbal medication in a variety of clinical settings.
Collapse
|
13
|
Dwivedi MK, Pandey SK, Singh PK. Larvicidal activity of green synthesized zinc oxide nanoparticles from Carica papaya leaf extract. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2072340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Manish Kumar Dwivedi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | | | - Prashant Kumar Singh
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| |
Collapse
|
14
|
Carica papaya Leaf Juice for Dengue: A Scoping Review. Nutrients 2022; 14:nu14081584. [PMID: 35458146 PMCID: PMC9030784 DOI: 10.3390/nu14081584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
The potential therapeutic effect of Carica papaya leaf juice has attracted wide interest from the public and scientists in relieving dengue related manifestations. Currently, there is a lack of evaluated evidence on its juice form. Therefore, this scoping review aims to critically appraise the available scientific evidence related to the efficacy of C. papaya leaf juice in dengue. A systematic search was performed using predetermined keywords on two electronic databases (PubMed and Google Scholar). Searched results were identified, screened and appraised to establish the association between C. papaya and alleviating dengue associated conditions. A total of 28 articles (ethnobotanical information: three, in vitro studies: three, ex vivo studies: one, in vivo study: 13, clinical studies: 10) were included for descriptive analysis, which covered study characteristics, juice preparation/formulations, study outcomes, and toxicity findings. Other than larvicidal activity, this review also reveals two medicinal potentials of C. papaya leaf juice on dengue infection, namely anti-thrombocytopenic and immunomodulatory effects. C. papaya leaf juice has the potential to be a new drug candidate against dengue disease safely and effectively.
Collapse
|
15
|
The Future of Carica papaya Leaf Extract as an Herbal Medicine Product. Molecules 2021; 26:molecules26226922. [PMID: 34834014 PMCID: PMC8622926 DOI: 10.3390/molecules26226922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022] Open
Abstract
Carica papaya (papaya) leaf extract has been used for a long time in a traditional medicine to treat fever in some infectious diseases such as dengue, malaria, and chikungunya. The development of science and technology has subsequently made it possible to provide evidence that this plant is not only beneficial as an informal medication, but also that it has scientifically proven pharmacological and toxicological activities, which have led to its formal usage in professional health care systems. The development of formulations for use in nutraceuticals and cosmeceuticals has caused this product to be more valuable nowadays. The use of good manufacturing practice (GMP) standards, along with the ease of registering this product facilitated by policies of the national government, will absolutely increase the value of papaya leaf extract as a vital nutraceutical and cosmeceutical products in the near future. In this article, we review the potential of papaya leaf extract to be a high-value commodity in terms of its health effects as well as its industrial benefits.
Collapse
|
16
|
|
17
|
Zaoui Y, Ramli Y, Tan SL, Tiekink ER, Chemlal L, Mague JT, Taoufik J, Faouzi MEA, Ansar M. Synthesis, structural characterisation and theoretical studies of a novel pyridazine derivative: Investigations of anti-inflammatory activity and inhibition of α-glucosidase. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Sarker MMR, Khan F, Mohamed IN. Dengue Fever: Therapeutic Potential of Carica papaya L. Leaves. Front Pharmacol 2021; 12:610912. [PMID: 33981215 PMCID: PMC8109180 DOI: 10.3389/fphar.2021.610912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
Dengue, a very widespread mosquito-borne infectious disease caused by Aedes aegypti virus, has been occurring during the monsoons every year. The prevalence and incidence of dengue fever and death due to its complications have been increased drastically in these recent years in Bangladesh, Philippines, Thailand, Brazil, and India. Recently, dengue had spread in an epidemic form in Bangladesh, Thailand, and Philippines. Although the infection affected a large number of people around the world, there is no established specific and effective treatment by synthetic medicines. In this subcontinent, Malaysia could effectively control its incidences and death of patients using alternative medication treatment mainly prepared from Carica papaya L. leaves along with proper care and hospitalization. Papaya leaves, their juice or extract, as well as their different forms of preparation have long been used traditionally for treating dengue fever and its complications to save patients’ lives. Although it is recommended by traditional healers, and the general public use Papaya leaves juice or their other preparations in dengue fever, this treatment option is strictly denied by the physicians offering treatment in hospitals in Bangladesh as they do not believe in the effectiveness of papaya leaves, thus suggesting to patients that they should not use them. In Bangladesh, 1,01,354 dengue patients have been hospitalized, with 179 deaths in the year 2019 according to information from the Institute of Epidemiology, Disease Control, and Research as well as the Directorate General of Health Services of Bangladesh. Most of the patients died because of the falling down of platelets to dangerous levels and hemorrhage or serious bleeding. Therefore, this paper aims to critically review the scientific basis and effectiveness of Carica papaya L. leaves in treating dengue fever based on preclinical and clinical reports. Thrombocytopenia is one of the major conditions that is typical in cases of dengue infection. Besides, the infection and impairment of immunity are concerned with dengue patients. This review summarizes all the scientific reports on Carica papaya L. for its ability on three aspects of dengue: antiviral activities, prevention of thrombocytopenia and improvement of immunity during dengue fever.
