1
|
Mazumder S, Bindu S, Debsharma S, Bandyopadhyay U. Induction of mitochondrial toxicity by non-steroidal anti-inflammatory drugs (NSAIDs): The ultimate trade-off governing the therapeutic merits and demerits of these wonder drugs. Biochem Pharmacol 2024; 228:116283. [PMID: 38750902 DOI: 10.1016/j.bcp.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are most extensively used over-the-counter FDA-approved analgesic medicines for treating inflammation, musculoskeletal pain, arthritis, pyrexia and menstrual cramps. Moreover, aspirin is widely used against cardiovascular complications. Owing to their non-addictive nature, NSAIDs are also commissioned as safer opioid-sparing alternatives in acute trauma and post-surgical treatments. In fact, therapeutic spectrum of NSAIDs is expanding. These "wonder-drugs" are now repurposed against lung diseases, diabetes, neurodegenerative disorders, fungal infections and most notably cancer, due to their efficacy against chemoresistance, radio-resistance and cancer stem cells. However, prolonged NSAID treatment accompany several adverse effects. Mechanistically, apart from cyclooxygenase inhibition, NSAIDs directly target mitochondria to induce cell death. Interestingly, there are also incidences of dose-dependent effects where NSAIDs are found to improve mitochondrial health thereby suggesting plausible mitohormesis. While mitochondria-targeted effects of NSAIDs are discretely studied, a comprehensive account emphasizing the multiple dimensions in which NSAIDs affect mitochondrial structure-function integrity, leading to cell death, is lacking. This review discusses the current understanding of NSAID-mitochondria interactions in the pathophysiological background. This is essential for assessing the risk-benefit trade-offs of NSAIDs for judiciously strategizing NSAID-based approaches to manage pain and inflammation as well as formulating effective anti-cancer strategies. We also discuss recent developments constituting selective mitochondria-targeted NSAIDs including theranostics, mitocans, chimeric small molecules, prodrugs and nanomedicines that rationally optimize safer application of NSAIDs. Thus, we present a comprehensive understanding of therapeutic merits and demerits of NSAIDs with mitochondria at its cross roads. This would help in NSAID-based disease management research and drug development.
Collapse
Affiliation(s)
- Somnath Mazumder
- Department of Zoology, Raja Peary Mohan College, 1 Acharya Dhruba Pal Road, Uttarpara, West Bengal 712258, India
| | - Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India.
| |
Collapse
|
2
|
Cardoso S, Carvalho C, Correia SC, Moreira PI. Protective effects of 2,4-dinitrophenol in okadaic acid-induced cellular model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167222. [PMID: 38729530 DOI: 10.1016/j.bbadis.2024.167222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) research started several decades ago and despite the many efforts employed to develop new treatments or approaches to slow and/or revert disease progression, AD treatment remains an unsolved issue. Knowing that mitochondria loss of function is a central hub for many AD-associated pathophysiological processes, there has been renewed interest in exploring mitochondria as targets for intervention. In this perspective, the present study was aimed to investigate the possible beneficial effects of 2,4 dinitrophenol (DNP), a mitochondrial uncoupler agent, in an in vitro model of AD. Retinoic acid-induced differentiated SH-SY5Y cells were incubated with okadaic acid (OA), a neurotoxin often used as an AD experimental model, and/or with DNP. OA caused a decrease in neuronal cells viability, induced multiple mitochondrial anomalies including increased levels of reactive oxygen species, decreased bioenergetics and mitochondria content markers, and an altered mitochondria morphology. OA-treated cells also presented increased lipid peroxidation levels, and overactivation of tau related kinases (GSK3β, ERK1/2 and AMPK) alongside with a significant augment in tau protein phosphorylation levels. Interestingly, DNP co-treatment ameliorated and rescued OA-induced detrimental effects not only on mitochondria but also but also reinstated signaling pathways homeostasis and ameliorated tau pathology. Overall, our results show for the first time that DNP has the potential to preserve mitochondria homeostasis under a toxic insult, like OA exposure, as well as to reestablish cellular signaling homeostasis. These observations foster the idea that DNP, as a mitochondrial modulator, might represent a new avenue for treatment of AD.
