1
|
Wang H, Ye Y, Xu J, Xu X, Zhang P, Suo Y, Zhang Y. The protective effect of tiger nut (Cyperus esculentus L.) oil on a male rat model of reproductive disorders induced by cigarette smoke. Food Chem Toxicol 2025; 197:115289. [PMID: 39892734 DOI: 10.1016/j.fct.2025.115289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Cigarette smoke contains many harmful components that can damage the blood-testis barrier, cause changes in testicular tissue structure, and directly or indirectly affect sperm production. Tiger nut (Cyperus esculentus L.) is an underground tuber of a perennial herbaceous plant, and its extract has been shown to have antioxidant properties and the potential to improve male reproductive function. In view of the above, this experiment was designed to investigate the fatty acid composition of tiger nut oil and its protective effect as a daily dietary supplement against cigarette smoke-induced reproductive damage in male rats. By establishing a rat reproductive toxicity model and administering different doses of tiger nut oil by gavage, the protective effect of tiger nut oil on reproductive damage in rats was evaluated. Daily status and signs of the rats were analyzed, serum levels of key hormones were measured, oxidative stress markers and testicular tissue sections were measured, and the results were statistically analysed using Principal Component Analysis. The experimental results indicate that daily consumption of tiger nut oil can improve the reproductive system function in male rats, stabilise related hormone levels and enhance antioxidant capacity.
Collapse
Affiliation(s)
- Haoyu Wang
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| | - Yunshu Ye
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| | - Jiayuan Xu
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| | - Xinyu Xu
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| | - Panpan Zhang
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| | - Yizhen Suo
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| | - Yuhong Zhang
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| |
Collapse
|
2
|
Granata S, Morosini C, Valerii MC, Fagiolino I, Sangiorgi S, Ghini S, Spisni E, Vivarelli F, Fairclough LC, Paolini M, Canistro D. Heat-not-burn technology affects plasma testosterone levels and markers of inflammation, oxidative stress in the testes of rats. FRONTIERS IN TOXICOLOGY 2025; 6:1515850. [PMID: 39902465 PMCID: PMC11788375 DOI: 10.3389/ftox.2024.1515850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/31/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction Heating tobacco products (HTPs) are advanced electronic cigarette models. Classified by the FDA as a modified-risk tobacco product and can be used as part of efforts to quit smoking. Using heat-not-burn (HnB) technology, these devices heat tobacco avoiding complete combustion. Although the levels of toxicants in the mainstream are significantly lower than those observed in tobacco smoke, some recent studies have raised concerns about potential health risks associated with their use, particularly regarding their effects on male gonadal function, which remain largely unexplored. Methods Adult male Sprague-Dawley rats were exposed, whole body, 5 days/week for 4 weeks to HnB mainstream. Results The expression of the cell cycle regulators Bax/Bcl-2 ratio is not affected, along with no changes in p-38. On the other hand, an increase in oxidative stress markers, including those associated with DNA damage, was observed in exposed animals, along with the induction of NF-kB dependent pro-inflammatory mediators: TNF-α, IL-1β, IL-6 and COX-2. Furthermore, inactivation of key androgenic enzymes, such as 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase, together with decreased testosterone synthesis suggest a potential impairment of male gonadal function. Discussion The results indicate that animals exposed to HnB smoke show higher levels of oxidative stress markers, including those associated with DNA damage, as well as higher levels of pro-inflammatory cytokines. The impairment of some androgenic key enzymes and those related to the activity of seminiferous epithelium, together with the decrease in testosterone levels, suggest an impairment of gonadal function through the alteration of some cellular pathways typically associated with tobacco consumption.
Collapse
Affiliation(s)
- Silvia Granata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Maria Chiara Valerii
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Stefano Sangiorgi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Severino Ghini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Lucy C. Fairclough
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Mehdinejadiani S, Khosravizadeh Z, Alizadeh A, Azad N. Effects of substance exposure on gametes and pre-implantation embryos: a narrative review. ZYGOTE 2024; 32:405-420. [PMID: 39523991 DOI: 10.1017/s0967199424000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Substance use refers to the consumption of drugs that have varying degrees of impact on a persons' physical, mental and emotional well-being. While the adverse health effects of drugs have been extensively documented, further research is needed to understand their impact on fertility. Studies have indicated that substance use affects both the male and female reproductive systems. As substance use is more prevalent among young adults compared with the elderly, it appears that individuals of reproductive age are particularly vulnerable to the reproductive impairments associated with substance use. Although numerous studies have reported detrimental effects of substance use on pregnant women and their foetus during the post-implantation stages, there are limited studies on critical pre-implantation period and gamete stages. In this narrative review, we aimed to focus on the most significant evidence regarding the impact of substances on gametes and pre-implantation embryos.
Collapse
Affiliation(s)
- Shayesteh Mehdinejadiani
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khosravizadeh
- Department of Gynecology and Obstetrics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Nahid Azad
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
4
|
Chen L, Mori Y, Nishii S, Sakamoto M, Ohara M, Yamagishi SI, Sekizawa A. Impact of Oxidative Stress on Sperm Quality in Oligozoospermia and Normozoospermia Males Without Obvious Causes of Infertility. J Clin Med 2024; 13:7158. [PMID: 39685616 DOI: 10.3390/jcm13237158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Male factors contribute to approximately 50% of infertile couples. However, obvious causes remain unknown in many cases. This observational study aimed to investigate the associations of clinical and lifestyle parameters with sperm parameters. Methods: This study enrolled 41 men in infertile couples without obvious causes for male infertility from July 2023 to April 2024. Semen samples were evaluated for sperm number, motility, DNA fragmentation, and oxidative stress (OS) marker oxidation-reduction potential (ORP). Blood samples were analyzed for biochemical parameters, including advanced glycation end products (AGEs), and systemic OS marker diacron-reactive oxygen metabolites (d-ROMs). Skin-accumulated AGE levels were identified with an autofluorescence method. Lifestyle factors were assessed with a lifestyle questionnaire. Results: Most of the participants were under 40 years old and non-obese with normal clinical parameters. Multiple regression analyses revealed that body mass index, serum d-ROMs, and semen ORP levels were independently associated with decreased sperm number. Additionally, serum zinc and semen ORP levels were associated with sperm motility. Furthermore, serum zinc and high-density lipoprotein cholesterol levels were associated with sperm progressive motility and DNA fragmentation, respectively. The rest of the clinical and lifestyle factors, including skin-accumulated and serum AGE levels, were not correlated with any sperm parameters. Furthermore, serum d-ROM and semen ORP levels were not correlated with each other or any of the clinical and lifestyle factors. Conclusions: Our present study indicates that both systemic and local OS may be independently involved in sperm abnormality in healthy men without obvious causes for male infertility.
Collapse
Affiliation(s)
- Linji Chen
- Department of Obstetrics and Gynecology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Yusaku Mori
- Department of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Shogo Nishii
- Department of Obstetrics and Gynecology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Miwa Sakamoto
- Department of Obstetrics and Gynecology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Makoto Ohara
- Department of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Sho-Ichi Yamagishi
- Department of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Akihiko Sekizawa
- Department of Obstetrics and Gynecology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| |
Collapse
|
5
|
Liu M, Gou Y, Zou B, Li X, Yang P. Association between serum cotinine and total testosterone in adult males based on NHANES 2011-2016. Sci Rep 2024; 14:23042. [PMID: 39362996 PMCID: PMC11450214 DOI: 10.1038/s41598-024-74482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024] Open
Abstract
The relationship between smoking and testosterone levels in adult males remains a topic of ongoing debate. Serum cotinine is considered a reliable marker of both smoking intensity and exposure to tobacco smoke. Therefore, we aim to examine the association between serum cotinine levels and total testosterone concentrations in adult males using data from the U.S. National Health and Nutrition Examination Survey (NHANES) database. Our study assessed the relationship between serum cotinine and total testosterone using weighted linear regression models and subgroup analysis. A fully adjusted model with smooth curve fitting was employed to investigate the potential nonlinear association between serum cotinine and total testosterone. Threshold effects were analyzed to identify the inflection point between serum cotinine and total testosterone. Indeed, a total of 7797 participants were included in our study. After adjusting for potential confounding variables, the findings indicate a positive association between serum cotinine levels and total testosterone levels (β: 0.05, 95%CI: 0.02, 0.09). Furthermore, applying smoothed curve fitting analysis and threshold effects, an inflection point was detected at a serum cotinine level of 487 ng/ml. Above this threshold, total testosterone levels declined with increasing serum cotinine levels. In conclusion, the findings of our study suggest a positive association between elevated serum cotinine levels and total testosterone levels in adult men. However, it is essential to note that this association may be reversed at excessively high serum cotinine concentrations.
Collapse
Affiliation(s)
- Ming Liu
- Department of Pediatric Surgery, Suining Central Hospital, Suining, Sichuan Province, China
| | - Yunpeng Gou
- Department of Pediatric Surgery, Suining Central Hospital, Suining, Sichuan Province, China
| | - Bing Zou
- Department of Pediatric Surgery, Suining Central Hospital, Suining, Sichuan Province, China
| | - Xianhui Li
- Department of Pediatric Surgery, Suining Central Hospital, Suining, Sichuan Province, China
| | - Ping Yang
- Department of Pediatric Surgery, Suining Central Hospital, Suining, Sichuan Province, China.
| |
Collapse
|
6
|
Farag AGA, Badr EAE, Kholif AOA, Khalifa MN, Ghanem MMM. Serum and Seminal Plasma Levels of Lead and Arsenic in Cigarette Smokers and Their Relation to the Semen Parameters. Biol Trace Elem Res 2024; 202:4450-4458. [PMID: 38180596 PMCID: PMC11339150 DOI: 10.1007/s12011-023-04039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Male infertility along with altered semen parameters have been related to smoking. Smoking-related elevations in serum and seminal lead (Pb) and arsenic (As) may play a role in mediating the toxic effects of smoking on seminogram. This research aims to determine whether smoking has any significant impact on Pb and As levels in the seminal plasma and serum, as well as on the various semen parameters, when compared to nonsmokers. In total, 80 adult males were included: 60 smokers and 20 age-matched nonsmokers. Based on the number of cigarettes smoked/day (CPD), the smokers were categorized into mild (1-10), moderate (11-20), and severe (> 20). The analysis of semen was conducted in accordance with the 2010 WHO laboratory manual. Using an atomic absorption spectrophotometer, Pb and As concentrations in the serum and seminal plasma of all groups were determined. Compared to nonsmokers, smokers had a significantly reduced sperm count, motility, and viability, as well as a larger percentage of aberrant forms (P = 0.001, 0.025, 0.034, 0.002 respectively). Smokers had higher Pb concentrations in their serum and seminal fluid than nonsmokers (P = 0.002, 0.001 respectively). Seminal Pb had a significant negative correlation with sperm count (P = 0.004, r = -0.320). Serum Pb levels were found to positively correlate with seminal Pb levels (P 0.001, r = 0.648), and cigarette smokers had substantially greater seminal As levels than nonsmokers (P = 0.024). Sperm viability was strongly inversely related to seminal As (P = 0.042, r = -0.264). Seminal As levels and aberrant sperm shapes were found to be significantly correlated (P = 0.001, r = 0.414). In smokers, a significant positive relationship between seminal As and seminal Pb was observed. Therefore, semen parameters could be adversely affected by smoking through high levels of Pb and As (P = 0.012, r = 0.298).
Collapse
Affiliation(s)
- Azza Gaber Antar Farag
- Dermatology, Andrology and STDs department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Eman Abd-Elfatah Badr
- Medical Biochemistry and Molecular Biology Department Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Alaa Osama Ali Kholif
- Dermatology, Andrology and STDs department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Mostafa Nabil Khalifa
- Dermatology, Andrology and STDs department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Mai Medhat Mohamed Ghanem
- Dermatology, Andrology and STDs department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt.
- , Birket El Sabe, 32661, Menoufia, Egypt.
| |
Collapse
|
7
|
Yuan S, Zhang Y, Dong PY, Chen Yan YM, Liu J, Zhang BQ, Chen MM, Zhang SE, Zhang XF. A comprehensive review on potential role of selenium, selenoproteins and selenium nanoparticles in male fertility. Heliyon 2024; 10:e34975. [PMID: 39144956 PMCID: PMC11320318 DOI: 10.1016/j.heliyon.2024.e34975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Selenium (Se), a component of selenoproteins and selenocompounds in the human body, is crucial for the development of male reproductive organs, DNA synthesis, thyroid hormone, metabolism, and defence against infections and oxidative damage. In the testis, it must exceed a desirable level since either a shortage or an overabundance causes aberrant growth. The antioxidant properties of selenium are essential for preserving human reproductive health. Selenoproteins, which have important structural and enzymatic properties, control the biological activities of Se primarily. These proteins specifically have a role in metabolism and a variety of cellular processes, such as the control of selenium transport, thyroid hormone metabolism, immunity, and redox balance. Selenium nanoparticles (SeNPs) are less hazardous than selenium-based inorganic and organic materials. Upon being functionalized with active targeting ligands, they are both biocompatible and capable of efficiently delivering combinations of payloads to particular cells. In this review, we discuss briefly the chemistry, structure and functions of selenium and milestones of selenium and selenoproteins. Next we discuss the various factors influences male infertility, biological functions of selenium and selenoproteins, and role of selenium and selenoproteins in spermatogenesis and male fertility. Furthermore, we discuss the molecular mechanism of selenium transport and protective effects of selenium on oxidative stress, apoptosis and inflammation. We also highlight critical contribution of selenium nanoparticles on male fertility and spermatogenesis. Finally ends with conclusion and future perspectives.