Collapse
Affiliation(s)
- Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhanmondi, Dhaka, Bangladesh.,Pharmacology and Toxicology Research Division, Health Med Science Research Limited, Dhaka, Bangladesh
| | - Farzana Khan
- Department of Pharmacy, State University of Bangladesh, Dhanmondi, Dhaka, Bangladesh.,Pharmacology and Toxicology Research Division, Health Med Science Research Limited, Dhaka, Bangladesh
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia (The National University of Malaysia), Cheras, Malaysia
| |
Collapse
|
19
|
Komolafe K, Komolafe TR, Fatoki TH, Akinmoladun AC, Brai BIC, Olaleye MT, Akindahunsi AA. Coronavirus Disease 2019 and Herbal Therapy: Pertinent Issues Relating to Toxicity and Standardization of Phytopharmaceuticals. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2021; 31:142-161. [PMID: 33727754 PMCID: PMC7951132 DOI: 10.1007/s43450-021-00132-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a virulent viral disease that has now become a public health emergency of global significance and still without an approved treatment regimen or cure. In the absence of curative drugs and with vaccines development still in progress, alternative approaches to stem the tide of the pandemic are being considered. The potential of a phytotherapeutic approach in the management of the dreaded disease has gained attention, especially in developing countries, with several claims of the development of anti-COVID-19 herbal formulations. This is a plausible approach especially with the increasing acceptance of herbal medicine in both alternative and orthodox medical practices worldwide. Also, the established efficacy of herbal remedies in the treatment of numerous viral diseases including those caused by coronaviruses, as well as diseases with symptoms associated with COVID-19, presents a valid case for serious consideration of herbal medicine in the treatment of COVID-19. However, there are legitimate concerns and daunting challenges with the use of herbs and herbal products. These include issues of quality control, unethical production practice, inadequate information on the composition, use and mechanisms, weak regulatory policies, herb-drug interactions and adverse reactions, and the tendency for abuse. This review discusses the feasibility of intervention with herbal medicine in the COVID-19 pandemic and the need to take proactive measures to protect public health by improving the quality and safety of herbal medicine deployed to combat the disease. Graphical abstract. Supplementary Information The online version contains supplementary material available at 10.1007/s43450-021-00132-x.
Collapse
Affiliation(s)
- Kayode Komolafe
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, PMB 373, Oye-Ekiti, Nigeria
| | - Titilope Ruth Komolafe
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, PMB 373, Oye-Ekiti, Nigeria
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | - Toluwase Hezekiah Fatoki
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | - Afolabi Clement Akinmoladun
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | - Bartholomew I. C. Brai
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, PMB 373, Oye-Ekiti, Nigeria
| | - Mary Tolulope Olaleye
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | | |
Collapse
|
20
|
Singh SP, Kumar S, Mathan SV, Tomar MS, Singh RK, Verma PK, Kumar A, Kumar S, Singh RP, Acharya A. Therapeutic application of Carica papaya leaf extract in the management of human diseases. Daru 2020; 28:735-744. [PMID: 32367410 PMCID: PMC7704890 DOI: 10.1007/s40199-020-00348-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Papaya (Carica papaya Linn.) belongs to the family Caricaceae and is well known for its therapeutic and nutritional properties all over the world. The different parts of the papaya plant have been used since ancient times for its therapeutic applications. Herein, we aimed to review the anticancer, anti-inflammatory, antidiabetic and antiviral activities of papaya leaf. METHODS All information presented in this review article regarding the therapeutic application of Carica papaya leaf extract has been acquired by approaching various electronic databases, including Scopus, Google scholar, Web of science, and PubMed. The keywords Carica papaya, anticancer, anti-inflammatory, immunomodulatory, and phytochemicals were explored until December 2019. RESULTS The papaya plant, including fruit, leaf, seed, bark, latex, and their ingredients play a major role in the management of disease progression. Carica papaya leaf contains active components such as alkaloids, glycosides, tannins, saponins, and flavonoids, which are responsible for its medicinal activity. Additionally, the leaf juice of papaya increases the platelet counts in people suffering from dengue fever. CONCLUSION The major findings revealed that papaya leaf extract has strong medicinal properties such as antibacterial, antiviral, antitumor, hypoglycaemic and anti-inflammatory activity. Furthermore, clinical trials are needed to explore the medicative potential of papaya leaf. Graphical abstract Graphical abstract showing the medicinal properties of Carica papaya leaf.