Collapse
Affiliation(s)
- Susana Cardoso
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| | - Cristina Carvalho
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Sónia C Correia
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Paula I Moreira
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| |
Collapse
|
3
|
López-Vázquez S, Villalobos C, Núñez L. SARS-CoV-2 Viroporin E Induces Ca 2+ Release and Neuron Cell Death in Primary Cultures of Rat Hippocampal Cells Aged In Vitro. Int J Mol Sci 2024; 25:6304. [PMID: 38928009 PMCID: PMC11203731 DOI: 10.3390/ijms25126304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The COVID-19 pandemic was caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which may lead to serious respiratory, vascular and neurological dysfunctions. The SARS-CoV-2 envelope protein (E protein) is a structural viroporin able to form ion channels in cell membranes, which is critical for viral replication. However, its effects in primary neurons have not been addressed. Here we used fluorescence microscopy and calcium imaging to study SARS-CoV-2 viroporin E localization and the effects on neuron damage and intracellular Ca2+ homeostasis in a model of rat hippocampal neurons aged in vitro. We found that the E protein quickly enters hippocampal neurons and colocalizes with the endoplasmic reticulum (ER) in both short-term (6-8 days in vitro, DIV) and long-term (20-22 DIV) cultures resembling young and aged neurons, respectively. Strikingly, E protein treatment induces apoptosis in aged neurons but not in young neurons. The E protein induces variable increases in cytosolic Ca2+ concentration in hippocampal neurons. Ca2+ responses to the E protein are due to Ca2+ release from intracellular stores at the ER. Moreover, E protein-induced Ca2+ release is very small in young neurons and increases dramatically in aged neurons, consistent with the enhanced Ca2+ store content in aged neurons. We conclude that the SARS-CoV-2 E protein quickly translocates to ER endomembranes of rat hippocampal neurons where it releases Ca2+, probably acting like a viroporin, thus producing Ca2+ store depletion and neuron apoptosis in aged neurons and likely contributing to neurological damage in COVID-19 patients.
Collapse
Affiliation(s)
- Sara López-Vázquez
- Excellence Unit, Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), University of Valladolid and Spanish National Research Council (CSIC), 47003 Valladolid, Spain; (S.L.-V.); (L.N.)
| | - Carlos Villalobos
- Excellence Unit, Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), University of Valladolid and Spanish National Research Council (CSIC), 47003 Valladolid, Spain; (S.L.-V.); (L.N.)
| | - Lucía Núñez
- Excellence Unit, Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), University of Valladolid and Spanish National Research Council (CSIC), 47003 Valladolid, Spain; (S.L.-V.); (L.N.)
- Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
4
|
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. A story of the potential effect of non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson's disease: beneficial or detrimental effects. Inflammopharmacology 2023; 31:673-688. [PMID: 36961665 DOI: 10.1007/s10787-023-01192-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
Parkinson's disease (PD) is an advanced neurodegenerative disease (NDD) caused by the degeneration of dopaminergic neurons (DNs) in the substantia nigra (SN). As PD is an age-related disorder, the majority of PD patients are associated with musculoskeletal disorders with prolonged use of analgesic and anti-inflammatory agents, such as non-steroidal anti-inflammatory drugs (NSAIDs). Therefore, NSAIDs can affect PD neuropathology in different ways. Thus, the objective of the present narrative review was to clarify the potential role of NSAIDs in PD according to the assorted view of preponderance. Inhibition of neuroinflammation and modulation of immune response by NSAIDs could be an effective way in preventing the development of NDD. NSAIDs affect PD neuropathology in different manners could be beneficial or detrimental effects. Inhibition of cyclooxygenase 2 (COX2) by NSAIDs may prevent the development of PD. NSAIDs afforded a neuroprotective role against the development and progression of PD neuropathology through the modulation of neuroinflammation. Though, NSAIDs may lead to neutral or harmful effects by inhibiting neuroprotective prostacyclin (PGI2) and accentuation of pro-inflammatory leukotrienes (LTs). In conclusion, there is still a potential conflict regarding the effect of NSAIDs on PD neuropathology.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511, Egypt.