Collapse
Affiliation(s)
- Shuai Yuan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Mei Chen Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Liu
- Analytical & Testing Center of Qingdao Agricultural University, Qingdao, 266100, China
| | - Bing-Qiang Zhang
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Meng-Meng Chen
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
8
|
Albeitawi S, Hamadneh J, Alnatsheh M, Soudah O, Marar EA, Ayasrah L, Alawneh M, Husban R, Alshraideh R, Qablan H. Effect of dual tobacco smoking of hookah and cigarettes on semen parameters of infertile men. Tob Induc Dis 2024; 22:TID-22-141. [PMID: 39105165 PMCID: PMC11299236 DOI: 10.18332/tid/191405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION The research regarding the effect of hookah smoking on health is still deficient, even though it has been proven to jeopardize human health by raising the hazard of different types of cancers, infections, and cardiovascular disease. We aimed to study the effect of dual tobacco smoking (hookah and cigarettes) on semen parameters of infertile men. METHODS In this cross-sectional study, we studied the effect of different types of smoking patterns on human semen parameters among men who visited IVF laboratories to do a seminal fluid analysis (SFA). A total number of 761 participants were included, divided into the following: 108 dual smokers, 219 hookah smokers, 222 cigarette smokers, and 212 non-smokers. To analyze the effect of dual smoking on normal morphology, an interaction term between the cigarette index and hookah index was used. RESULTS Multivariable regression analysis after adjustment for age, BMI, education level, children, chronic diseases, varicocele, testicular surgery history, infertility duration, and cause revealed no significant difference in the sperm concentration and the percentage of progressive motility between non-smokers, cigarette smokers, or hookah smokers. However, there was a significant difference in the log of normal morphology percentage between the three groups. Cigarette and hookah smoking were significantly associated with having lower percentages of normal morphology. There was a significant difference in the log-normal morphology %, where light and heavy dual smokers had the least exponential beta of log-normal morphology %, 0.43 (95% CI: 0.33-0.55) and 0.36 (95% CI: 0.24-0.53), respectively. CONCLUSIONS Dual tobacco smoking can adversely affect sperm morphology.
Collapse
Affiliation(s)
- Soha Albeitawi
- Clinical Medical Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Jehan Hamadneh
- Department of Obstetrics and Gynecology, Jordan University of Science and Technology, Irbid, Jordan
| | - Maha Alnatsheh
- In Vitro Fertilization Unit, Istishari Hospital, Amman, Jordan
| | - Ola Soudah
- Clinical Medical Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | | | - Laith Ayasrah
- Clinical Medical Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Mu’nis Alawneh
- Clinical Medical Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Rashed Husban
- Clinical Medical Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Raneem Alshraideh
- Clinical Medical Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Hussien Qablan
- Irbid Specialty Hospital In Vitro Fertilization Center, Irbid Specialty Hospital, Irbid, Jordan
| |
Collapse
|
9
|
Firouzabadi AM, Henkel R, Tofighi Niaki M, Fesahat F. Adverse Effects of Nicotine on Human Sperm Nuclear Proteins. World J Mens Health 2024; 42:42.e66. [PMID: 39028130 DOI: 10.5534/wjmh.240072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 07/20/2024] Open
Abstract
The effects of smoking on human health have long been documented. However, only a few studies have highlighted the direct effects of nicotine on sperm function. Nicotine, as a chemical compound found in tobacco, has been shown to modulate different aspects of spermatogenesis and sperm functions. Nicotine can lead to a reduction in the number of sperm, their motility and functionality. It can change the molecular expressions involved in sperm function, including genes encoding sperm nuclear proteins. The most important nuclear proteins that play a critical role in sperm function are known as H2B histone family, member W, testis-specific (H2BFWT), transition protein 1 (TNP1), transition protein 2 (TNP2), protamine-1 (PRM1), and protamine-2 (PRM2). These proteins are involved in sperm chromatin condensation, which in turn affects fertilization and embryonic development. Any alteration in the expression of these genes due to nicotine exposure/usage may lead to adverse implications in couples' fertility and the health of future generations. Since research in this area is still relatively new, it underscores the importance of understanding the potential side effects of environmental factors such as nicotine on reproductive health.
Collapse
Affiliation(s)
- Amir Masoud Firouzabadi
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
- LogixX Pharma Ltd., Theale, Berkshire, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Maryam Tofighi Niaki
- Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Iran
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
10
|
Konziw S, Tunakhun P, Ngernpimai S, Srichaiyapol O, Boonsiri P, Tippayawat P, Techasen A, Maraming P, Choowongkomon K, Daduang S, Promdee L, Daduang J. Development in competitive immunoassay of a point-of-care testing for cotinine (COT) detection in urine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4387-4394. [PMID: 38899527 DOI: 10.1039/d4ay00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
We present a sensitive and selective lateral flow immunoassay (LFIA) for cotinine (COT), the primary metabolite of nicotine. COT is widely recognized as a superior biomarker to evaluate tobacco smoke exposure. The LFIA uses a competitive assay format where the COT-BSA capture competes with the target COT in urine samples for binding to the monoclonal antibody against COT (mAb-COT) conjugated with gold nanoparticles (mAb-COT-AuNPs). To improve the sensitivity and selectivity of the LFIA-COT, we focused on optimizing the diameter of AuNPs, the conjugation of mAb-COT, and the concentration of the COT-BSA capture. Our findings reveal that the utilization of 40 nm AuNPs in conjugation with a concentration of 4 mg mL-1 of mAb-COT demonstrated significantly greater efficacy compared to LFAs utilizing 20 nm AuNPs. Under the optimal conditions, the LFIA-COT demonstrated sensitive detection of COT at a level of 150 ng mL-1 within 15 min, as observed by the naked eye. It possesses a linear range of 25 to 200 ng mL-1 of COT, with the limit of detection (LOD) of 11.94 ng mL-1 in human urine samples when the color intensity is analyzed using ImageJ software. Our LFIA described here is simple and requires less time for COT detection. It can be used for the rapid and quantitative detection of COT in urine samples in clinical settings.
Collapse
Affiliation(s)
- Suthinee Konziw
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences (CMDL), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Paweena Tunakhun
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences (CMDL), Khon Kaen University, Khon Kaen, 40002, Thailand
- Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sawinee Ngernpimai
- Centre for Innovation and Standard for MT and PT (CISMaP), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Oranee Srichaiyapol
- Centre for Innovation and Standard for MT and PT (CISMaP), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Patcharee Boonsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharaporn Tippayawat
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences (CMDL), Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Anchalee Techasen
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences (CMDL), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pornsuda Maraming
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences (CMDL), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Phahonyothin Road, Chatuchak, Bangkok, 10900, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Limthong Promdee
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences (CMDL), Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
11
|
Pavuluri H, Bakhtiary Z, Panner Selvam MK, Hellstrom WJG. Oxidative Stress-Associated Male Infertility: Current Diagnostic and Therapeutic Approaches. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1008. [PMID: 38929625 PMCID: PMC11205999 DOI: 10.3390/medicina60061008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Infertility is a prevalent global issue affecting approximately 17.5% of adults, with sole male factor contributing to 20-30% of cases. Oxidative stress (OS) is a critical factor in male infertility, disrupting the balance between reactive oxygen species (ROS) and antioxidants. This imbalance detrimentally affects sperm function and viability, ultimately impairing fertility. OS also triggers molecular changes in sperm, including DNA damage, lipid peroxidation, and alterations in protein expression, further compromising sperm functionality and potential fertilization. Diagnostic tools discussed in this review offer insights into OS markers, antioxidant levels, and intracellular ROS concentrations. By accurately assessing these parameters, clinicians can diagnose male infertility more effectively and thus tailor treatment plans to individual patients. Additionally, this review explores various treatment options for males with OS-associated infertility, such as empirical drugs, antioxidants, nanoantioxidants, and lifestyle modifications. By addressing the root causes of male infertility and implementing targeted interventions, clinicians can optimize treatment outcomes and enhance the chances of conception for couples struggling with infertility.
Collapse
Affiliation(s)
| | | | | | - Wayne J. G. Hellstrom
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (H.P.); (Z.B.); (M.K.P.S.)
| |
Collapse
|
12
|
Nemmar A, Beegam S, Yuvaraju P, Zaaba NE, Elzaki O, Yasin J, Adeghate E. Pathophysiologic effects of waterpipe (shisha) smoke inhalation on liver morphology and function in mice. Life Sci 2024; 336:122058. [PMID: 37659593 DOI: 10.1016/j.lfs.2023.122058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
AIMS The global prevalence of waterpipe tobacco smoking is increasing. Although the cardiorespiratory, renal, and reproductive effects of waterpipe smoking (WPS) are well-documented, there is limited knowledge regarding its adverse impact on the liver. Therefore, our study aimed to assess the effects and potential mechanisms of WPS inhalation for one or four weeks on the liver. MAIN METHODS Mice were exposed to WPS for 30 min per day, five days per week, while control mice were exposed to clean air. KEY FINDINGS Analysis using light microscopy revealed the infiltration of immune cells (neutrophils and lymphocytes) accompanied by vacuolar hepatic degeneration upon WPS inhalation. At the four-week timepoint, electron microscopy analysis demonstrated an increased number of mitochondria with a concomitant pinching-off of hepatocyte plasma membranes. WPS exposure led to a significant rise in the activities of liver enzymes alanine aminotransferase and aspartate aminotransferase in the bloodstream. Additionally, WPS inhalation elevated lipid peroxidation and reactive oxygen species levels and disrupted the levels of the antioxidant glutathione in liver tissue homogenates. The concentration of proinflammatory cytokines, including tumor necrosis factor α, interleukin (IL)-6, and IL-1β, was significantly increased in the WPS-exposed group. Furthermore, WPS inhalation induced DNA damage and a significant increase in the levels of cleaved caspase-3, cytochrome C and hypoxia-inducible factor 1α along with alterations in the activity of mitochondrial complexes I, II, III and IV. SIGNIFICANCE Our findings provide evidence that WPS inhalation triggers changes in liver morphology, oxidative stress, inflammation, DNA damage, apoptosis, and alterations in mitochondrial activity.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates.
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| |
Collapse
|
13
|
Nielsen JLM, Majzoub A, Esteves S, Humaidan P. Unraveling the Impact of Sperm DNA Fragmentation on Reproductive Outcomes. Semin Reprod Med 2023; 41:241-257. [PMID: 38092034 DOI: 10.1055/s-0043-1777324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In recent years, there has been a growing interest in identifying subcellular causes of male infertility, and sperm DNA fragmentation (SDF) research has been at the forefront of this focus. DNA damage can occur during spermatogenesis due to faulty chromatin compaction or excessive abortive apoptosis. It can also happen as sperm transit through the genital tract, often induced by oxidative stress. There are several methods for SDF testing, with the sperm chromatin structure assay, terminal deoxynucleotidyl transferase d-UTI nick end labeling (TUNEL) assay, comet assay, and sperm chromatin dispersion test being the most commonly used. Numerous studies strongly support the negative impact of SDF on male fertility potential. DNA damage has been linked to various morphological and functional sperm abnormalities, ultimately affecting natural conception and assisted reproductive technology outcomes. This evidence-based review aims to explore how SDF influences male reproduction and provide insights into available therapeutic options to minimize its detrimental impact.
Collapse
Affiliation(s)
- Jeanett L M Nielsen
- The Fertility Clinic, Skive Regional Hospital, Skive, Denmark
- Department of Obstetrics and Gynecology, Viborg Regional Hospital, Viborg, Denmark
| | - Ahmad Majzoub
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Clinical Urology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Sandro Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Campinas, Brazil
- Division of Urology, Department of Surgery, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Peter Humaidan
- The Fertility Clinic, Skive Regional Hospital, Skive, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Virtanen HE, Rodprasert W, Toppari J. Deteriorating Semen Quality: The Role of the Environment. Semin Reprod Med 2023; 41:226-240. [PMID: 38499038 DOI: 10.1055/s-0044-1782151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Since the end of the last century, several reports have suggested that semen quality is declining, especially in Western countries. Furthermore, cross-sectional studies using similar protocols have suggested regional differences in semen quality of young and fertile men. Reasons for these regional differences and local adverse trends in semen quality are unknown, but environmental factors are suspected to have a role. Besides adulthood environmental exposures, those occurring during testicular development may also affect semen quality. Longitudinal follow-up studies and mixture risk analyses are needed to study the effect of fetal, childhood, and adult life environment on semen quality.