Collapse
Affiliation(s)
- Surya P Singh
- Department of Zoology, Banaras Hindu University, Varanasi, UP, India
| | - Sanjay Kumar
- Cancer and Radiation Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sivapar V Mathan
- Cancer and Radiation Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Rishi Kant Singh
- Department of Zoology, Banaras Hindu University, Varanasi, UP, India
| | | | - Amit Kumar
- Department of Zoology, Banaras Hindu University, Varanasi, UP, India
| | - Sandeep Kumar
- Department of Zoology, Banaras Hindu University, Varanasi, UP, India
| | - Rana P Singh
- Cancer and Radiation Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Arbind Acharya
- Department of Zoology, Banaras Hindu University, Varanasi, UP, India.
| |
Collapse
|
21
|
Thota SM, Balan V, Sivaramakrishnan V. Natural products as home-based prophylactic and symptom management agents in the setting of COVID-19. Phytother Res 2020; 34:3148-3167. [PMID: 32881214 PMCID: PMC7461159 DOI: 10.1002/ptr.6794] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease (COVID‐19) caused by the novel coronavirus (SARS‐CoV‐2) has rapidly spread across the globe affecting 213 countries or territories with greater than six million confirmed cases and about 0.37 million deaths, with World Health Organization categorizing it as a pandemic. Infected patients present with fever, cough, shortness of breath, and critical cases show acute respiratory infection and multiple organ failure. Likelihood of these severe indications is further enhanced by age as well as underlying comorbidities such as diabetes, cardiovascular, or thoracic problems, as well as due to an immunocompromised state. Currently, curative drugs or vaccines are lacking, and the standard of care is limited to symptom management. Natural products like ginger, turmeric, garlic, onion, cinnamon, lemon, neem, basil, and black pepper have been scientifically proven to have therapeutic benefits against acute respiratory tract infections including pulmonary fibrosis, diffuse alveolar damage, pneumonia, and acute respiratory distress syndrome, as well as associated septic shock, lung and kidney injury, all of which are symptoms associated with COVID‐19 infection. This review highlights the potential of these natural products to serve as home‐based, inexpensive, easily accessible, prophylactic agents against COVID‐19.
Collapse
Affiliation(s)
- Sai Manohar Thota
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, India
| | - Venkatesh Balan
- Engineering Technology Department, College of Technology, University of Houston, Sugar Land, Texas, USA
| | | |
Collapse
|
22
|
Carica papaya: comprehensive overview of the nutritional values, phytochemicals and pharmacological activities. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00481-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Vitex negundo L. leaf extract inhibits IL-6 and TNF-α secretion and phagocytosis in human leukocytes. J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Nguyen TH, Nachtergael A, Nguyen TM, Cornet V, Duez P, Muller M, Ly Huong DT, Kestemont P. Anti-inflammatory properties of the ethanol extract from Clerodendrum cyrtophyllum Turcz based on in vitro and in vivo studies. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112739. [PMID: 32142867 DOI: 10.1016/j.jep.2020.112739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clerodendrum cyrtophyllum Turcz, a plant belonging to the Verbenaceae family, has been used in traditional medicine for the treatment of various inflammatory diseases in many Asian countries. AIM OF THE STUDY The study aimed to evaluate anti-inflammatory properties of the ethanol extract from Clerodendrum cyrthophyllum Turcz leaves (EE-CC) through in vitro and in vivo models. MATERIAL AND METHODS Total phenolic and flavonoid contents in the extract were determined using colorimetric methods and HPTLC. In red blood cell membrane stabilization model, rat erythrocyte suspension was treated with crude ethanol extract at different concentrations, the hemoglobin content of the supernatant solution released by red blood hemolysis was estimated. We also evaluated the effects of the ethanol extract from this plant on the production of nitric oxide (NO), tumor necrosis factor alpha (TNF-α) in stimulated RAW 264.7 cells. In order to elucidate its anti-inflammatory molecular mechanisms, we further evaluated the effects of the EE-CC on the expression of the inflammatory genes in inflammation-induced zebrafish model by tail-cutting using qPCR analysis. RESULTS Colorimetric methods and HPTLC revealed high phenolic and flavonoid contents in the extract. In the red blood cell membrane stabilization model, the amount of hemoglobin released by red blood hemolysis significantly decreased in the presence of EE-CC, demonstrating a strong membrane stabilizing activity. EE-CC did not cause any toxic effect on cell viability but strongly inhibited NO and TNF-ɑ release due to LPS induction. The association with EE-CC significantly reduced the expression of cox-2, pla2, c3a, il-1(il1fma), il-8 (cxcl8b.1), tnf-α, and nf-ƙb, while increased the expression of the anti-inflammatory cytokine il-10 gene in cut-tail induced inflammation of zebrafish model. CONCLUSIONS Taken together, the results suggest that the raw ethanol extract from C. cyrtophyllum Turcz leaves presents potent anti-inflammatory activities and may be useful for the treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Thu Hang Nguyen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium; Pharmacology Department, Hanoi University of Pharmacy, Viet Nam
| | | | - Thi Mai Nguyen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium; Faculty of Fisheries and Aquaculture, Vietnam National University of Agriculture (VNUA), Hanoi, Viet Nam
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons, Belgium
| | - Marc Muller
- Dept. Life Sciences, GIGA-R, Lab. for Organogenesis and Regeneration, University of Liege, Belgium
| | - Duong Thi Ly Huong
- Department of Pharmacology and Clinical Pharmacy, School of Medicine and Pharmacy, Vietnam National University, Viet Nam
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium.