| |
Collapse
|
5
|
Sipos B, Bella Z, Gróf I, Veszelka S, Deli MA, Szűcs KF, Sztojkov-Ivanov A, Ducza E, Gáspár R, Kecskeméti G, Janáky T, Volk B, Budai-Szűcs M, Ambrus R, Szabó-Révész P, Csóka I, Katona G. Soluplus® promotes efficient transport of meloxicam to the central nervous system via nasal administration. Int J Pharm 2023; 632:122594. [PMID: 36626972 DOI: 10.1016/j.ijpharm.2023.122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
In our present series of experiments, we investigated the nasal applicability of the previously developed Soluplus® - meloxicam polymeric micelle formulation. Utilizing the nasal drug investigations, moderately high mucoadhesion was experienced in nasal conditions which alongside the appropriate physicochemical properties in liquid state, contributed to rapid drug absorption through human RPMI 2650 cell line. Ex vivo studies also confirmed that higher nasal mucosal permeation could be expected with the polymeric micelle nanoformulation compared to a regular MEL suspension. Also, the nanoformulation met the requirements to provide rapid drug permeation in less 1 h of our measurement. The non-toxic, non-cell barrier damaging formulation also proved to provide a successful passive transport across excides human nasal mucosa. Based on our in vivo investigations, it can be concluded that the polymeric micelle formulation provides higher meloxicam transport to the central nervous system followed by a slow and long-lasting elimination process compared to prior results where physical particle size reduction methods were applied. With these results, a promising solution and nanocarrier is proposed for the successful transport of non-steroidal anti-inflammatory drugs with acidic character to the brain.
Collapse
Affiliation(s)
- Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| | - Zsolt Bella
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Tisza Lajos Blvd. 111, H-6725 Szeged, Hungary
| | - Ilona Gróf
- Institute of Biophysics, Biological Research Centre, Szeged, Temesvári Blvd. 62, H-6726 Szeged, Hungary
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre, Szeged, Temesvári Blvd. 62, H-6726 Szeged, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Szeged, Temesvári Blvd. 62, H-6726 Szeged, Hungary
| | - Kálmán F Szűcs
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, Faculty of Medicine, University of Szeged, Hungary
| | - Anita Sztojkov-Ivanov
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| | - Róbert Gáspár
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, Faculty of Medicine, University of Szeged, Hungary
| | - Gábor Kecskeméti
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm square 8, H-6720 Szeged, Hungary
| | - Tamás Janáky
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm square 8, H-6720 Szeged, Hungary
| | - Balázs Volk
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., Keresztúri Str. 30 - 38, H-1106 Budapest, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| | - Piroska Szabó-Révész
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary.
| |
Collapse
|
6
|
Jin R, Chan AKY, Wu J, Lee TMC. Relationships between Inflammation and Age-Related Neurocognitive Changes. Int J Mol Sci 2022; 23:12573. [PMID: 36293430 PMCID: PMC9604276 DOI: 10.3390/ijms232012573] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
The relationship between inflammation and age-related neurocognitive changes is significant, which may relate to the age-related immune dysfunctions characterized by the senescence of immune cells and elevated inflammatory markers in the peripheral circulation and the central nervous system. In this review, we discuss the potential mechanisms, including the development of vascular inflammation, neuroinflammation, organelle dysfunctions, abnormal cholesterol metabolism, and glymphatic dysfunctions as well as the role that the key molecules play in the immune-cognition interplay. We propose potential therapeutic pharmacological and behavioral strategies for ameliorating age-related neurocognitive changes associated with inflammation. Further research to decipher the multidimensional roles of chronic inflammation in normal and pathological aging processes will help unfold the pathophysiological mechanisms underpinning neurocognitive disorders. The insight gained will lay the path for developing cost-effective preventative measures and the buffering or delaying of age-related neurocognitive decline.
Collapse
Affiliation(s)
- Run Jin
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 999077, China
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong 999077, China
| | - Aidan Kai Yeung Chan
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 999077, China
- Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jingsong Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Tatia Mei Chun Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 999077, China
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
7
|
Amyloid Beta Oligomers-Induced Ca2+ Entry Pathways: Role of Neuronal Networks, NMDA Receptors and Amyloid Channel Formation. Biomedicines 2022; 10:biomedicines10051153. [PMID: 35625890 PMCID: PMC9138537 DOI: 10.3390/biomedicines10051153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
The molecular basis of amyloid toxicity in Alzheimer’s disease (AD) remains controversial. Amyloid β (Aβ) oligomers promote Ca2+ influx, mitochondrial Ca2+ overload and apoptosis in hippocampal neurons in vivo and in vitro, but the primary Ca2+ entry pathways are unclear. We studied Ca2+ entry pathways induced by Aβ oligomers in rat hippocampal and cerebellar neurons. Aβ oligomers induce Ca2+ entry in neurons. Ca2+ responses to Aβ oligomers are large after synaptic networking and prevented by blockers of synaptic transmission. In contrast, in neurons devoid of synaptic connections, Ca2+ responses to Aβ oligomers are small and prevented only by blockers of amyloid channels (NA7) and NMDA receptors (MK801). A combination of NA7 and MK801 nearly abolished Ca2+ responses. Non-neuronal cells bearing NMDA receptors showed Ca2+ responses to oligomers, whereas cells without NMDA receptors did not exhibit Ca2+ responses. The expression of subunits of the NMDA receptor NR1/ NR2A and NR1/NR2B in HEK293 cells lacking endogenous NMDA receptors restored Ca2+ responses to NMDA but not to Aβ oligomers. We conclude that Aβ oligomers promote Ca2+ entry via amyloid channels and NMDA receptors. This may recruit distant neurons intertwisted by synaptic connections, spreading excitation and recruiting further NMDA receptors and voltage-gated Ca2+ channels, leading to excitotoxicity and neuron degeneration in AD.