Collapse
Affiliation(s)
- Helena E Virtanen
- Research Centre for Integrative Physiology and Pharmacology and Centre for Population Health Research, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Wiwat Rodprasert
- Research Centre for Integrative Physiology and Pharmacology and Centre for Population Health Research, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology and Centre for Population Health Research, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
15
|
Osadchuk L, Kleshchev M, Osadchuk A. Effects of cigarette smoking on semen quality, reproductive hormone levels, metabolic profile, zinc and sperm DNA fragmentation in men: results from a population-based study. Front Endocrinol (Lausanne) 2023; 14:1255304. [PMID: 37920251 PMCID: PMC10619690 DOI: 10.3389/fendo.2023.1255304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/16/2023] [Indexed: 11/04/2023] Open
Abstract
Background Cigarette smoking seems to have a negative impact on men's reproductive health, but our knowledge of its effects on the reproductive function of Russian men is still very limited. The purpose of this study was to evaluate the effect of cigarette smoking on semen quality, including sperm DNA fragmentation, hormonal, zinc and metabolic status in young men from the general multi-ethnic Russian population (n=1,222, median age 23 years) and to find out the ethno-specific effects of smoking by comparing male groups of different ethnicity. Methods Each participant filled out a standardized questionnaire, provided one blood and semen sample. Semen parameters, serum reproductive hormones, lipids, glucose, uric acid and seminal zinc were analyzed. Participants were classified as smokers (n=450) and non-smokers (n=772), and smokers were stratified into moderate (≤10 cigarettes/day) and heavy (>10 cigarettes/day) smokers. Results In the entire study population, heavy smokers were characterized by a decrease in semen volume, total sperm count, sperm concentration and motility, and an increase in sperm DNA fragmentation and teratozoospermia compared with non-smokers (p<0.05). There was also a reduction in the serum and seminal zinc level as well as an impairment in metabolic health in smokers compared with non-smokers (p<0.05). No significant differences between smokers and non-smokers were found for serum levels of LH, FSH, inhibin B, testosterone and estradiol. In the second part of our study, the most numerous ethnic groups of Slavs (n=654), Buryats (n=191), and Yakuts (n=125) were selected from the entire study population. Among three ethnic groups, the smoking intensity was higher in Slavs than in Buryats or Yakuts suggesting a greater tobacco addiction in Slavs than in Asians. A decrease in semen parameters and seminal zinc levels, and an increase in sperm DNA fragmentation and teratozoospermia was observed only in smoking Slavs (p<0.05); moderate decrease in testosterone and increase in triglyceride levels were revealed in smoking Yakuts (p<0.05), but no significant changes were detected in smoking Buryats. Conclusion We concluded that cigarette smoking has an ethno-specific effect on male reproductive function, probably due to the different activity of the seminal antioxidant system, which is yet to be elucidated.
Collapse
Affiliation(s)
- Ludmila Osadchuk
- Department of Human Molecular Genetics, Federal Research Center 'Institute of Cytology and Genetics', the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Maxim Kleshchev
- Department of Human Molecular Genetics, Federal Research Center 'Institute of Cytology and Genetics', the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Osadchuk
- Department of Human Molecular Genetics, Federal Research Center 'Institute of Cytology and Genetics', the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
16
|
Henriques MC, Santiago J, Patrício A, Herdeiro MT, Loureiro S, Fardilha M. Smoking Induces a Decline in Semen Quality and the Activation of Stress Response Pathways in Sperm. Antioxidants (Basel) 2023; 12:1828. [PMID: 37891907 PMCID: PMC10604710 DOI: 10.3390/antiox12101828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Male infertility is a prevalent concern affecting couples worldwide. While genetic factors, hormonal imbalances, and reproductive system defects play significant roles, emerging evidence suggests that lifestyle choices also profoundly impact male fertility. This study aimed to explore the effects of several lifestyle factors, including tobacco and alcohol consumption, physical activity, and dietary habits, on semen quality parameters and molecular biomarkers. Thirty healthy male volunteers were recruited in the Urology service at Hospital Infante D. Pedro, Aveiro, Portugal. Participants completed lifestyle questionnaires and provided semen samples, which were analyzed according to the World Health Organization criteria by experienced technicians. We also analyzed the expression levels of antioxidant enzymes and heat-shock response-related proteins to explore the activation of signaling pathways involved in stress response within sperm cells. Our results revealed that tobacco consumption reduced semen volume and total sperm count. Although the changes in the percentage of total motility and normal morphology in the smokers' group did not reach statistical significance, a slight decrease was observed. Moreover, we identified for the first time a significant association between tobacco consumption and increased levels of heat shock protein 27 (HSP27) and phosphorylated HSP27 (p-HSP27) in sperm cells, indicating the potential detrimental effects of tobacco on the reproductive system. This study highlights that lifestyle factors reduce semen quality, possibly by inducing stress in sperm, raising awareness about the effects of these risk factors among populations at risk of male infertility.
Collapse
Affiliation(s)
- Magda Carvalho Henriques
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.H.)
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Santiago
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.H.)
| | - António Patrício
- Hospital Infante D. Pedro, Centro Hospitalar do Baixo Vouga, EPE, 3810-096 Aveiro, Portugal
| | - Maria Teresa Herdeiro
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.H.)
| | - Susana Loureiro
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Margarida Fardilha
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.H.)
| |
Collapse
|
17
|
Wang H, Tian Y, Fu Y, Ma S, Xu X, Wang W, Lu F, Li X, Feng P, Han S, Chen H, Hou H, Hu Q, Liu C. Testicular tissue response following a 90-day subchronic exposure to HTP aerosols and cigarette smoke in rats. Toxicol Res (Camb) 2023; 12:902-912. [PMID: 37915495 PMCID: PMC10615803 DOI: 10.1093/toxres/tfad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 11/03/2023] Open
Abstract
Background Researches have shown that chronic inhalation of cigarette smoke (CS) disrupts male reproductive system, but it is unclear about the mechanisms behind reproductive damages by tobacco toxicants in male rats. This study was designed to explore the effects of heated tobacco products (HTP) aerosols and CS exposure on the testicular health of rats. Materials and Methods Experiments were performed on male SD rats exposed to filtered air, HTP aerosols at 10 μg/L, 23 μg/L, and 50 μg/L nicotine-equivalent contents, and also CS at 23 μg/L nicotine-equivalent content for 90 days in five exposure groups (coded as sham, HTP_10, HTP_23, HTP_50 and Cig_23). The expression of serum testosterone, testicular tissue inflammatory cytokines (IL-1β, IL-6, IL-10, TNF-α), reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA), NLRP3 inflammasome-related mRNAs and proteins (NLRP3, ASC, and Caspase-1), the degree of pyroptosis and histopathology were investigated. Results The results demonstrated that HTP_50 and Cig_23 caused varying degrees of oxidative damage to rat testis, resulting in a decrease of sperm quantity and serum testosterone contents, an increase in the deformity rate, expression levels of proinflammatory cytokines, and NLRP3 inflammasome-related mRNA, and an increase in the NLRP3, ASC, and Caspase-1-immunopositive cells, pyroptosis cell indices, and histopathological damage in the testes of rats. Responses from the HTP_10 and HTP_23 groups were less than those found in the above two exposure groups. Conclusion These findings indicate that HTP_50 and Cig_23 induced oxidative stress in rat testes, induced inflammation and pyroptosis through the ROS/NLRP3/Caspase-1 pathway, and destroyed the integrity of thetesticular tissue structure.
Collapse
Affiliation(s)
- Hongjuan Wang
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Yushan Tian
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Yaning Fu
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Shuhao Ma
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Xiaoxiao Xu
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Wenming Wang
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Fengjun Lu
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Xianmei Li
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Pengxia Feng
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Shulei Han
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Huan Chen
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Hongwei Hou
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Qingyuan Hu
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Chuan Liu
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| |
Collapse
|
18
|
Rodprasert W, Toppari J, Virtanen HE. Environmental toxicants and male fertility. Best Pract Res Clin Obstet Gynaecol 2023; 86:102298. [PMID: 36623980 DOI: 10.1016/j.bpobgyn.2022.102298] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/23/2022] [Indexed: 12/23/2022]
Abstract
Semen quality has declined especially among Western men. Experimental and epidemiological studies have shown potential links between exposure to environmental toxicants and poor male fertility. Some environmental exposures in utero can disrupt fetal testicular function and result in cryptorchidism, low semen quality, low serum testosterone levels, and low fertility. Environmental exposure in childhood and adulthood can also adversely affect germ cells, Sertoli cells, Leydig cells, or the hypothalamic-pituitary-testicular axis, resulting in impaired male fertility. In this review, we report the latest results from human studies that investigated the role of endocrine disrupting chemicals, heavy metals, tobacco smoking, alcohol drinking, and use of marijuana in low semen quality and impaired male fertility. Current evidence suggests the relationship between these environmental factors and low male fertility; however, some factors showed conflicting results which need further investigation.
Collapse
Affiliation(s)
- Wiwat Rodprasert
- Research Centre for Integrative Physiology and Pharmacology and Centre for Population Health Research, Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology and Centre for Population Health Research, Institute of Biomedicine, University of Turku, Turku, Finland; Department of Pediatrics, Turku University Hospital, Turku, Finland.
| | - Helena E Virtanen
- Research Centre for Integrative Physiology and Pharmacology and Centre for Population Health Research, Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
19
|
Iktidar MA, Chowdhury S, Roy S, Islam AMK, Islam M, Chowdhury T, Tabassum MN, Ali TS, Akash A, Ahmed M, Zafar FA, Hawlader MDH. Knowledge, attitude and perception among medical students and healthcare professionals regarding male infertility: a cross-sectional survey from Bangladesh. BMJ Open 2022; 12:e062251. [PMID: 36356990 PMCID: PMC9660710 DOI: 10.1136/bmjopen-2022-062251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE This study aimed to explore the knowledge, attitude and behaviour regarding male infertility among medical students and healthcare workers in Bangladesh. DESIGN This was a cross-sectional study. SETTING This study covered eight divisions of Bangladesh. PARTICIPANTS The participants were medical students or healthcare professionals of Bangladesh who were surveyed anonymously on their knowledge, attitude and perception regarding male infertility. PRIMARY OUTCOME MEASURES The level of knowledge, attitude and perception regarding male infertility. ANALYSIS The mean knowledge and attitude scores were then correlated with sociodemographic factors using χ2 and two-independent sample t-tests. Finally, we performed binary logistic regression to explore predictors of good knowledge and positive attitude. RESULT Among 556 participants, 49.82% did not have good male infertility knowledge, and nearly 60.79% had negative attitudes regarding male infertility. Young (23-26 years) healthcare professionals and medical students were more likely to have good knowledge than others (OR: 1.81; 95% CI 1.099 to 2.988). Surprisingly, women were more likely to have a positive attitude (OR=1.48; 95% CI 1.002 to 2.19, p=0.049) than men. Among all the professions, Bachelor of Medicine and Surgery doctors were most likely to have good knowledge and a positive attitude regarding male infertility. Good knowledge of male infertility predicted a positive attitude (OR=1.61; 95% CI 1.105 to 2.346, p=0.013) and vice versa. CONCLUSION Our research found that healthcare professionals and medical students in Bangladesh had inadequate knowledge and negative attitudes regarding male infertility despite favourable opinions. This emphasises the need for interdisciplinary training programmes, standardisation of healthcare worker guidelines and curricular adjustments for medical students.