| |
Collapse
|
25
|
Sathyapalan DT, Padmanabhan A, Moni M, P-Prabhu B, Prasanna P, Balachandran S, Trikkur SP, Jose S, Edathadathil F, Anilkumar JO, Jayaprasad R, Koramparambil G, Kamath RC, Menon V, Menon V. Efficacy & safety of Carica papaya leaf extract (CPLE) in severe thrombocytopenia (≤30,000/μl) in adult dengue - Results of a pilot study. PLoS One 2020; 15:e0228699. [PMID: 32074143 PMCID: PMC7029881 DOI: 10.1371/journal.pone.0228699] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 01/21/2020] [Indexed: 11/22/2022] Open
Abstract
Severe thrombocytopenia in dengue often prompts platelet transfusion primarily to reduce bleeding risk. In India, about 11–43% of dengue patients report receiving platelet transfusions which is considered scarce and expensive especially in resource limited settings. Herein, we evaluated the efficacy and safety of Carica papaya leaf extract (CPLE) in the management of severe thrombocytopenia (≤30,000/μL) in dengue infection. 51 laboratory confirmed adult dengue patients with platelet counts ≤30,000/μL were randomly assigned to either treatment (n = 26) or placebo (n = 24) group. By day 3, CPLE treated patients reported significantly (p = 0.007) increased platelet counts (482%± 284) compared to placebo (331%±370) group. In the treatment group, fewer patients received platelet transfusions (1/26 v/s 2/24) and their median time for platelets to recover to ≥ 50,000/μL was 2 days (IQR 2–3) compared to 3 days (IQR 2–4) in placebo. Overall, CPLE was safe and well tolerated with no significant decrease in mean hospitalization days. Plasma cytokine profiling revealed that by day 3, mean percent increase in TNFα and IFNγ levels in treatment group was less compared to that observed in placebos; (TNFα: 58.6% v/s 127.5%; p = 0.25 and IFNγ: 1.93% v/s 62.6% for; p = 0.12). While a mean percent increase in IL-6 levels occurred in placebos (15.92%±29.93%) by day 3, a decrease was noted in CPLE group (12.95%±21.75%; p = 0.0232). Inversely, CPLE treated patients reported a mean percent increase compared to placebo by day 3 (143% ±115.7% v/s 12.03%± 48.4%; p = 0.006). Further, by day 3, a faster clearance kinetics of viral NS1 antigenemia occurred–mean NS1 titers in treatment group decreased to 97.3% compared to 88% in placebos (p = 0.023). This study demonstrates safety and efficacy of CPLE in increasing platelet counts in severe thrombocytopenia in dengue infections. A possible immunomodulatory and antiviral activity may be attributed to CPLE treatment. These findings merit validation in larger prospective studies. Trial registration Name of the registry: Clinical Trials Registry—India (CTRI) Registration No.: CTRI-REF/2017/02/013314
Collapse
Affiliation(s)
- Dipu T. Sathyapalan
- Department of General Medicine, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Athira Padmanabhan
- Clinical Virology Laboratory, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Merlin Moni
- Department of General Medicine, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Binny P-Prabhu
- Department of General Medicine, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Preetha Prasanna
- Department of Medical Administration, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Sabarish Balachandran
- Department of Emergency Medicine, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Sreekrishnan P. Trikkur
- Department of Emergency Medicine, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Soumya Jose
- Clinical Virology Laboratory, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Fabia Edathadathil
- Department of Allied Health Sciences, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Jagan O. Anilkumar
- Clinical Virology Laboratory, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Rekha Jayaprasad
- Department of Medical Administration, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | | | - Ravindra C. Kamath
- Department of Integrated & Holistic Medicine, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Veena Menon
- Clinical Virology Laboratory, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Vidya Menon
- Department of General Medicine, Amrita Institute of Medical Sciences, Kochi, Kerala, India
- * E-mail:
| |
Collapse
|
26
|
Anyasor GN, Okanlawon AA, Ogunbiyi B. Evaluation of anti-inflammatory activity of Justicia secunda Vahl leaf extract using in vitro and in vivo inflammation models. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0137-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Abstract
Background
Justicia secunda Vahl. is a medicinal plant used in ethnomedical practice as therapy to manage inflammation. Therefore, this study was designed to evaluate the anti-inflammatory activity of methanol extract of J. secunda leaves (MEJSL) using in vitro and in vivo inflammation models.