Collapse
|
8
|
Li D, Hong X, Chen T. Association Between Rheumatoid Arthritis and Risk of Parkinson's Disease: A Meta-Analysis and Systematic Review. Front Neurol 2022; 13:885179. [PMID: 35645965 PMCID: PMC9130734 DOI: 10.3389/fneur.2022.885179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background Rheumatoid arthritis (RA) and Parkinson's disease (PD) are two common chronic diseases worldwide, and any potential link between the two would significantly impact public health practice. Considering the current inconsistent evidence, we conducted a meta-analysis and systematic review to examine the risk of PD in patients with RA. Methods Two investigators (DL and XH) conducted a comprehensive search of PubMed, Embase, and Web of Science using medical subject headings terms combined with free words to identify relevant papers published from inception through December 31, 2021. All studies that explored the relationship between RA and PD were included for quantitative analysis and qualitative review. Random- and fixed-effects models were used to pool the risk ratios (RRs) of PD in patients with RA. The Newcastle-Ottawa scale was used to assess the quality of included studies. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guideline. Results Four population-based studies involving 353,246 patients and one Mendelian randomized study were included in our study. The pooled result showed a significantly reduced risk of PD in patients with RA than in the general population (RR = 0.74, 95% CI: 0.56-0.98, P = 0.034). No apparent effects of gender, age, region, follow-up time, or study design on PD risk were observed. Sensitivity analysis showed that pooled results were relatively stable, and no publication bias was detected. The Mendelian randomization study indicated a significant inverse association between RA and PD (genetic correlation: −0.10, P = 0.0033) and that each one standard deviation increase in the risk of RA was significantly associated with a lower risk of PD. Of note, the current study is limited by the relatively small number of included studies and unmeasured confounding factors, especially for RA-related anti-inflammatory agents. Conclusions This study supports that people with RA had a lower PD risk than those without RA. Further studies are needed to explore the underlying molecular mechanisms of the interaction between the two diseases.
Collapse
|
9
|
Westwell-Roper C, Best JR, Elbe D, MacFadden M, Baer S, Tucker L, Au A, Naqqash Z, Lin B, Lu C, Stewart SE. Celecoxib versus placebo as an adjunct to treatment-as-usual in children and youth with obsessive-compulsive disorder: protocol for a single-site randomised quadruple-blind phase II study. BMJ Open 2022; 12:e054296. [PMID: 35105633 PMCID: PMC8804641 DOI: 10.1136/bmjopen-2021-054296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/05/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Cyclooxygenase (COX) enzymes oxidise arachidonic acid to prostaglandins, which modulate neuronal function and inflammation in the central nervous system. Consensus guidelines suggest non-steroidal anti-inflammatory drugs as a possible adjunctive approach in adults with obsessive-compulsive disorder (OCD) and in children with acute-onset OCD subtypes. However, there is limited evidence to support this approach. The primary objective of this study is to determine the efficacy of the COX-2-selective inhibitor celecoxib as an adjunct to treatment-as-usual in children and youth with moderate-to-severe OCD. The safety of this intervention including adverse events will also be systematically assessed. METHODS The Adjunctive CElecoxib in childhood-onset OCD (ACE-OCD) study is a single-centre randomised, quadruple-blind, placebo-controlled superiority trial with two parallel groups: celecoxib 100 mg twice daily and placebo. Treatments will be added to participants' routine clinical care, which will not change over the course of the study. Target recruitment is 80 participants ages 7-18 with no recent treatment changes. The primary outcome is OCD severity after 12 weeks of treatment, measured by clinician-administered Children's Yale-Brown Obsessive Compulsive Scale (CY-BOCS). Secondary outcomes include CY-BOCS score after 6 weeks; difference in the proportion of participants achieving a clinically meaningful response or remission; mean clinical global impression of severity and improvement after 6 and 12 weeks; and proportion of participants reporting adverse events possibly or probably related to the study intervention. The primary analyses, carried out according to intention-to-treat principles, will compare the celecoxib to placebo group on each outcome of interest, adjusting for baseline scores using analysis of covariance or logistic regression. Participants will be offered a 12-week open-label celecoxib extension and will be invited to participate in an ancillary study for biomarker analyses. ETHICS AND DISSEMINATION This protocol has been approved by the University of British Columbia Children's and Women's Research Ethics Board and has received a No Objection Letter from Health Canada. The findings will be disseminated in peer-reviewed journals and presentations to multiple stakeholders including patients, parents and healthcare providers. TRIAL REGISTRATION NUMBER NCT04673578.