Collapse
Affiliation(s)
- Mohammad Azmain Iktidar
- Department of Public Health, North South University, Dhaka, Bangladesh
- Public Health Professional Development Society (PPDS), Dhaka, Bangladesh
- School of Research, Chattogram, Bangladesh
| | - Sreshtha Chowdhury
- Department of Public Health, North South University, Dhaka, Bangladesh
- Public Health Professional Development Society (PPDS), Dhaka, Bangladesh
- School of Research, Chattogram, Bangladesh
| | - Simanta Roy
- Department of Public Health, North South University, Dhaka, Bangladesh
- Public Health Professional Development Society (PPDS), Dhaka, Bangladesh
- School of Research, Chattogram, Bangladesh
| | - A M Khairul Islam
- Department of Public Health, North South University, Dhaka, Bangladesh
- Public Health Professional Development Society (PPDS), Dhaka, Bangladesh
| | - Mahzabeen Islam
- School of Research, Chattogram, Bangladesh
- Department of Medicine, Chittagong Medical College, Chittagong, Chittagong, Bangladesh
| | - Tonmoy Chowdhury
- School of Research, Chattogram, Bangladesh
- Department of Medicine, Rangamati Medical College, Chittagong, Bangladesh
| | - Mustari Nailah Tabassum
- School of Research, Chattogram, Bangladesh
- Department of Medicine, Chittagong Medical College, Chittagong, Chittagong, Bangladesh
| | - Tahsin Sumat Ali
- School of Research, Chattogram, Bangladesh
- Department of Medicine, Comilla Medical College, Comilla, Comilla, Bangladesh
| | - Atandra Akash
- School of Research, Chattogram, Bangladesh
- Department of Medicine, Chittagong Medical College, Chittagong, Chittagong, Bangladesh
| | - Mashrur Ahmed
- Department of Public Health, North South University, Dhaka, Bangladesh
- Public Health Professional Development Society (PPDS), Dhaka, Bangladesh
- School of Research, Chattogram, Bangladesh
| | - Faraz Al Zafar
- Department of Public Health, North South University, Dhaka, Bangladesh
- Public Health Professional Development Society (PPDS), Dhaka, Bangladesh
| | | |
Collapse
|
20
|
Neums L, Koestler DC, Xia Q, Hu J, Patel S, Bell-Glenn S, Pei D, Zhang B, Boyd S, Chalise P, Thompson JA. Assessing equivalent and inverse change in genes between diverse experiments. FRONTIERS IN BIOINFORMATICS 2022; 2:893032. [PMID: 36304274 PMCID: PMC9580844 DOI: 10.3389/fbinf.2022.893032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/22/2022] [Indexed: 05/26/2024] Open
Abstract
Background: It is important to identify when two exposures impact a molecular marker (e.g., a gene's expression) in similar ways, for example, to learn that a new drug has a similar effect to an existing drug. Currently, statistically robust approaches for making comparisons of equivalence of effect sizes obtained from two independently run treatment vs. control comparisons have not been developed. Results: Here, we propose two approaches for evaluating the question of equivalence between effect sizes of two independent studies: a bootstrap test of the Equivalent Change Index (ECI), which we previously developed, and performing Two One-Sided t-Tests (TOST) on the difference in log-fold changes directly. The ECI of a gene is computed by taking the ratio of the effect size estimates obtained from the two different studies, weighted by the maximum of the two p-values and giving it a sign indicating if the effects are in the same or opposite directions, whereas TOST is a test of whether the difference in log-fold changes lies outside a region of equivalence. We used a series of simulation studies to compare the two tests on the basis of sensitivity, specificity, balanced accuracy, and F1-score. We found that TOST is not efficient for identifying equivalently changed gene expression values (F1-score = 0) because it is too conservative, while the ECI bootstrap test shows good performance (F1-score = 0.95). Furthermore, applying the ECI bootstrap test and TOST to publicly available microarray expression data from pancreatic cancer showed that, while TOST was not able to identify any equivalently or inversely changed genes, the ECI bootstrap test identified genes associated with pancreatic cancer. Additionally, when investigating publicly available RNAseq data of smoking vs. vaping, no equivalently changed genes were identified by TOST, but ECI bootstrap test identified genes associated with smoking. Conclusion: A bootstrap test of the ECI is a promising new statistical approach for determining if two diverse studies show similarity in the differential expression of genes and can help to identify genes which are similarly influenced by a specific treatment or exposure. The R package for the ECI bootstrap test is available at https://github.com/Hecate08/ECIbootstrap.
Collapse
Affiliation(s)
- Lisa Neums
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Devin C. Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Qing Xia
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Jinxiang Hu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Shachi Patel
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Shelby Bell-Glenn
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Dong Pei
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Bo Zhang
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Samuel Boyd
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Jeffrey A. Thompson
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| |
Collapse
|
21
|
Nsonwu-Anyanwu AC, Egom OU, Eworo RE, Nsonwu MC, Aniekpon UF, Ekpo DO, Opara Usoro CA. Risk of Pulmonary-Reproductive Dysfunctions, Inflammation and Oxidative DNA Damage in Exposure to Polycyclic Aromatic Hydrocarbon in Cigarette Smokers. Med J Islam Repub Iran 2022; 36:108. [PMID: 36447550 PMCID: PMC9700422 DOI: 10.47176/mjiri.36.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 11/23/2023] Open
Abstract
Background: Exposure to cigarette smoke has been associated with pulmonary and reproductive dysfunctions; inflammatory response, oxidative stress and oxidative DNA damage induced by polycyclic aromatic hydrocarbons (PAHs) present in cigarette smoke have been implicated in the pathogenesis of these disorders. The peak expiratory flow rate (PEFR), a biomarker of inflammation and oxidative DNA damage (8-hydroxy-2-deoxyguanosine (8-OHdG), tumor necrosis factor alpha (TNF-α)), reproductive hormones (testosterone (TST), luteinizing hormone (LH), follicle stimulating hormone (FSH)) cotinine and urinary PAH metabolite (1-hydroxypyrene (1-HOP)) were estimated in male active smokers. Methods: One hundred men aged 20-47 years, comprising 50 active male smokers and 50 non-smokers, were randomly recruited into this comparative cross-sectional study. The PEFR was measured using a peak flow meter, serum levels of cotinine, FSH, LH, TST, TNF-α, and urine 8-OHdG by enzyme-linked immunosorbent assay and 1-HOP by high-performance liquid chromatography. Data analysis was done using a t-test and correlation analysis at p≤0.05. Results: Smokers had significantly higher cotinine (49.73±31.76 versus 0.51±0.69 ng/ml, p≤0.001), 8-OHdG (16.34±12.10 versus 5.79±2.14 ng/ml, p≤0.001) and lower PEFR (309.20±56.05 versus 452.80±45.76 L/min, p≤0.001) and LH (5.75±2.06 versus 6.97±2.79 mIU/ml, p=0.015) compared to non-smokers. Duration of exposure to cigarette smoke correlated positively with cotinine (r=0.937, p≤0.001) and 1-HOP (r=0.813, p≤0.001) while cotinine correlated positively with 1-HOP (r=0.863, p≤0.001) only in smokers. Conclusion: Reduced lung function and luteinizing hormone and concurrent increase in oxidative DNA damage associated with exposure to cigarette smoke may suggest the involvement of PAH-induced DNA damage in the development of pulmonary and reproductive impairment in smokers.
Collapse
Affiliation(s)
| | - Ofem Ukwetan Egom
- Department of Clinical Chemistry & Immunology University of Calabar, Nigeria
| | - Raymond Ekong Eworo
- Department of Clinical Chemistry & Immunology University of Calabar, Nigeria
| | | | | | - Daniel Orok Ekpo
- Department of Clinical Chemistry & Immunology University of Calabar, Nigeria
| | | |
Collapse
|
22
|
Houda A, Peter Michael J, Romeo M, Mohamad Eid H. Smoking and Its Consequences on Male and Female Reproductive Health. Stud Fam Plann 2022. [DOI: 10.5772/intechopen.104941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Smoking contributes to the death of around one in 10 adults worldwide. Specifically, cigarettes are known to contain around 4000 toxins and chemicals that are hazardous in nature. The negative effects of smoking on human health and interest in smoking-related diseases have a long history. Among these concerns are the harmful effects of smoking on reproductive health. Thirteen percent of female infertility is due to smoking. Female smoking can lead to gamete mutagenesis, early loss of reproductive function, and thus advance the time to menopause. It has been also associated with ectopic pregnancy and spontaneous abortion. Even when it comes to assisted reproductive technologies cycles, smokers require more cycles, almost double the number of cycles needed to conceive as non-smokers. Male smoking is shown to be correlated with poorer semen parameters and sperm DNA fragmentation. Not only active smokers but also passive smokers, when excessively exposed to smoking, can have reproductive problems comparable to those seen in smokers. In this book chapter, we will approach the effect of tobacco, especially tobacco smoking, on male and female reproductive health. This aims to take a preventive approach to infertility by discouraging smoking and helping to eliminate exposure to tobacco smoke in both women and men.
Collapse
|
23
|
Perrone P, Lettieri G, Marinaro C, Longo V, Capone S, Forleo A, Pappalardo S, Montano L, Piscopo M. Molecular Alterations and Severe Abnormalities in Spermatozoa of Young Men Living in the "Valley of Sacco River" (Latium, Italy): A Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191711023. [PMID: 36078739 PMCID: PMC9518305 DOI: 10.3390/ijerph191711023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 05/27/2023]
Abstract
The Valley of Sacco River (VSR) (Latium, Italy) is an area with large-scale industrial chemical production that has led over time to significant contamination of soil and groundwater with various industrial pollutants, such as organic pesticides, dioxins, organic solvents, heavy metals, and particularly, volatile organic compounds (VOCs). In the present study, we investigated the potential impact of VOCs on the spermatozoa of healthy young males living in the VSR, given the prevalent presence of several VOCs in the semen of these individuals. To accomplish this, spermiograms were conducted followed by molecular analyses to assess the content of sperm nuclear basic proteins (SNBPs) in addition to the protamine-histone ratio and DNA binding of these proteins. We found drastic alterations in the spermatozoa of these young males living in the VSR. Alterations were seen in sperm morphology, sperm motility, sperm count, and protamine/histone ratios, and included significant reductions in SNBP-DNA binding capacity. Our results provide preliminary indications of a possible correlation between the observed alterations and the presence of specific VOCs.
Collapse
Affiliation(s)
- Pasquale Perrone
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Carmela Marinaro
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Valentina Longo
- Institute for Microelectronics and Microsystems (IMM), National Research Council of Italy (CNR), 73100 Lecce, Italy
| | - Simonetta Capone
- Institute for Microelectronics and Microsystems (IMM), National Research Council of Italy (CNR), 73100 Lecce, Italy
| | - Angiola Forleo
- Institute for Microelectronics and Microsystems (IMM), National Research Council of Italy (CNR), 73100 Lecce, Italy
| | | | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (EcoFoodFertility Project),
Oliveto Citra Hospital, 84020 Oliveto Citra, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| |
Collapse
|
24
|
Serafini S, O'Flaherty C. Redox Regulation to Modulate Phosphorylation Events in Human Spermatozoa. Antioxid Redox Signal 2022; 37:437-450. [PMID: 34714121 DOI: 10.1089/ars.2021.0117] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Significance: Spermatozoa are complex and compartmentalized cells that undergo capacitation, a series of biochemical and morphological changes to acquire the ability to fertilize oocytes. Reactive oxygen species (ROS) have a prominent dual role in capacitation. At physiological levels, ROS regulate numerous cellular processes, including increases of cyclic adenosine monophosphate, calcium, and activation of phosphorylation events needed for capacitation. On the contrary, at high concentrations that do not impair sperm viability, ROS can cause loss of motility and inhibition of capacitation. Higher ROS concentrations promote oxidation of lipids, proteins, and DNA leading to cell death, and these damages have been associated with male infertility. Critical Issues: When incubated under specific conditions, spermatozoa can produce low and controlled amounts of ROS that are not harmful but instead regulate numerous cellular processes, including the phosphorylation of tyrosine, serine, and threonine residues in critical proteins needed for sperm capacitation. Here, we outline the complex redox signaling in human spermatozoa needed to achieve fertility and the role of ROS as physiological mediators that trigger phosphorylation cascades. Moreover, we illustrate the importance of various phosphoproteins in spermatozoa capacitation, viability, and hyperactive motility. Future Directions: Further studies to elucidate the different phosphorylation players during sperm capacitation and acrosome reaction (the regulated exocytotic event that releases proteolytic enzymes allowing the spermatozoon to penetrate the zona pellucida and fertilize the oocyte) are essential to understand how the spermatozoon acquires the fertilizing ability to fertilize the oocyte. This knowledge will serve to develop novel diagnostic tools and therapy for male infertility. Antioxid. Redox Signal. 37, 437-450.
Collapse
Affiliation(s)
- Steven Serafini
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Canada
| | - Cristian O'Flaherty
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Canada.,Urology Division, Department of Surgery, Faculty of Medicine, McGill University, Montréal, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montréal, Canada.,The Research Institute, McGill University Health Centre, Montréal, Canada
| |
Collapse
|
25
|
Kumar Konidala K, Bommu U, Pabbaraju N. Integration of in silico methods to determine endocrine-disrupting tobacco pollutants binding potency with steroidogenic genes: comprehensive QSAR modeling and ensemble docking strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65806-65825. [PMID: 35501431 DOI: 10.1007/s11356-022-20443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
A myriad of tobacco-associated chemicals may have possibilities to developmental/reproductive axis and endocrine-disruption impacts. Mostly they breach the biotransformation of cholesterol in mitochondria by interfering with steroidogenic pathway genes, prompting to adverse effects in steroid biosynthesis; however, studies are scanty. The quantitative structure-activity relationship (QSAR) modeling and comparative docking strategies were used to understand structural features of dataset compounds that influence developmental/reproductive toxicity and estrogen and androgen receptor-binding abilities, and to predict binding levels of toxicants with steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme (CYP11A1) active sites. Developed QSAR models presented good robustness and predictive ability that were determined from the applicability domain and, clustering and classification of chemicals by performing self-organizing maps. Accordingly, the exorbitant amount of polycyclic aromatic hydrocarbons (PAHs) and a limited number of other chemicals including N-nitrosamines and nicotine was represented as potential developmental/reproductive toxicants as well as estrogen and androgen receptor binders. From the docking analysis, hydrogen bonding, nonpolar, atomic π-stacking, and π-cation interactions were found between PAHs (bay and fjord structural pockets) and functional hotspot residues of StAR and CYP11A1, which strengthened the subtle structural changes at domains. These govern barrier effects to cholesterol binding and/or locking cholesterol to complicate its ejection from the Ω1 loop of StAR, and further mitigates steroid biosynthesis through cholesterol by CYP11A1; therefore, they are presumably considered as block-cluster mechanisms. These outcomes are significant to be hopeful to estimate developmental/reproductive toxicity and endocrine-disruption activities of other environmental pollutants, and could be useful for further assessment to discover binding mechanisms of PAHs with other steroidogenesis pathway genes.