Methods
Seventy-percent MEJSL was prepared following standard procedure. In vitro anti-inflammatory assays were performed using heat-induced bovine serum albumin (BSA) denaturation and erythrocyte membrane stabilization assays. Carrageenan and formaldehyde induced inflammation in rat models were used to evaluate the anti-inflammatory activity of MEJSL in vivo. Diclofenac sodium was used as a reference drug. In addition, liver and kidney function assays and hematological analysis were carried out.
Results
Data revealed that varying concentrations of MEJSL significantly (P < 0.05) inhibited heat-induced BSA denaturation and stabilized erythrocyte membrane against hypotonicity-induced hemolysis when compared with diclofenac sodium in a concentration-dependent manner. In vivo study showed that 10 mg/kg body weight (b.w.) diclofenac sodium, 100 and 300 mg/kg b.w. MEJSL suppressed carrageenan-induced paw edema at the sixth hour by 71.14%, 83.08%, and 89.05%, respectively. Furthermore, 10 mg/kg b.w. diclofenac sodium, 100 and 300 mg/kg b.w. MEJSL inhibited formaldehyde-induced paw edema by 72.53%, 74.73%, and 76.48%, respectively. Animals treated with varying doses of MEJSL had reduced plasma aspartate aminotransferase and alanine aminotransferase activities; urea and creatinine concentrations; and modulated hematological parameters when compared with the untreated control group.
Conclusions
Findings from this study showed that MEJSL exhibited substantial anti-inflammatory actions in the in vitro and in vivo models. It also indicated that MEJSL anti-inflammatory mechanisms of action could be through interference with phase 2 inflammatory stressors, upregulation of cytoprotective genes, stabilization of inflammatory cell membranes and immunomodulatory activity.
Collapse
|
27
|
Abstract
Background:
Carica papaya, a tree-like herb, is cultivated in more than 50 tropical
and subtropical countries worldwide. The parts [leaves, fruit (ripe and unripe), seeds and
latex] are used as food as well as traditional medicine in several ways for a number of diseases.
Papaya, with a variety of phytochemicals like carotenoids, polyphenols, benzyl isothiocynates,
benzyl glucosinates, prunasin (cyanogenic substrate), papain and chymopapain, alkaloids,
phenolic compounds, flavonoids, vitamins (A, C, E), carotenoids, cyanogenicglucosides,
cystatin, and glucosinolates exhibits significant health benefits ranging from digestive
to immune modulation. These compounds have antioxidant, chemoprotective, anti-diabetic,
anti-bacterial, anti-plasmodial and anti-fungal activities. Papaya aqueous leaf extract was
evaluated for immunomodulatory and anti-tumor activities through cytokine modulation
with Th1 type shift in human immune system through molecular studies. The platelet augmenting
potential of aqueous leaf extract has been reported in numerous clinical studies and
deserves special mention.
Objective:
The scientific knowledge of carica papaya in the post-genomic era including molecular
studies and clinical trials is discussed in the review.
Methods:
The published literature on botany, chemical composition, ethnopharmacology,
and uses of papaya in food and medical industry was searched through databases like Pub-
Med, Scopus, and Google scholar to comprehend the benefits of Carica papaya for human
use with around more than 600 published peer- reviewed papers.
Results:
Many traditional and novel uses of Carica papaya for the human benefit are detailed
in the review that significantly adds to the scientific knowledge of curious readers.
Conclusion:
Each component of the papaya plant is rich in phytochemicals and is economically
important. Most of the phytochemicals are linked to biological functions and influence
a variety of cellular processes; hence they have implications in refining human health.
Collapse
Affiliation(s)
- Dave Heena
- Directorate of Research & Innovation, Nirma University, Ahmedabad - 382 481, India
| | - Trivedi Sunil
- FRIGE's Institute of Human Genetics, Ahmedabad - 380015, India
| |
Collapse
|
28
|
Rajapakse S, de Silva NL, Weeratunga P, Rodrigo C, Sigera C, Fernando SD. Carica papaya extract in dengue: a systematic review and meta-analysis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:265. [PMID: 31601215 PMCID: PMC6788024 DOI: 10.1186/s12906-019-2678-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022]
Abstract
Background Carica papaya (CP) extract is becoming popular as an unlicensed herbal remedy purported to hasten recovery in dengue infection, mostly based on observations that it may increase platelet counts. This systematic review and meta-analysis aims to critically analyze the evidence from controlled clinical trials on the efficacy and safety of CP extract in the treatment of dengue infection. Methods PubMed, LILACS and Google Scholar were searched for randomized or non-randomized trials enrolling patients with suspected or confirmed dengue where CP extract was compared, as a treatment measure, against standard treatment. Recovery of platelet counts as well as other clinical indicators of favourable outcome (duration of hospital stay, prevention of plasma leakage, life threatening complications, and mortality) were assessed. Results Nine studies (India-6, Pakistan-1, Indonesia-1, Malaysia-1) met the inclusion criteria. Seven studies showed an increase in platelet counts in patients receiving CP extract, while one study showed no significant difference between the two groups, and direct comparison was not possible in the remaining study. Serious adverse events were not reported. CP extract may reduce the duration of hospital stay (mean difference − 1.98 days, 95% confidence interval − 1.83 to − 2.12, 3 studies, 580 participants, low quality evidence), and cause improvement in mean platelet counts between the first and fifth day of treatment (mean difference 35.45, 95% confidence interval 23.74 to 47.15, 3 studies, 129 participants, low quality evidence). No evidence was available regarding other clinical outcomes. Conclusions The clinical value of improvement in platelet count or early discharge is unclear in the absence of more robust indicators of favourable clinical outcome. Current evidence is insufficient to comment on the role of CP extract in dengue. There is a need for further well designed clinical trials examining the effect of CP on platelet counts, plasma leakage, other serious manifestations of dengue, and mortality, with clearly defined outcome measures.