Collapse
Affiliation(s)
- Clara Westwell-Roper
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Provincial OCD Program, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - John R Best
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Provincial OCD Program, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Dean Elbe
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pharmacy, Children's and Women's Health Centre of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Megan MacFadden
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Susan Baer
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Lori Tucker
- BC Children's Hospital, Vancouver, British Columbia, Canada
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Antony Au
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Provincial OCD Program, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Zainab Naqqash
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Provincial OCD Program, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Boyee Lin
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Provincial OCD Program, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Cynthia Lu
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Provincial OCD Program, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - S Evelyn Stewart
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Provincial OCD Program, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- BC Children's Hospital, Vancouver, British Columbia, Canada
- British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Wu AJ, Tong BCK, Huang AS, Li M, Cheung KH. Mitochondrial Calcium Signaling as a Therapeutic Target for Alzheimer's Disease. Curr Alzheimer Res 2021; 17:329-343. [PMID: 31820698 DOI: 10.2174/1567205016666191210091302] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/17/2019] [Accepted: 12/09/2019] [Indexed: 11/22/2022]
Abstract
Mitochondria absorb calcium (Ca2+) at the expense of the electrochemical gradient generated during respiration. The influx of Ca2+ into the mitochondrial matrix helps maintain metabolic function and results in increased cytosolic Ca2+ during intracellular Ca2+ signaling. Mitochondrial Ca2+ homeostasis is tightly regulated by proteins located in the inner and outer mitochondrial membranes and by the cross-talk with endoplasmic reticulum Ca2+ signals. Increasing evidence indicates that mitochondrial Ca2+ overload is a pathological phenotype associated with Alzheimer's Disease (AD). As intracellular Ca2+ dysregulation can be observed before the appearance of typical pathological hallmarks of AD, it is believed that mitochondrial Ca2+ overload may also play an important role in AD etiology. The high mitochondrial Ca2+ uptake can easily compromise neuronal functions and exacerbate AD progression by impairing mitochondrial respiration, increasing reactive oxygen species formation and inducing apoptosis. Additionally, mitochondrial Ca2+ overload can damage mitochondrial recycling via mitophagy. This review will discuss the molecular players involved in mitochondrial Ca2+ dysregulation and the pharmacotherapies that target this dysregulation. As most of the current AD therapeutics are based on amyloidopathy, tauopathy, and the cholinergic hypothesis, they achieve only symptomatic relief. Thus, determining how to reestablish mitochondrial Ca2+ homeostasis may aid in the development of novel AD therapeutic interventions.