Collapse
Affiliation(s)
| | - Umadevi Bommu
- Department of Zoology, Sri Venkateswara University, Tirupati, 517502 AP, India
| | - Neeraja Pabbaraju
- Department of Zoology, Sri Venkateswara University, Tirupati, 517502 AP, India.
| |
Collapse
|
26
|
Cargnelutti F, Di Nisio A, Pallotti F, Spaziani M, Tarsitano MG, Paoli D, Foresta C. Risk factors on testicular function in adolescents. J Endocrinol Invest 2022; 45:1625-1639. [PMID: 35286610 PMCID: PMC9360118 DOI: 10.1007/s40618-022-01769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/13/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Adolescence represents an important window for gonadal development. The aim of this review is to carry out a critical excursus of the most recent literature on endogenous and exogenous risk factors related to testicular function, focusing the research on adolescence period. METHODS A comprehensive literature search within PubMed was performed to provide a summary of currently available evidence regarding the impact on adolescence of varicocele, cryptorchidism, cancer, diabetes, lifestyle factors, endocrine disruptors, obesity and sexually transmitted diseases. We focused on human studies that evaluated a possible impact of these factors on puberty timing and their effects on andrological health. RESULTS Evidence collected seems to suggest that andrological health in adolescence may be impaired by several factors, as varicocele, cryptorchidism, and childhood cancer. Despite an early diagnosis and treatment, many adolescents might still have symptoms and sign of a testicular dysfunction in their adult life and at the current time it is not possible to predict which of them will experience andrological problems. Lifestyle factors might have a role in these discrepancies. Most studies point out towards a correlation between obesity, insulin resistance, alcohol, smoking, use of illegal drugs and testicular function in pubertal boys. Also, endocrine disruptors and sexually transmitted diseases might contribute to impair reproductive health, but more studies in adolescents are needed. CONCLUSION According to currently available evidence, there is an emerging global adverse trend of high-risk and unhealthy behaviors in male adolescents. A significant proportion of young men with unsuspected and undiagnosed andrological disorders engage in behaviors that could impair testicular development and function, with an increased risk for later male infertility and/or hypogonadism during the adult life. Therefore, adolescence should be considered a key time for intervention and prevention of later andrological diseases.
Collapse
Affiliation(s)
- F Cargnelutti
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - A Di Nisio
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - F Pallotti
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - M Spaziani
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - M G Tarsitano
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - D Paoli
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| | - C Foresta
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| |
Collapse
|
27
|
Omolaoye TS, El Shahawy O, Skosana BT, Boillat T, Loney T, du Plessis SS. The mutagenic effect of tobacco smoke on male fertility. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62055-62066. [PMID: 34536221 PMCID: PMC9464177 DOI: 10.1007/s11356-021-16331-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/30/2021] [Indexed: 05/15/2023]
Abstract
Despite the association between tobacco use and the harmful effects on general health as well as male fertility parameters, smoking remains globally prevalent. The main content of tobacco smoke is nicotine and its metabolite cotinine. These compounds can pass the blood-testis barrier, which subsequently causes harm of diverse degree to the germ cells. Although controversial, smoking has been shown to cause not only a decrease in sperm motility, sperm concentration, and an increase in abnormal sperm morphology, but also genetic and epigenetic aberrations in spermatozoa. Both animal and human studies have highlighted the occurrence of sperm DNA-strand breaks (fragmentation), genome instability, genetic mutations, and the presence of aneuploids in the germline of animals and men exposed to tobacco smoke. The question to be asked at this point is, if smoking has the potential to cause all these genetic aberrations, what is the extent of damage? Hence, this review aimed to provide evidence that smoking has a mutagenic effect on sperm and how this subsequently affects male fertility. Additionally, the role of tobacco smoke as an aneugen will be explored. We furthermore aim to incorporate the epidemiological aspects of the aforementioned and provide a holistic approach to the topic.
Collapse
Affiliation(s)
- Temidayo S Omolaoye
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Omar El Shahawy
- Department of Population Health, New York University Grossman School of Medicine, New York City, NY, USA
| | - Bongekile T Skosana
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Thomas Boillat
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Stefan S du Plessis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| |
Collapse
|
28
|
Sperm concentration and semen volume increase after smoking cessation in infertile men. Int J Impot Res 2022; 34:614-619. [PMID: 35963898 PMCID: PMC9375087 DOI: 10.1038/s41443-022-00605-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
Smoking has negative reproductive consequences. This study investigated the effect of smoking cessation on the main semen parameters. We included 90 participants who applied to our infertility clinic and smoked at least 20 cigarettes a day for at least 1 year. Of the 90 participants, 48 were in the study group and 42 were in the control group. Semen analysis was performed before and at least 3 months after quitting smoking in the study group. Semen analysis was repeated at baseline and at least 3 months later in the control group. Semen parameters such as volume, sperm concentration, total sperm count, morphology, and motility were evaluated according to the World Health Organization criteria. Patient characteristics as well as the duration of the smoking period, the number of cigarettes smoked per day and the time elapsed since smoking cessation were recorded. The mean age of the participants was 34.69 ± 5.3 years, and the duration of infertility was 34.12 ± 12.1 months (n = 90). The number of cigarettes smoked per day was 30.14 ± 6.69, and the smoking time was 8.31 ± 3.53 years. The average time to quit smoking was 104.2 ± 11.51 days (n = 48). A significant increase in semen volume, sperm concentration and total sperm count was observed 3 months after smoking cessation (2.48 ± 0.79 ml vs. 2.90 ± 0.77 ml, p = 0.002; 18.45 × 106/ml ± 8.56 vs. 22.64 × 106/ml ± 11.69, p = 0.001; 45.04 ± 24.38 × 106 vs. 65.1 ± 34.9 × 106, p < 0.001, respectively). This study showed that smoking cessation had a positive effect on sperm concentration, semen volume, and total sperm count. Although smoking cessation contributed positively to sperm motility and morphology, the difference was not statistically significant.
Collapse
|
29
|
Hærvig KK, Petersen KU, Giwercman A, Hougaard KS, Høyer BB, Lindh C, Ramlau-Hansen CH, Nybo Andersen AM, Toft G, Bonde JP, Tøttenborg SS. Fetal exposure to maternal cigarette smoking and male reproductive function in young adulthood. Eur J Epidemiol 2022; 37:525-538. [PMID: 35476275 DOI: 10.1007/s10654-022-00869-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 04/04/2022] [Indexed: 11/03/2022]
Abstract
Maternal smoking during pregnancy constitutes a potential, major risk factor for adult male reproductive function. In the hitherto largest longitudinal cohort, we examined biomarkers of reproductive function according to maternal smoking during the first trimester and investigated whether associations were mitigated by smoking cessation prior to the fetal masculinization programming window. Associations between exposure to maternal smoking and semen characteristics, testicular volume and reproductive hormones were assessed among 984 young men from the Fetal Programming of Semen Quality (FEPOS) cohort. Maternal smoking was assessed through interview data and measured plasma cotinine levels during pregnancy. We applied negative binomial, logistic and linear regression models to estimate differences in outcomes according to levels of maternal smoking. Sons of light smokers (≤ 10 cigarettes/day) had a 19% (95% CI - 29%, - 6%) lower sperm concentration and a 24% (95% CI - 35%, - 11%) lower total sperm count than sons of non-smokers. These estimates were 38% (95% CI - 52%, - 22%) and 33% (95% CI - 51%, - 8%), respectively, for sons of heavy smokers (> 10 cigarettes/day). The latter group also had a 25% (95% CI 1%, 54%) higher follitropin level. Similarly, sons exposed to maternal cotinine levels of > 10 ng/mL had lower sperm concentration and total sperm count. Smoking cessation prior to gestational week seven was not associated with a higher reproductive capacity. We observed substantial and consistent exposure-response associations, providing strong support for the hypothesis that maternal smoking impairs male reproductive function. This association persisted regardless of smoking cessation in early pregnancy.
Collapse
Affiliation(s)
- Katia Keglberg Hærvig
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark. .,Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Bispebjerg Bakke 23F, entrance 20F, 1st floor, 2400, Copenhagen, NV, Denmark.
| | - Kajsa Ugelvig Petersen
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Aleksander Giwercman
- Molecular Reproductive Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karin Sørig Hougaard
- Department of Public Health, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Birgit Bjerre Høyer
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Regional Development, Region of Southern Denmark, Vejle, Denmark
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Anne-Marie Nybo Andersen
- Department of Public Health, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar Toft
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Public Health, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sandra Søgaard Tøttenborg
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Public Health, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
The Impact of the Main Negative Socio-Economic Factors on Female Fertility. Healthcare (Basel) 2022; 10:healthcare10040734. [PMID: 35455911 PMCID: PMC9024718 DOI: 10.3390/healthcare10040734] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
The negative relationship between fertility and income is well known to economists and demographers. Developed countries have experienced a remarkable decline in their fertility rate as they have become richer. Lifestyle choices can affect a woman’s ability to conceive. Tobacco use and heavy drinking is associated with an increased risk of ovulation disorders, and being overweight or significantly underweight can inhibit normal ovulation. Our research is focused on evaluating the main risk factors that influence female fertility. We assembled a country-specific dataset on birth rate and socio-economic factors for 171 countries, using data integrated from publicly available data sources. The regression model shows that the negative factor with the greatest impact on female fertility is represented by the level of income per capita. The negative effects of smoking, alcohol consumption, and body weight on female fertility are also demonstrated, but with a lower impact compared to the average income per capita.
Collapse
|
31
|
Laqqan MM, Yassin MM. Cigarette heavy smoking alters DNA methylation patterns and gene transcription levels in humans spermatozoa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26835-26849. [PMID: 34855177 DOI: 10.1007/s11356-021-17786-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/23/2021] [Indexed: 05/27/2023]
Abstract
Tobacco smoking is considered the most common reason of death and infertility around the world. This study was designed to assess the impact of tobacco heavy smoking on sperm DNA methylation patterns and to determine whether the transcription level of ALDH3B2, PTGIR, PRICKLE2, and ALS2CR12 genes is different in heavy smokers compared to non-smokers. As a screening study, the 450 K array was used to assess the alteration in DNA methylation patterns between heavy smokers (n = 15) and non-smokers (n = 15). Then, four CpGs that have the highest difference in methylation level (cg16338278, cg08408433, cg05799088, and cg07227024) were selected for validation using deep bisulfite sequencing in an independent cohort of heavy smokers (n = 200) and non-smokers (n = 100). A significant variation was found between heavy smokers and non-smokers in the methylation level at all CpGs within the PRICKLE2 and ALS2CR12 gene amplicon (P < 0.001). Similarly, a significant variation was found in the methylation level at nine out of thirteen CpGs within the ALDH3B2 gene amplicon (P < 0.01). Additionally, eighteen CpGs out of the twenty-six within the PTGIR gene amplicon have a significant difference in the methylation level between heavy smokers and non-smokers (P < 0.01). The study showed a significant difference in sperm global DNA methylation, chromatin non-condensation, and DNA fragmentation (P < 0.001) between heavy smokers and non-smokers. A significant decline was shown in the transcription level of ALDH3B2, PTGIR, PRICKLE2, and ALS2CR12 genes (P < 0.001) in heavy smokers. In conclusion, heavy smoking influences DNA methylation at several CpGs, sperm global DNA methylation, and transcription level of the PRICKLE2, ALS2CR12, ALDH3B2, and PTGIR genes, which affects negatively the semen parameters of heavy smokers.