Collapse
|
29
|
Pandita A, Mishra N, Gupta G, Singh R. Use of papaya leaf extract in neonatal thrombocytopenia. Clin Case Rep 2019; 7:497-499. [PMID: 30899480 PMCID: PMC6406160 DOI: 10.1002/ccr3.2025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/01/2019] [Accepted: 01/14/2019] [Indexed: 12/01/2022] Open
Abstract
Thrombocytopenia is a common condition in neonates. Neonatal thrombocytopenia can cause serious complications such as intraventricular hemorrhage. Papaya leaf extract may be a safe and effective therapy in persistent refractory neonatal thrombocytopenia. Papaya leaf extract was effective for improving platelet count in our baby with persistent thrombocytopenia. However, with no previous evidence of its use in neonates, its use is still experimental and should only be considered in refractory cases after team meeting and detailed discussion with family.
Collapse
Affiliation(s)
- Aakash Pandita
- Department of NeonatologySanjay Gandhi Post Graduate Institute of Medical SciencesLucknowIndia
| | - Namita Mishra
- Department of NeonatologySanjay Gandhi Post Graduate Institute of Medical SciencesLucknowIndia
| | - Girish Gupta
- Department of NeonatologySanjay Gandhi Post Graduate Institute of Medical SciencesLucknowIndia
| | - Rachna Singh
- Department of NeonatologySanjay Gandhi Post Graduate Institute of Medical SciencesLucknowIndia
| |
Collapse
|
30
|
Perera SD, Jayawardena UA, Jayasinghe CD. Potential Use of Euphorbia hirta for Dengue: A Systematic Review of Scientific Evidence. J Trop Med 2018; 2018:2048530. [PMID: 29849664 PMCID: PMC5926475 DOI: 10.1155/2018/2048530] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/12/2018] [Indexed: 12/22/2022] Open
Abstract
Euphorbia hirta commonly known as Tawa-Tawa is a plant used in folklore medicine in the Philippines for the treatment of dengue. Though, E. hirta has been extensively investigated for numerous bioactivities, limited studies have been conducted on the antidengue activity. Thus, the present study provides a comprehensive review of studies conducted on the antidengue activity of E. hirta. A systematic literature survey was carried out in scientific databases, PubMed®, Scopus, and Google Scholar, for research carried on the antidengue activity of E. hirta. The literature search identified a total of 867 articles: databases PubMed = 6, Scopus SciVerse® = 423, and Google Scholar = 437; one additional article was identified by searching reference lists. Eight full papers were entitled to the review; out of those, two studies focused on ethnobotanical surveys, three on animal experiments, one on human trial, and two on in vitro antiviral activities, and one was computational study. The available evidence conclusively demonstrates the potential of E. hirta against dengue as it holds significant antiviral and platelet increasing activities. However, the number of studies conducted to validate its antidengue activity was found to be inadequate. Hence, well-controlled clinical trials and contemporary pharmacological approaches including activity guided fractionation and elucidation of the mode of action are encouraged to establish the use of E. hirta for dengue.