Collapse
Affiliation(s)
- Aston J Wu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Benjamin C-K Tong
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Alexis S Huang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - King-Ho Cheung
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| |
Collapse
|
11
|
Sipos B, Szabó-Révész P, Csóka I, Pallagi E, Dobó DG, Bélteky P, Kónya Z, Deák Á, Janovák L, Katona G. Quality by Design Based Formulation Study of Meloxicam-Loaded Polymeric Micelles for Intranasal Administration. Pharmaceutics 2020; 12:pharmaceutics12080697. [PMID: 32722099 PMCID: PMC7464185 DOI: 10.3390/pharmaceutics12080697] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Our study aimed to develop an “ex tempore” reconstitutable, viscosity enhancer- and preservative-free meloxicam (MEL)-loaded polymeric micelle formulation, via Quality by Design (QbD) approach, exploiting the nose-to-brain pathway, as a suitable tool in the treatment of neuroinflammation. The anti-neuroinflammatory effect of nose-to-brain NSAID polymeric micelles was not studied previously, therefore its investigation is promising. Critical product parameters, encapsulation efficiency (89.4%), Z-average (101.22 ± 2.8 nm) and polydispersity index (0.149 ± 0.7) and zeta potential (−25.2 ± 0.4 mV) met the requirements of the intranasal drug delivery system (nanoDDS) and the targeted profile liquid formulation was transformed into a solid preservative-free product by freeze-drying. The viscosity (32.5 ± 0.28 mPas) and hypotonic osmolality (240 mOsmol/L) of the reconstituted formulation provides proper and enhanced absorption and probably guarantees the administration of the liquid dosage form (nasal drop and spray). The developed formulation resulted in more than 20 times faster MEL dissolution rate and five-fold higher nasal permeability compared to starting MEL. The prediction of IVIVC confirmed the great potential for in vivo brain distribution of MEL. The nose-to-brain delivery of NSAIDs such as MEL by means of nanoDDS as polymeric micelles offers an innovative opportunity to treat neuroinflammation more effectively.
Collapse
Affiliation(s)
- Bence Sipos
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (B.S.); (P.S.-R.); (I.C.); (E.P.); (D.G.D.)
| | - Piroska Szabó-Révész
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (B.S.); (P.S.-R.); (I.C.); (E.P.); (D.G.D.)
| | - Ildikó Csóka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (B.S.); (P.S.-R.); (I.C.); (E.P.); (D.G.D.)
| | - Edina Pallagi
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (B.S.); (P.S.-R.); (I.C.); (E.P.); (D.G.D.)
| | - Dorina Gabriella Dobó
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (B.S.); (P.S.-R.); (I.C.); (E.P.); (D.G.D.)
| | - Péter Bélteky
- Faculty of Science and Informatics, Department of Applied & Environmental Chemistry, H-6720 Szeged, Hungary; (P.B.); (Z.K.)
| | - Zoltán Kónya
- Faculty of Science and Informatics, Department of Applied & Environmental Chemistry, H-6720 Szeged, Hungary; (P.B.); (Z.K.)
| | - Ágota Deák
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, H-6720 Szeged, Hungary; (Á.D.); (L.J.)
| | - László Janovák
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, H-6720 Szeged, Hungary; (Á.D.); (L.J.)
| | - Gábor Katona
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (B.S.); (P.S.-R.); (I.C.); (E.P.); (D.G.D.)
- Correspondence: ; Tel.: +36-62-545-575
| |
Collapse
|
12
|
Westwell-Roper C, Stewart SE. Commentary: Neurobiology and Therapeutic Potential of Cyclooxygenase-2 (COX-2) Inhibitors for Inflammation in Neuropsychiatric Disorders. Front Psychiatry 2020; 11:264. [PMID: 32425818 PMCID: PMC7212432 DOI: 10.3389/fpsyt.2020.00264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Clara Westwell-Roper
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - S. Evelyn Stewart
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
| |
Collapse
|
13
|
Remodeling of Intracellular Ca 2+ Homeostasis in Rat Hippocampal Neurons Aged In Vitro. Int J Mol Sci 2020; 21:ijms21041549. [PMID: 32102482 PMCID: PMC7073228 DOI: 10.3390/ijms21041549] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022] Open
Abstract
Aging is often associated with a cognitive decline and a susceptibility to neuronal damage. It is also the most important risk factor for neurodegenerative disorders, particularly Alzheimer's disease (AD). AD is related to an excess of neurotoxic oligomers of amyloid β peptide (Aβo); however, the molecular mechanisms are still highly controversial. Intracellular Ca2+ homeostasis plays an important role in the control of neuronal activity, including neurotransmitter release, synaptic plasticity, and memory storage, as well as neuron cell death. Recent evidence indicates that long-term cultures of rat hippocampal neurons, resembling aged neurons, undergo cell death after treatment with Aβo, whereas short-term cultures, resembling young neurons, do not. These in vitro changes are associated with the remodeling of intracellular Ca2+ homeostasis with aging, thus providing a simplistic model for investigating Ca2+ remodeling in aging. In vitro aged neurons show increased resting cytosolic Ca2+ concentration, enhanced Ca2+ store content, and Ca2+ release from the endoplasmic reticulum (ER). Ca2+ transfer from the endoplasmic reticulum (ER) to mitochondria is also enhanced. Aged neurons also show decreased store-operated Ca2+ entry (SOCE), a Ca2+ entry pathway related to memory storage. At the molecular level, in vitro remodeling is associated with changes in the expression of Ca2+ channels resembling in vivo aging, including changes in N-methyl-D-aspartate NMDA receptor and inositol 1,4,5-trisphosphate (IP3) receptor isoforms, increased expression of the mitochondrial calcium uniporter (MCU), and decreased expression of Orai1/Stim1, the molecular players involved in SOCE. Additionally, Aβo treatment exacerbates most of the changes observed in aged neurons and enhances susceptibility to cell death. Conversely, the solely effect of Aβo in young neurons is to increase ER-mitochondria colocalization and enhance Ca2+ transfer from ER to mitochondria without inducing neuronal damage. We propose that cultured rat hippocampal neurons may be a useful model to investigate Ca2+ remodeling in aging and in age-related neurodegenerative disorders.