Collapse
Affiliation(s)
- Mohammed M Laqqan
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Islamic University, Gaza, Palestinian Territories, Palestine.
| | - Maged M Yassin
- Department of Human Physiology, Faculty of Medicine, Islamic University, Gaza, Palestinian Territories, Palestine
| |
Collapse
|
32
|
Tommasi S, Kitapci TH, Blumenfeld H, Besaratinia A. Secondhand smoke affects reproductive functions by altering the mouse testis transcriptome, and leads to select intron retention in Pde1a. ENVIRONMENT INTERNATIONAL 2022; 161:107086. [PMID: 35063792 PMCID: PMC8891074 DOI: 10.1016/j.envint.2022.107086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Human exposure to secondhand smoke (SHS) is known to result in adverse effects in multiple organ systems. However, the impact of SHS on the male reproductive system, particularly on the regulation of genes and molecular pathways that govern sperm production, maturation, and functions remains largely understudied. OBJECTIVE We investigated the effects of SHS on the testis transcriptome in a validated mouse model. METHODS Adult male mice were exposed to SHS (5 h/day, 5 days/week for 4 months) as compared to controls (clean air-exposed). RNA-seq analysis was performed on the testis of SHS-exposed mice and controls. Variant discovery and plink association analyses were also conducted to detect exposure-related transcript variants in SHS-treated mice. RESULTS Exposure of mice to SHS resulted in the aberrant expression of 131 testicular genes. Whilst approximately two thirds of the differentially expressed genes were protein-coding, the remaining (30.5%) comprised noncoding elements, mostly lncRNAs (19.1%). Variant discovery analysis identified a homozygous frameshift variant that is statistically significantly associated with SHS exposure (P = 7.744e-06) and is generated by retention of a short intron within Pde1a, a key regulator of spermatogenesis. Notably, this SHS-associated intron variant harbors an evolutionarily conserved, premature termination codon (PTC) that disrupts the open reading frame of Pde1a, presumably leading to its degradation via nonsense-mediated decay. DISCUSSION SHS alters the expression of genes involved in molecular pathways that are crucial for normal testis development and function. Preferential targeting of lncRNAs in the testis of SHS-exposed mice is especially significant considering their crucial role in the spatial and temporal modulation of spermatogenesis. Equally important is our discovery of a novel homozygous frameshift variant that is exclusively and significantly associated with SHS-exposure and is likely to represent a safeguard mechanism to regulate transcription of Pde1a and preserve normal testis function during harmful exposure to environmental agents.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| | - Tevfik H Kitapci
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Hannah Blumenfeld
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Ahmad Besaratinia
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
33
|
Yao Y, Zhang J, Tian P, Li L, Huang X, Nawutayi M, Huang Y, Zhang C. Passive smoking induces rat testicular injury via the FAS/FASL pathway. Drug Chem Toxicol 2022; 45:61-69. [PMID: 31476926 DOI: 10.1080/01480545.2019.1659807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/27/2019] [Accepted: 08/03/2019] [Indexed: 10/26/2022]
Abstract
The mechanisms by which cigarette smoke (CS) exposure has a detrimental effect on the male reproductive system is still not fully understood. We aimed to elucidate the role of cigarette smoke-induced injury by the Fas/FasL pathway by using a Sprague-Dawley rat model of cigarette smoking exposure. Here, 200 rats were randomaly divided into five groups with different smoking exposure durations. Forty animals per group were further divided into four groups: a control group, and groups exposed to cigarette smoke at doses of 10, 20 or 30 cigarettes/day. The testes were harvested and the effects of CS exposure on the testis were characterized on the basis of morphological changes, oxidative stress, and a significant elevation in the expression of FAS/FASL pathway related genes, such as FAS, FASL, FADD, caspase 8 and caspase 3. Oxidative stress was reflected by significant time-dependent changes in SOD and GSH-Px activity, and MDA content. Taken together, our data suggest that CS exposure induces testis injury, which is related to the increased oxidative stress and activation of the FAS/FASL apoptotic pathway in the testes.
Collapse
Affiliation(s)
- Yanling Yao
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Jing Zhang
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Ping Tian
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Linlin Li
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Xiaoxi Huang
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Maitinashi Nawutayi
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Yunfei Huang
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| | - Chen Zhang
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, P.R. China
| |
Collapse
|
34
|
Abstract
Over the past half-century, the world has witnessed a steep decline in fertility rates in virtually every country on Earth. This universal decline in fertility is being driven by increasing prosperity largely through the mediation of social factors, the most powerful of which are the education of women and an accompanying shift in life’s purpose away from procreation. In addition, it is clear that environmental and lifestyle factors are also having a profound impact on our reproductive competence particularly in the male where increasing prosperity is associated with a significant rise in the incidence of testicular cancer and a secular decline in semen quality and testosterone levels. On a different timescale, we should also recognize that the increased prosperity associated with the demographic transition greatly reduces the selection pressure on high fertility genes by lowering the rates of infant and childhood mortality. The retention of poor fertility genes within the human population is also being exacerbated by the increased uptake of ART. It is arguable that all of these elements are colluding to drive our species into an infertility trap. If we are to avoid the latter, it will be important to recognize the factors contributing to this phenomenon and adopt the social, political, environmental and lifestyle changes needed to bring this situation under control.
Collapse
Affiliation(s)
- R John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- Correspondence address. Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia. Tel: +61-2-4921-6851; E-mail:
| |
Collapse
|
35
|
Bisconti M, Simon JF, Grassi S, Leroy B, Martinet B, Arcolia V, Isachenko V, Hennebert E. Influence of Risk Factors for Male Infertility on Sperm Protein Composition. Int J Mol Sci 2021; 22:13164. [PMID: 34884971 PMCID: PMC8658491 DOI: 10.3390/ijms222313164] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/22/2022] Open
Abstract
Male infertility is a common health problem that can be influenced by a host of lifestyle risk factors such as environment, nutrition, smoking, stress, and endocrine disruptors. These effects have been largely demonstrated on sperm parameters (e.g., motility, numeration, vitality, DNA integrity). In addition, several studies showed the deregulation of sperm proteins in relation to some of these factors. This review inventories the literature related to the identification of sperm proteins showing abundance variations in response to the four risk factors for male infertility that are the most investigated in this context: obesity, diabetes, tobacco smoking, and exposure to bisphenol-A (BPA). First, we provide an overview of the techniques used to identify deregulated proteins. Then, we summarise the main results obtained in the different studies and provide a compiled list of deregulated proteins in relation to each risk factor. Gene ontology analysis of these deregulated proteins shows that oxidative stress and immune and inflammatory responses are common mechanisms involved in sperm alterations encountered in relation to the risk factors.
Collapse
Affiliation(s)
- Marie Bisconti
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| | - Jean-François Simon
- Fertility Clinic, CHU Ambroise Paré Hospital, Boulevard Kennedy 2, 7000 Mons, Belgium; (J.-F.S.); (V.A.)
| | - Sarah Grassi
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, CISMa, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium;
| | - Baptiste Martinet
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Avenue Paul Héger, CP 160/12, 1000 Brussels, Belgium;
| | - Vanessa Arcolia
- Fertility Clinic, CHU Ambroise Paré Hospital, Boulevard Kennedy 2, 7000 Mons, Belgium; (J.-F.S.); (V.A.)
| | - Vladimir Isachenko
- Department of Obstetrics and Gynecology, University of Cologne, Kerpener Strasse 34, 50931 Cologne, Germany
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| |
Collapse
|
36
|
Laqqan MM, Yassin MM. Influence of tobacco cigarette heavy smoking on DNA methylation patterns and transcription levels of MAPK8IP3, GAA, ANXA2, PRRC2A, and PDE11A genes in human spermatozoa. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2021. [DOI: 10.1186/s43043-021-00084-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Tobacco smoking is considered as one of the lifestyles factors that influence the sperm DNA methylation and global sperm DNA methylation and that may affect the sperm phenotype. This study was performed to investigate whether tobacco cigarette heavy smoking influences sperm DNA methylation patterns and semen parameters and to determine whether there is an alteration in the transcription level of MAPK8IP3, GAA, ANXA2, PRRC2A, and PDE11A genes in heavy smokers compared to non-smokers. Thirty samples were subjected to 450K arrays as a screening study to assess the variation in sperm DNA methylation levels between heavy smokers and non-smokers. Five CpG sites have the highest difference in methylation levels (cg07869343, cg05813498, cg09785377, cg06833981, and cg02745784), which are located in the MAPK8IP3, GAA, ANXA2, PRRC2A, and PDE11A genes, respectively, and were selected for further analysis using deep bisulfite sequencing in 280 independent samples (120 proven non-smokers and 160 heavy smokers) with a mean age of 33.8 ± 8.4 years. The global sperm DNA methylation, sperm DNA fragmentation, and chromatin non-condensation were evaluated also.
Results
A significant increase was found in the methylation level at seven, three, and seventeen CpGs within the GAA, ANXA2, and MAPK8IP3 genes amplicon, respectively (P< 0.01) in heavy smokers compared to non-smokers. Additionally, a significant increase was found in the methylation levels at all CpGs within PRRC2A and PDE11A gene amplicon (P< 0.01). A significant increase was found in the level of sperm chromatin non-condensation, DNA fragmentation, and global DNA methylation (P < 0.001) in heavy smokers compared to non-smokers.
Conclusion
These results indicate that tobacco cigarette smoking can alter the DNA methylation level at several CpGs, the status of global DNA methylation, and transcription level of the following genes “MAPK8IP3, GAA, ANXA2, PRRC2A, and PDE11A” in human spermatozoa. These findings may affect negatively semen parameters and men’s fertility.
Collapse
|
37
|
Lin YS, Liu CY, Chen PW, Wang CY, Chen HC, Tsao CW. Coenzyme Q 10 amends testicular function and spermatogenesis in male mice exposed to cigarette smoke by modulating oxidative stress and inflammation. Am J Transl Res 2021; 13:10142-10154. [PMID: 34650686 PMCID: PMC8507068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
This study explored the effects of coenzyme Q10 (CoQ10) on the testicular functions of male mice exposed to cigarette smoke. Eight-week-old BALB/c male mice were divided into the following groups: the AV group (air with a vehicle), the AQ group (air with CoQ10), the SV group (smoke with a vehicle), and the SQ group (smoke with CoQ10). The results showed that the CoQ10 concentrations in the sera and testes were decreased in the groups subjected to smoke but they were improved after the administration of CoQ10. Neither smoke nor CoQ10 supplementation affected the serum or testis testosterone concentrations. Regarding the antioxidant system in the testis, the exposure to smoke induced malondialdehyde and hydrogen peroxide production and decreased the catalase and glutathione peroxidase activities. Oral CoQ10 administration reversed the oxidative damage. In apoptosis, the cytochrome c, c-caspase 9, and c-caspase 3 proteins were increased in the groups exposed to smoke but they were decreased after the CoQ10 administration. In mitochondrial biogenesis, smoke exposure led to decreases in the PGC1-α, NRF1, and NRF2 levels, but CoQ10 increased the expressions of these proteins. Additionally, oral CoQ10 administration improved the mitochondrial copy numbers that were reduced following the exposure to smoke. In summary, CoQ10 administration reduces smoke-induced testicular damage by regulating the antioxidant capacity, the cell apoptosis, the mitochondrial biogenesis, and the copy numbers in the testes.
Collapse
Affiliation(s)
- You-Shuei Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical UniversityTaipei 110, Taiwan
| | - Chin-Yu Liu
- Department of Nutritional Science, Fu Jen Catholic UniversityNew Taipei City 242, Taiwan
| | - Pei-Wen Chen
- Department of Nutritional Science, Fu Jen Catholic UniversityNew Taipei City 242, Taiwan
| | - Cheng-Yi Wang
- Department of Internal Medicine, Cardinal Tien Hospital and School of Medicine, College of Medicine, Fu-Jen Catholic UniversityNew Taipei City 242, Taiwan
| | - Hsin-Chih Chen
- Department of Critical Care Medicine, Landseed International HospitalTaoyuan 324, Taiwan
| | - Chih-Wei Tsao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical CenterTaipei 114, Taiwan
| |
Collapse
|
38
|
López-Botella A, Velasco I, Acién M, Sáez-Espinosa P, Todolí-Torró JL, Sánchez-Romero R, Gómez-Torres MJ. Impact of Heavy Metals on Human Male Fertility-An Overview. Antioxidants (Basel) 2021; 10:antiox10091473. [PMID: 34573104 PMCID: PMC8468047 DOI: 10.3390/antiox10091473] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Heavy metals are endocrine disruptors which interfere with processes mediated by endogenous hormones of the organism, negatively affecting endocrine functions. Some studies have correlated heavy metal exposure with male infertility. However, the number of studies conducted on humans are limited. Therefore, the aim of this study is to summarize the current knowledge on how heavy metals influence human male fertility. Hence, three distinct databases were consulted—PubMed, Scopus and Web of Science—using single keywords and combinations of them. The total number of identified articles was 636. Nevertheless, by using the inclusion and exclusion criteria, 144 articles were finally included in this work. Results display that the development of adequate instruments for heavy metal assessment may play an important function in human male fertility diagnosis and treatment. Furthermore, clinical trials could be useful to confirm the role of heavy metals in human male fertility diagnosis. Overall, further research is required to fully understand the molecular and cellular basis of the influence of environmental and occupational exposure to heavy metals on human male infertility and reproductive outcomes.
Collapse
Affiliation(s)
- Andrea López-Botella
- Service of Obstetrics and Gynecology, Unit of Human Reproduction, FISABIO—San Juan University Hospital, Carretera Alicante-Valencia s/n, 03550 San Juan de Alicante, Spain; (A.L.-B.); (I.V.); (M.A.)
- Biotechnology Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Irene Velasco
- Service of Obstetrics and Gynecology, Unit of Human Reproduction, FISABIO—San Juan University Hospital, Carretera Alicante-Valencia s/n, 03550 San Juan de Alicante, Spain; (A.L.-B.); (I.V.); (M.A.)
- Biotechnology Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Maribel Acién
- Service of Obstetrics and Gynecology, Unit of Human Reproduction, FISABIO—San Juan University Hospital, Carretera Alicante-Valencia s/n, 03550 San Juan de Alicante, Spain; (A.L.-B.); (I.V.); (M.A.)