Collapse
Affiliation(s)
- Sashini D. Perera
- Department of Zoology, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Uthpala A. Jayawardena
- Department of Zoology, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Chanika D. Jayasinghe
- Department of Zoology, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| |
Collapse
|
31
|
Jayasinghe CD, Gunasekera DS, De Silva N, Jayawardena KKM, Udagama PV. Mature leaf concentrate of Sri Lankan wild type Carica papaya Linn. modulates nonfunctional and functional immune responses of rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:230. [PMID: 28446195 PMCID: PMC5406937 DOI: 10.1186/s12906-017-1742-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 04/13/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND The leaf concentrate of Carica papaya is a traditionally acclaimed immunomodulatory remedy against numerous diseases; nonetheless comprehensive scientific validation of this claim is limited. The present study thus investigated the immunomodulatory potential of Carica papaya mature leaf concentrate (MLCC) of the Sri Lankan wild type cultivar using nonfunctional and functional immunological assays. METHODS Wistar rats (N = 6/ group) were orally gavaged with 3 doses (0.18, 0.36 and 0.72 ml/100g body weight) of the MLCC once daily for 3 consecutive days. Selected nonfunctional (enumeration of immune cells and cytokine levels) and functional (cell proliferation and phagocytic activity) immunological parameters, and acute toxic effects were determined using standard methods. Effect of the MLCC (31.25, 62.5, 125, 250, 500 and 1000 μg/ml) on ex vivo proliferation of bone marrow cells (BMC) and splenocytes (SC), and in vitro phagocytic activity of peritoneal macrophages (PMs), and their corresponding cytokine responses were evaluated. The phytochemical profile of the MLCC was established using liquid chromatography-mass spectrometry (LS-MS) and Gas chromatography-mass spectrometry (GC-MS). RESULTS Counts of rat platelets, total leukocytes, lymphocyte and monocyte sub populations, and BMCs were significantly augmented by oral gavage of the MLCC (p < 0.05). The highest MLCC dose tested herein significantly reduced pro inflammatory cytokines, Interleukin 6 (IL-6) and Tumor Necrosis Factor α (TNF α) levels of rats (p < 0.05). The in vivo phagocytic index of rat PMs significantly increased by oral gavage of all three doses of the MLCC (p < 0.05). In vitro phagocytic activity of rat PMs were enhanced by the MLCC and triggered a Th1 biased cytokine response. The MLCC at low concentrations elicited ex vivo proliferation of BMC (31.25 μg/ml) and SC (31.25 and 62.5 μg/ml) respectively. Conversely, high concentrations (500 and 1000 μg/ml) exhibited cytotoxicity of both BMC and SC with significant modulation of cytokines. Chemical profile of the MLCC revealed the presence of several immunomodulatory compounds. The oral gavage of the MLCC was found to be safe in terms of both hepatic and renal toxicities. CONCLUSION The present study established that the mature leaf concentrate (MLCC) of Carica papaya Sri Lankan wild type cultivar is orally active, safe and effectively modulates nonfunctional and functional immunological parameters of rats that unequivocally corroborate the traditional medical claims.
Collapse
Affiliation(s)
- Chanika Dilumi Jayasinghe
- Department of Zoology & Environment Sciences, Faculty of Science, University of Colombo, Colombo, 3 Sri Lanka
| | - Dinara S Gunasekera
- Sri Lanka Institute of Nanotechnology, Mahenwatte, Pitipana, Homagama, Sri Lanka
| | - Nuwan De Silva
- Sri Lanka Institute of Nanotechnology, Mahenwatte, Pitipana, Homagama, Sri Lanka
| | | | - Preethi Vidya Udagama
- Department of Zoology & Environment Sciences, Faculty of Science, University of Colombo, Colombo, 3 Sri Lanka
| |
Collapse
|
32
|
Chinnappan S, Ramachandrappa VS, Tamilarasu K, Krishnan UM, Pillai AKB, Rajendiran S. Inhibition of Platelet Aggregation by the Leaf Extract of Carica papaya During Dengue Infection: An In Vitro Study. Viral Immunol 2016; 29:164-8. [PMID: 26910599 DOI: 10.1089/vim.2015.0083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dengue cases were reported to undergo platelet activation and thrombocytopenia by a poorly understood mechanism. Recent studies suggested that Carica papaya leaf extract could recover the platelet count in dengue cases. However, no studies have attempted to unravel the mechanism of the plant extract in platelet recovery. Since there are no available drugs to treat dengue and considering the significance of C. papaya in dengue treatment, the current study aimed to evaluate two research questions: First one is to study if the C. papaya leaf extract exerts its action directly on platelets and second one is to understand if the extract can specifically inhibit the platelet aggregation during dengue viral infection. Sixty subjects with dengue positive and 60 healthy subjects were recruited in the study. Platelet-rich plasma (PRP) and platelet-poor plasma were prepared from both the dengue-infected and healthy control blood samples. Effect of the leaf extract obtained from C. papaya leaves was assessed on plasma obtained as well as platelets collected from both healthy and dengue-infected individuals. Platelet aggregation was significantly reduced when leaf extract preincubated with dengue plasma was added into control PRP, whereas no change in aggregation when leaf extract incubated-control plasma was added into control PRP. Upon direct addition of C. papaya leaf extract, both dengue PRP and control PRP showed a significant reduction in platelet aggregation. Within the dengue group, PRP from severe and nonsevere cases showed a significant decrease in aggregation without any difference between them. From the study, it is evident that C. papaya leaf extract can directly act on platelet. The present study, the first of its kind, found that the leaf extract possesses a dengue-specific neutralizing effect on dengue viral-infected plasma that may exert a protective role on platelets.