Collapse
|
14
|
Development of Meloxicam-Human Serum Albumin Nanoparticles for Nose-to-Brain Delivery via Application of a Quality by Design Approach. Pharmaceutics 2020; 12:pharmaceutics12020097. [PMID: 31991767 PMCID: PMC7076499 DOI: 10.3390/pharmaceutics12020097] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to optimize the formulation of meloxicam (MEL)-containing human serum albumin (HSA) nanoparticles for nose-to-brain via a quality by design (QbD) approach. Liquid and dried formulations of nanoparticles containing Tween 80 and without the surfactant were investigated. Various properties, such as the Z-average, zeta potential, encapsulation efficacy (EE), conjugation of MEL and HSA, physical stability, in vitro dissolution, in vitro permeability, and in vivo plasma and brain distribution of MEL were characterized. From a stability point of view, a solid product (Mel-HSA-Tween) is recommended for further development since it met the desired critical parameters (176 ± 0.3 nm Z-average, 0.205 ± 0.01 PdI, -14.1 ± 0.7 mV zeta potential) after 6 months of storage. In vitro examination showed a significantly increased drug dissolution and permeability of MEL-containing nanoparticles, especially in the case of applying Tween 80. The in vivo studies confirmed both the trans-epithelial and axonal transport of nanoparticles, and a significantly higher cerebral concentration of MEL was detected with nose-to-brain delivery, in comparison with intravenous or per os administration. These results indicate intranasal the administration of optimized MEL-containing HSA formulations as a potentially applicable "value-added" product for the treatment of neuroinflammation.
Collapse
|
15
|
Calvo-Rodríguez M, García-Durillo M, Villalobos C, Núñez L. Aging Enables Ca2+ Overload and Apoptosis Induced by Amyloid-β Oligomers in Rat Hippocampal Neurons: Neuroprotection by Non-Steroidal Anti-Inflammatory Drugs and R-Flurbiprofen in Aging Neurons. J Alzheimers Dis 2018; 54:207-21. [PMID: 27447424 DOI: 10.3233/jad-151189] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The most important risk factor for Alzheimer's disease (AD) is aging. Neurotoxicity in AD has been linked to dyshomeostasis of intracellular Ca2+ induced by small aggregates of the amyloid-β peptide 1-42 (Aβ42 oligomers). However, how aging influences susceptibility to neurotoxicity induced by Aβ42 oligomers is unknown. In this study, we used long-term cultures of rat hippocampal neurons, a model of neuronal in vitro aging, to investigate the contribution of aging to Ca2+ dishomeostasis and neuron cell death induced by Aβ42 oligomers. In addition, we tested whether non-steroidal anti-inflammatory drugs (NSAIDs) and R-flurbiprofen prevent apoptosis acting on subcellular Ca2+ in aged neurons. We found that Aβ42 oligomers have no effect on young hippocampal neurons cultured for 2 days in vitro (2 DIV). However, they promoted apoptosis modestly in mature neurons (8 DIV) and these effects increased dramatically after 13 DIV, when neurons display many hallmarks of in vivo aging. Consistently, cytosolic and mitochondrial Ca2+ responses induced by Aβ42 oligomers increased dramatically with culture age. At low concentrations, NSAIDs and the enantiomer R-flurbiprofen lacking anti-inflammatory activity prevent Ca2+ overload and neuron cell death induced by Aβ42 oligomers in aged neurons. However, at high concentrations R-flurbiprofen induces apoptosis. Thus, Aβ42 oligomers promote Ca2+ overload and neuron cell death only in aged rat hippocampal neurons. These effects are prevented by low concentrations of NSAIDs and R-flurbiprofen acting on mitochondrial Ca2+ overload.