- Gynecology Division, Faculty of Medicine, Miguel Hernández University, Carretera Alicante-Valencia s/n, 03550 San Juan de Alicante, Spain
| | - Paula Sáez-Espinosa
- Biotechnology Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - José-Luis Todolí-Torró
- Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.-L.T.-T.); (R.S.-R.)
| | - Raquel Sánchez-Romero
- Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.-L.T.-T.); (R.S.-R.)
| | - María José Gómez-Torres
- Biotechnology Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
- Correspondence:
| |
Collapse
|
39
|
Du L, La X, Zhu L, Jiang H, Xu B, Chen A, Li M. Utilization of preconception care and its impacts on health behavior changes among expectant couples in Shanghai, China. BMC Pregnancy Childbirth 2021; 21:491. [PMID: 34233653 PMCID: PMC8262048 DOI: 10.1186/s12884-021-03940-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preconception care is an opportunity for detecting potential health risks in future parents and providing health behavior education to reduce morbidity and mortality for women and their offspring. Preconception care has been established in maternal and child health hospitals in Shanghai, China, which consists of health checkups, health education and counseling. This study investigated factors associated with the utilization of preconception care, and the role of preconception care on health behavior changes before conception among pregnant women and their partners. METHODS A cross-sectional study was conducted among pregnant women at three maternal and child health hospitals in Shanghai. The participants were invited to complete a self-administered questionnaire on the utilization of preconception care and health behavioral changes before conception. RESULTS Of the 948 recruited pregnant women, less than half (42.2%) reported that they had utilized preconception care before the current pregnancy. Unplanned pregnancy, unawareness of preconception care and already having a general physical examination were the main reasons for not attending preconception care. The two main sources of information about preconception care were local community workers and health professionals. Younger women and the multipara were less likely to utilize preconception care. Women who utilized preconception care were more likely to take folic acid supplements before conception [Adjusted Odds Ration (aOR) 3.27, 95% Confidence Interval (CI) 2.45-4.36, P < 0.0001]. The partners of pregnant women who had attended preconception care services were more likely to stop smoking [aOR 2.76, 95%CI 1.48-5.17, P = 0.002] and to stop drinking [aOR 2.13, 95%CI 1.03-4.39, P = 0.041] before conception. CONCLUSIONS Utilization of preconception care was demonstrated to be positively associated with preconception health behavior changes such as women taking folic acid supplements before pregnancy, their male partner stopping smoking and drinking before conception. Future studies are needed to explore barriers to utilizing preconception care services and understand the quality of the services. Strategies of promoting preconception care to expectant couples, especially to young and multipara women, should be developed to further improve the utilization of the services at the community level.
Collapse
Affiliation(s)
- Li Du
- Shanghai Center for Women and Children's Health, 339 Luding Road, Putuo District, Shanghai, 200062, China
| | - Xuena La
- School of Public Health; Global Health Institute; Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Mailbox 175, No. 138 Yixueyuan Road, Shanghai, 200032, China
- Shanghai Municipal Center for Disease Control and Prevention, No.1380 West Zhongshan Road, Shanghai, 200336, China
| | - Liping Zhu
- Shanghai Center for Women and Children's Health, 339 Luding Road, Putuo District, Shanghai, 200062, China.
| | - Hong Jiang
- School of Public Health; Global Health Institute; Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Mailbox 175, No. 138 Yixueyuan Road, Shanghai, 200032, China.
| | - Biao Xu
- School of Public Health; Global Health Institute; Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Mailbox 175, No. 138 Yixueyuan Road, Shanghai, 200032, China
| | - An Chen
- Institute of Healthcare Engineering, Management and Architecture (HEMA Institute), Department of Industrial Engineering and Management, Aalto University, Maarintie 8, FI-02150, Espoo, Finland
| | - Mu Li
- School of Public Health, China Studies Centre, University of Sydney, Room 313, Edward Ford Building, Sydney, 2006, Australia
| |
Collapse
|
40
|
Nazmara Z, Ebrahimi B, Makhdoumi P, Noori L, Mahdavi SA, Hassanzadeh G. Effects of illicit drugs on structural and functional impairment of testis, endocrinal disorders, and molecular alterations of the semen. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:856-867. [PMID: 34712415 PMCID: PMC8528244 DOI: 10.22038/ijbms.2021.53326.12002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/24/2021] [Indexed: 12/03/2022]
Abstract
Illicit drug use is growing among young people, which is one of the major problems in today's society that can be associated with many medical issues, including infertility. Amphetamines, cocaine, opioids, and marijuana are the most common and the most used illicit drugs worldwide. The purpose of this review was to collect as much literature as possible about the impact of illicit drugs on male fertility and summarize their valuable data. Original studies and reviews were collected by searching the keywords "illicit drugs (all kinds of that) and male infertility". The obtained information was also categorized based on the content of the "Infertility in the Male" book. Almost all studies suggested that taking all kinds of illicit drugs with the effects on different parts of the male reproductive system can result in subfertility or complete infertility in the consumers. Although the data in this field are not decisive and there are some confounding factors in human studies, it can be inferred that the use of any illicit drug with an effect on male sexual health reduces fertility potency. Therefore, it is recommended that couples, who are planning to conceive, avoid taking any illicit drugs before and during treatment.
Collapse
Affiliation(s)
- Zohreh Nazmara
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Ebrahimi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouran Makhdoumi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Noori
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo, Italy
- Department of Anatomical Sciences, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Mohammadghasemi F, Khanaki K, Moravati H, Faghani M. The amelioration of nicotine-induced reproductive impairment in male mouse by Sambucus ebulus L. fruit extract. Anat Cell Biol 2021; 54:232-240. [PMID: 33597315 PMCID: PMC8225478 DOI: 10.5115/acb.20.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/25/2020] [Accepted: 01/07/2021] [Indexed: 01/20/2023] Open
Abstract
Nicotine as a toxic agent in cigarette smoke impairs the reproductive system. Sambucus ebulus extract (SEE) is shown to have some beneficial effects such as antioxidant properties. The aim of this study was to evaluate the effects of SEE on the hormones of the pituitary-gonadal axis, lipid peroxidation index, antioxidant enzymes, spermatogenesis, and epididymal sperm parameters in male mice treated with nicotine. Adult male mice were divided into five groups; A: normal saline, B: 1 mg/kg nicotine, C: 1 mg/kg nicotine and 10 mg/kg SEE, D: 1 mg/kg nicotine and 50 mg/kg SEE, D: 1 mg/kg nicotine and 100 mg/kg SEE. Treatments lasted for 35 days. The spermicidal activity of SEE was tested in vitro. Sperm count, motility and morphology were assessed for fertility. Serum testosterone, prolactin and luteinizing hormone (LH) were measured, using ELISA. Serum malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) activity were measured, using colorimetric assays. Spermatogenesis was evaluated by Johnsen’s score and morphometry in histological slides. SEE at different doses did not have any spermicidal activity. Sperm parameters were reduced in the nicotine-treated group, compared with controls (P<0.01). Nicotine reduced testosterone and LH levels (P<0.01) and increased prolactin (P<0.01). A hike in MDA and a reduction in SOD activity without change on CAT, were observed in the nicotine group. Nicotine caused hypospermatogenesis. SEE improved most of the above-mentioned parameters, especially in the doses of 50 and 100 mg/kg. Beneficial effects of SEE in the doses of 50 and 100 mg/kg on male reproduction impairment, induced by nicotine might be partly attributed to the reduction of oxidative stress and changes in the hormones of the pituitary-gonadal axis.
Collapse
Affiliation(s)
- Fahimeh Mohammadghasemi
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Korosh Khanaki
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamid Moravati
- Animal Lab, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoumeh Faghani
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
42
|
Holmboe SA, Priskorn L, Jensen TK, Skakkebaek NE, Andersson AM, Jørgensen N. Use of e-cigarettes associated with lower sperm counts in a cross-sectional study of young men from the general population. Hum Reprod 2021; 35:1693-1701. [PMID: 32558890 DOI: 10.1093/humrep/deaa089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Are use of e-cigarettes and snuff associated with testicular function as previously shown for conventional cigarettes and marijuana? SUMMARY ANSWER Use of e-cigarettes is associated with reduced semen quality but not with higher serum testosterone level as observed for conventional cigarette use. Snuff use was not associated with markers of testicular function. WHAT IS KNOWN ALREADY Cigarette smoking has previously been associated with higher testosterone levels and impaired semen quality, whereas it is unresolved whether use of e-cigarettes or snuff influence the testicular function. STUDY DESIGN, SIZE, DURATION This cross-sectional population-based study included 2008 men with information on cigarette and marijuana use (enrolled between 2012 and 2018), among whom 1221 men also had information on e-cigarette and snuff use (enrolled between 2015 and 2018). PARTICIPANTS/MATERIALS, SETTING, METHODS Men (median age 19.0 years) from the general population provided a semen and blood sample and filled out a questionnaire on lifestyle including information on smoking behaviour. Associations between different types of smoking (e-cigarettes, snuff, marijuana and cigarettes) and reproductive hormones (total and free testosterone, sex hormone-binding globulin, LH, oestradiol and ratios of inhibin B/FSH, testosterone/LH and free testosterone/LH) and semen parameters (total sperm count and sperm concentration) were examined using multiple linear regression analyses adjusted for relevant confounders. MAIN RESULTS AND THE ROLE OF CHANCE Approximately half of the men (52%) were cigarette smokers, 13% used e-cigarettes, 25% used snuff and 33% used marijuana. Users of e-cigarettes and marijuana were often also cigarette smokers. Compared to non-users, daily e-cigarette users had significantly lower total sperm count (147 million vs 91 million) as did daily cigarette smokers (139 million vs 103 million), in adjusted analyses. Furthermore, significantly higher total and free testosterone levels were seen in cigarette smoking men (6.2% and 4.1% higher total testosterone and 6.2% and 6.2% higher free testosterone in daily smokers and occasional smokers, respectively, compared to non-smoking men), but not among e-cigarette users. Daily users of marijuana had 8.3% higher total testosterone levels compared to non-users. No associations were observed for snuff in relation to markers of testicular function. LIMITATIONS, REASONS FOR CAUTION We cannot exclude that our results can be influenced by residual confounding by behavioural factors not adjusted for. The number of daily e-cigarette users was limited and findings should be replicated in other studies. WIDER IMPLICATIONS OF THE FINDINGS This is the first human study to indicate that not only cigarette smoking but also use of e-cigarettes is associated with lower sperm counts. This could be important knowledge for men trying to achieve a pregnancy, as e-cigarettes are often considered to be less harmful than conventional cigarette smoking. STUDY FUNDING/COMPETING INTEREST(S) Funding was received from the Danish Ministry of Health (1-1010-308/59), the Independent Research Fund Denmark (8020-00218B), ReproUnion (20200407) and the Research Fund of the Capital Region of Denmark (A6176). The authors have nothing to disclose. TRIAL REGISTRATION NUMBER NA.
Collapse
Affiliation(s)
- Stine Agergaard Holmboe
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Lærke Priskorn
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Tina Kold Jensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.,Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense 5000, Denmark
| | - Niels Erik Skakkebaek
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Niels Jørgensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
43
|
He L, Gong H, You S, Zhang C, Zhong C, Li L. miRNA-138-5p suppresses cigarette smoke-induced apoptosis in testicular cells by targeting Caspase-3 through the Bcl-2 signaling pathway. J Biochem Mol Toxicol 2021; 35:e22783. [PMID: 33856081 DOI: 10.1002/jbt.22783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/13/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
Long-term cigarette smoking (CS) can cause testicular toxicity, which interferes with normal spermatogenesis and leads to male infertility. One possible mechanism for this is the activation of the apoptosis signaling pathway, which leads to the irreversible apoptosis of testicular cells. However, the exact mechanism for this is not completely understood. Cell viability, cell apoptosis, and lactate dehydrogenase release assays were performed to elucidate the function of micro RNA (miRNA) in the pathogenesis of male testicular cell injury induced by CS. The results suggested that testicular cell injury was associated with CS both in vitro and in vivo. CS extract (CSE)-treated Leydig and Sertoli cells showed noticeable apoptosis. Based on the results of Agilent miRNA microarray and bioinformatics analyses, miRNA-138-5p was used in subsequent experiments. Quantitative polymerase chain reaction and Western blot assays showed a negative correlation between miR-138-5p and Caspase-3 expression. Transfection of miR-138-5p mimic significantly inhibited apoptosis and downregulated the expression of Caspase-3 in TM3 and TM4 cells. Furthermore, a dual-luciferase reporter assay demonstrated that miR-138-5p directly targeted Caspase-3 to regulate the apoptosis of testicular cells mediated by CSE. In addition, overexpression of miR-138-5p markedly downregulated the expression of p53 and Bak, which played critical roles in the Bcl-2 pathway. These results demonstrate that miRNA-138-5p inhibits CS-induced apoptosis in testicular cells by targeting Caspase-3 through the Bcl-2 signaling pathway.