Collapse
Affiliation(s)
- Shobia Chinnappan
- 1 Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER) , Puducherry, India
| | | | - Kadhiravan Tamilarasu
- 2 Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER) , Puducherry, India
| | | | - Agiesh Kumar Balakrishna Pillai
- 3 School of Chemical and Biotechnology, SASTRA University , Thanjavur, India .,4 Central Inter-Disciplinary Research Facility (CIDRF) , A Unit of Sri Balaji Educational and Charitable Public Trust, Puducherry, India
| | - Soundravally Rajendiran
- 1 Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER) , Puducherry, India
| |
Collapse
|
33
|
Charan J, Saxena D, Goyal JP, Yasobant S. Efficacy and safety of Carica papaya leaf extract in the dengue: A systematic review and meta-analysis. Int J Appl Basic Med Res 2016; 6:249-254. [PMID: 27857891 PMCID: PMC5108100 DOI: 10.4103/2229-516x.192596] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Dengue is an infectious disease associated with high mortality and morbidity. Being a viral disease, there is no specific drug available for treatment. There are some reports that Carica papaya leaf extract may improve the clinical condition of dengue patients; however, to support this, at present, there is no systematically searched and synthesized evidence available. OBJECTIVES This systematic review and meta-analysis was designed to search the available evidence related to the efficacy and safety of C. papaya leaf extract in dengue and to synthesize the evidence in meaningful form through meta-analysis so that inference can be drawn. MATERIALS AND METHODS Randomized controlled trials related to the efficacy and safety of C. papaya leaf extract in dengue were searched from PubMed, Cochrane Clinical Trial Registry and Google Scholar. The primary endpoint was mortality, and secondary endpoints were increase in platelet count, hospitalization days, and Grade 3 and 4 adverse events. Data related to primary and secondary endpoints were pooled together and analyzed by review manager (Review Manager (RevMan) Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, Denmark) software. The random effect model was used. The bias was analyzed by the Cochrane risk of bias tool. RESULTS Total four trials enrolling 439 subjects were included in the analysis. Of 439 subjects, data of 377 subjects were available for analysis. C. papaya leaf extract was found to be associated with increase in platelet count in the overall analysis (mean difference [MD] =20.27 [95% confidence interval (CI) 6.21-34.73; P = 0.005]) and analysis after 4th day (MD = 28.25 [95% CI 14.14-42.37; P < 0.0001]). After 48 h, there was no significant difference between C. papaya and control group (MD = 13.38 [95% CI - 7.71-34.51; P = 0.21]). There was significant decrease in hospitalization days in the C. papaya group (MD = 1.90 [95% CI 1.62-2.18; P < 0.00001]). Because of nonavailability of data in published clinical trials, mortality, and adverse events cannot be pooled. CONCLUSION C. papaya leaf extract can be considered as a potential candidate for increase in platelet count in patients of dengue, however; there is need of high-quality evidence in the form of large clinical trials before a decision related to the use of such extract is made.
Collapse
Affiliation(s)
- Jaykaran Charan
- Department of Pharmacology, GMERS Medical College, Dharpur, Patan, India
| | - Deepak Saxena
- Indian Institute of Public Health, Gandhinagar, Gujarat, India
| | - Jagdish Prasad Goyal
- Department of Pediatrics, All India Institute of Medical Science, Rishikesh, Uttrakhand, India
| | - Sandul Yasobant
- Indian Institute of Public Health, Gandhinagar, Gujarat, India
| |
Collapse
|
34
|
|
35
|
Abstract
Dengue is a viral disease that today affects a vast number of people in over 125 countries and is responsible for a sizable number of deaths. In the absence of an effective antiviral drug to treat the disease, various treatments are being investigated. Studies have indicated that the juice of the leaves of the Carica papaya plant from the family Caricaceae could help to increase the platelet levels in these patients. This review describes some of the published studies on this topic. The search was done independently by the two authors using PubMed, Google and the library database and included relevant articles of the last 10 years. A total of 7 studies were included in this review, which were one animal study, one case report, three case series and two randomized controlled trials. Although many of the studies and case reports published in literature lack adequate information, some of the studies do raise the possibility that this treatment could be an important option in the future. Further large-scale studies could establish the usefulness or ineffectiveness of this natural product in the treatment of dengue.
Collapse
Affiliation(s)
- N Sarala
- Department of Pharmacology, Sri Devaraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar, Karnataka, India
| | - Ss Paknikar
- Consultant Medical Writer and Editor, Bengaluru, Karnataka, India
| |
Collapse
|
36
|
Karunamoorthi K, Kim HM, Jegajeevanram K, Xavier J, Vijayalakshmi J. Papaya: A gifted nutraceutical plant - a critical review of recent human health research. ACTA ACUST UNITED AC 2014. [DOI: 10.5667/tang.2013.0028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Affiliation(s)
- P Ram Manohar
- Director and Chief Scientific Officer, AVP Research Foundation, Coimbatore, Tamil Nadu, India E-mail:
| |
Collapse
|