Collapse
Affiliation(s)
- Lijuan He
- Department of Social Medicine, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Haiyan Gong
- Department of Clinical Laboratory, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Shuping You
- Department of Basic Nursing Teaching and Research Section, School of Nursing, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Chen Zhang
- Department of Hygiene Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Chunxue Zhong
- Department of Clinical Laboratory, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Linlin Li
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| |
Collapse
|
44
|
Zhang Y, Liu H, Xu J, Zheng S, Zhou L. Hydrogen Gas: A Novel Type of Antioxidant in Modulating Sexual Organs Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8844346. [PMID: 33510842 PMCID: PMC7826209 DOI: 10.1155/2021/8844346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 02/02/2023]
Abstract
Sex is a science of cutting edge but bathed in mystery. Coitus or sexual intercourse, which is at the core of sexual activities, requires healthy and functioning vessels to supply the pelvic region, thus contributing to clitoris erection and vaginal lubrication in female and penile erection in male. It is well known that nitric oxide (NO) is the main gas mediator of penile and clitoris erection. In addition, the lightest and diffusible gas molecule hydrogen (H2) has been shown to improve erectile dysfunction (ED), testis injuries, sperm motility in male, preserve ovarian function, protect against uterine inflammation, preeclampsia, and breast cancer in female. Mechanistically, H2 has strong abilities to attenuate excessive oxidative stress by selectively reducing cytotoxic oxygen radicals, modulate immunity and inflammation, and inhibit injuries-induced cell death. Therefore, H2 is a novel bioactive gas molecule involved in modulating sexual organs homeostasis.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haimei Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinwen Xu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lequan Zhou
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
45
|
Untargeted Urinary Metabolomics and Children's Exposure to Secondhand Smoke: The Influence of Individual Differences. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020710. [PMID: 33467557 PMCID: PMC7830063 DOI: 10.3390/ijerph18020710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/30/2020] [Accepted: 01/09/2021] [Indexed: 12/26/2022]
Abstract
Children’s exposure to secondhand smoke (SHS) is a severe public health problem. There is still a lack of evidence regarding panoramic changes in children’s urinary metabolites induced by their involuntary exposure to SHS, and few studies have considered individual differences. This study aims to clarify the SHS-induced changes in urinary metabolites in preschool children by using cross-sectional and longitudinal metabolomics analyses. Urinary metabolites were quantified by using untargeted ultra high-performance liquid chromatography-mass spectrometry (UPLC(c)-MS/MS). Urine cotinine-measured SHS exposure was examined to determine the exposure level. A cross-sectional study including 17 children in a low-exposure group, 17 in a medium-exposure group, and 17 in a high-exposure group was first conducted. Then, a before–after study in the cohort of children was carried out before and two months after smoking-cessation intervention for family smokers. A total of 43 metabolites were discovered to be related to SHS exposure in children in the cross-sectional analysis (false discovery rate (FDR) corrected p < 0.05, variable importance in the projection (VIP) > 1.0). Only three metabolites were confirmed to be positively associated with children’s exposure to SHS (FDR corrected p < 0.05) in a follow-up longitudinal analysis, including kynurenine, tyrosyl-tryptophan, and 1-(3-pyridinyl)-1,4-butanediol, the latter of which belongs to carbonyl compounds, peptides, and pyridines. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that 1-(3-pyridinyl)-1,4-butanediol and kynurenine were significantly enriched in xenobiotic metabolism by cytochrome P450 (p = 0.040) and tryptophan metabolism (p = 0.030), respectively. These findings provide new insights into the pathophysiological mechanism of SHS and indicate the influence of individual differences in SHS-induced changes in urinary metabolites in children.
Collapse
|
46
|
Does methylphenidate use affect sperm parameters in patients undergoing infertility investigation? A retrospective analysis of 9769 semen samples. Arch Gynecol Obstet 2021; 304:539-546. [PMID: 33433701 DOI: 10.1007/s00404-020-05938-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Methylphenidate (MPH) is the most widely prescribed therapy for attention deficit hyperactivity disorder. Animal studies have shown a potential adverse effect of MPH exposure on male fertility. We examined the impact of MPH on human male sperm parameters. DESIGN Sperm parameters of 9769 samples from patients 18 years of age or older, collected as part of the basic evaluation of couples referred to the Infertility Clinic were analyzed retrospectively. We divided the study population into three groups according to MPH purchasing information: MPH purchased ≤ 90 days prior to sperm analysis-current users (n = 83), MPH purchased > 90 days prior to sperm analysis-past users (n = 293), and MPH-naïve patients (n = 9393). METHODS All sperm samples were analyzed by the same laboratory technician team for the following routine parameters: semen volume, sperm concentration, percentage of motile sperm, and percentage of normal morphology according to World Health Organization. The analysis of the samples was completed by evaluation of total sperm count, total sperm motility, and percentage of fast and slow motile cells. Sperm morphology was evaluated by a laboratory technician using methodological examination according to the strict Kruger-Tygerberg criteria. RESULTS Methylphenidate exposure did not affect sperm morphology but was associated with increased sperm concentration as well as increased total sperm count and total sperm motility among current and past users compared with MPH-naïve patients. In particular, progressive motility and total motile sperm count were significantly increased following MPH use. A multivariate analysis adjusting for age and current smoking was conducted, further supporting a positive correlation between current MPH use and increased values of total sperm count and total sperm motility. LIMITATIONS Our study has several inherent weaknesses, foremost of which is its retrospective nature. Another notable weakness is that medication purchasing data may not accurately reflect MPH exposure in the study population. Patients may be purchasing MPH and not taking it as prescribed. CONCLUSIONS In the present study, we could not demonstrate a negative impact of methylphenidate treatment on sperm parameters in adults with ADHD. Hence, we may assume that methylphenidate does not negatively affect male fertility.
Collapse
|
47
|
Pantos K, Grigoriadis S, Tomara P, Louka I, Maziotis E, Pantou A, Nitsos N, Vaxevanoglou T, Kokkali G, Agarwal A, Sfakianoudis K, Simopoulou M. Investigating the Role of the microRNA-34/449 Family in Male Infertility: A Critical Analysis and Review of the Literature. Front Endocrinol (Lausanne) 2021; 12:709943. [PMID: 34276570 PMCID: PMC8281345 DOI: 10.3389/fendo.2021.709943] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
There is a great body of evidence suggesting that in both humans and animal models the microRNA-34/449 (miR-34/449) family plays a crucial role for normal testicular functionality as well as for successful spermatogenesis, regulating spermatozoa maturation and functionality. This review and critical analysis aims to summarize the potential mechanisms via which miR-34/449 dysregulation could lead to male infertility. Existing data indicate that miR-34/449 family members regulate ciliogenesis in the efferent ductules epithelium. Upon miR-34/449 dysregulation, ciliogenesis in the efferent ductules is significantly impaired, leading to sperm aggregation and agglutination as well as to defective reabsorption of the seminiferous tubular fluids. These events in turn cause obstruction of the efferent ductules and thus accumulation of the tubular fluids resulting to high hydrostatic pressure into the testis. High hydrostatic pressure progressively leads to testicular dysfunction as well as to spermatogenic failure and finally to male infertility, which could range from severe oligoasthenozoospermia to azoospermia. In addition, miR-34/449 family members act as significant regulators of spermatogenesis with an essential role in controlling expression patterns of several spermatogenesis-related proteins. It is demonstrated that these microRNAs are meiotic specific microRNAs as their expression is relatively higher at the initiation of meiotic divisions during spermatogenesis. Moreover, data indicate that these molecules are essential for proper formation as well as for proper function of spermatozoa per se. MicroRNA-34/449 family seems to exert significant anti-oxidant and anti-apoptotic properties and thus contribute to testicular homeostatic regulation. Considering the clinical significance of these microRNAs, data indicate that the altered expression of the miR-34/449 family members is strongly associated with several aspects of male infertility. Most importantly, miR-34/449 levels in spermatozoa, in testicular tissues as well as in seminal plasma seem to be directly associated with severity of male infertility, indicating that these microRNAs could serve as potential sensitive biomarkers for an accurate individualized differential diagnosis, as well as for the assessment of the severity of male factor infertility. In conclusion, dysregulation of miR-34/449 family detrimentally affects male reproductive potential, impairing both testicular functionality as well as spermatogenesis. Future studies are needed to verify these conclusions.
Collapse
Affiliation(s)
| | - Sokratis Grigoriadis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Penelope Tomara
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Louka
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Maziotis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Agni Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Nitsos
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | | | - Georgia Kokkali
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, United States
| | | | - Mara Simopoulou
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Mara Simopoulou,
| |
Collapse
|
48
|
Dcunha R, Hussein RS, Ananda H, Kumari S, Adiga SK, Kannan N, Zhao Y, Kalthur G. Current Insights and Latest Updates in Sperm Motility and Associated Applications in Assisted Reproduction. Reprod Sci 2020; 29:7-25. [PMID: 33289064 PMCID: PMC7721202 DOI: 10.1007/s43032-020-00408-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/08/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
Spermatozoon is a motile cell with a special ability to travel through the woman’s reproductive tract and fertilize an oocyte. To reach and penetrate the oocyte, spermatozoa should possess progressive motility. Therefore, motility is an important parameter during both natural and assisted conception. The global trend of progressive reduction in the number and motility of healthy spermatozoa in the ejaculate is associated with increased risk of infertility. Therefore, developing approaches for maintaining or enhancing human sperm motility has been an important area of investigation. In this review we discuss the physiology of sperm, molecular pathways regulating sperm motility, risk factors affecting sperm motility, and the role of sperm motility in fertility outcomes. In addition, we discuss various pharmacological agents and biomolecules that can enhance sperm motility in vitro and in vivo conditions to improve assisted reproductive technology (ART) outcomes. This article opens dialogs to help toxicologists, clinicians, andrologists, and embryologists in understanding the mechanism of factors influencing sperm motility and various management strategies to improve treatment outcomes.
Collapse
Affiliation(s)
- Reyon Dcunha
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Reda S Hussein
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.,Department of Obstetrics and Gynecology, Assiut University, Assiut City, Egypt
| | - Hanumappa Ananda
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sandhya Kumari
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nagarajan Kannan
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yulian Zhao
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India. .,Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
49
|
Zhang C, Huang Y, Talukder M, Ge J, Lv MW, Bi SS, Li JL. Selenium sources differ in their potential to alleviate the cadmium-induced testicular dysfunction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115610. [PMID: 33254640 DOI: 10.1016/j.envpol.2020.115610] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd), a major environmental contaminant, is closely associated with male reproductive health. Selenium (Se) has been recognized as an effective chemo-protectant against Cd toxicity, but the underlying mechanisms remain unclear. The objective of present study was to illustrate the toxic effect of Cd on testis, and then compare the antagonistic effect among different Se sources on growth performance, testicular damage, ion homeostasis, antioxidative potential, and the expression of selenotranscriptome and biosynthetic related factors in Cd-treated chicken. Male chickens were fed with (Ⅰ) Control group: basal diet; (Ⅱ) Cd group: basal diet with 140 mg/kg CdCl2; (Ⅲ) YSe + Cd group: basal diet with 140 mg/kg CdCl2 and 3 mg/kg Yeast-Se; (Ⅳ) NSe + Cd group: basal diet with 140 mg/kg CdCl2 and 1 mg/kg Nano-Se; (Ⅴ) SSe + Cd group: basal diet with 140 mg/kg CdCl2 and 3 mg/kg Na2SeO3. It was observed that different Se treatments dramatically alleviated Cd-induced testicular developmental disorder, ion homeostasis disorder, hormone secretion disorder and oxidative stress. Simultaneously, Se mitigated Cd-induced testicular toxicity by regulating selenoprotein biosynthetic related factors to promote selenoprotein transcription. Finally, this study indicated that dietary supplementation of Yeast-Se produced an acceptable Se form to protect testis from Cd exposure.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Yan Huang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR72701, USA
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
50
|
Effects of Cadmium, Lead, and Mercury on the Structure and Function of Reproductive Organs. TOXICS 2020; 8:toxics8040094. [PMID: 33137881 PMCID: PMC7711607 DOI: 10.3390/toxics8040094] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Reproductive organs are essential not only for the life of an individual but also for the survival and development of the species. The response of reproductive organs to toxic substances differs from that of other target organs, and they may serve as an ideal “barometer” for the deleterious effects of environmental pollution on animal and human health. The incidence of infertility, cancers, and associated maladies has increased in the last fifty years or more, while various anthropogenic activities have released into the environment numerous toxic substances, including cadmium, lead, and mercury. Data from epidemiological studies suggested that environmental exposure to cadmium, lead, and mercury may have produced reproductive and developmental toxicity. The present review focused on experimental studies using rats, mice, avian, and rabbits to demonstrate unambiguously effects of cadmium, lead, or mercury on the structure and function of reproductive organs. In addition, relevant human studies are discussed. The experimental studies reviewed have indicated that the testis and ovary are particularly sensitive to cadmium, lead, and mercury because these organs are distinguished by an intense cellular activity, where vital processes of spermatogenesis, oogenesis, and folliculogenesis occur. In ovaries, manifestation of toxicity induced by cadmium, lead, or mercury included decreased follicular growth, occurrence of follicular atresia, degeneration of the corpus luteum, and alterations in cycle. In testes, toxic effects following exposure to cadmium, lead, or mercury included alterations of seminiferous tubules, testicular stroma, and decrease of spermatozoa count, motility and viability, and aberrant spermatozoa morphology.
Collapse
|