Collapse
Affiliation(s)
- María Calvo-Rodríguez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Mónica García-Durillo
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carlos Villalobos
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Lucía Núñez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain.,Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Spain
| |
Collapse
|
16
|
Wong LR, Ho PC. Role of serum albumin as a nanoparticulate carrier for nose-to-brain delivery of R-flurbiprofen: implications for the treatment of Alzheimer's disease. ACTA ACUST UNITED AC 2017; 70:59-69. [PMID: 29034965 DOI: 10.1111/jphp.12836] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES R-flurbiprofen (R-FP) was found to offer neuroprotective effects by inhibiting mitochondrial calcium overload induced by β-amyloid peptide toxicity in Alzheimer's disease (AD). However, poor brain penetration after oral administration posed a challenge to its further development for AD treatment. In this study, we investigated the potential of serum albumin as nanoparticulate carriers for nose-to-brain delivery of R-FP to improve its brain accumulation. METHODS Mice were subjected to three treatment groups: (1) intranasal R-FP solution, (2) oral R-FP solution and (3) intranasal R-FP albumin nanoparticles. We also investigated whether the in-vivo R-FP level achieved in the brain afforded by intranasal administration of R-FP nanoparticles had any effect on mitochondrial respiratory activity in an in-vitro AD model. KEY FINDINGS Our in-vivo experiments demonstrate that the intranasal administration of serum albumin-based R-FP nanoparticles achieved higher brain-to-plasma ratio profile as compared to intranasal and oral administration of a simple R-FP solution. We observed significantly improved basal and maximal mitochondrial respiration in cells treated with R-FP albumin nanoparticles at in-vivo brain concentration. CONCLUSIONS Serum albumin-based nanoparticles administered via the nasal route may be a viable approach in delivering therapeutic agents to the brain to alleviate mitochondrial dysfunction in AD.
Collapse
Affiliation(s)
- Ling Rong Wong
- Faculty of Science, Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Paul C Ho
- Faculty of Science, Department of Pharmacy, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Mitochondrial Uncoupler Prodrug of 2,4-Dinitrophenol, MP201, Prevents Neuronal Damage and Preserves Vision in Experimental Optic Neuritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7180632. [PMID: 28680531 PMCID: PMC5478871 DOI: 10.1155/2017/7180632] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/30/2017] [Indexed: 11/18/2022]
Abstract
The ability of novel mitochondrial uncoupler prodrug of 2,4-dinitrophenol (DNP), MP201, to prevent neuronal damage and preserve visual function in an experimental autoimmune encephalomyelitis (EAE) model of optic neuritis was evaluated. Optic nerve inflammation, demyelination, and axonal loss are prominent features of optic neuritis, an inflammatory optic neuropathy often associated with the central nervous system demyelinating disease multiple sclerosis. Currently, optic neuritis is frequently treated with high-dose corticosteroids, but treatment fails to prevent permanent neuronal damage and associated vision changes that occur as optic neuritis resolves, thus suggesting that additional therapies are required. MP201 administered orally, once per day, attenuated visual dysfunction, preserved retinal ganglion cells (RGCs), and reduced RGC axonal loss and demyelination in the optic nerves of EAE mice, with limited effects on inflammation. The prominent mild mitochondrial uncoupling properties of MP201, with slow elimination of DNP, may contribute to the neuroprotective effect by modulating the entire mitochondria's physiology directly. Results suggest that MP201 is a potential novel treatment for optic neuritis.
Collapse
|
18
|
Calvo-Rodríguez M, de la Fuente C, García-Durillo M, García-Rodríguez C, Villalobos C, Núñez L. Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca 2+ responses, and neuron cell death in cultured rat hippocampal neurons. J Neuroinflammation 2017; 14:24. [PMID: 28143556 PMCID: PMC5282876 DOI: 10.1186/s12974-017-0802-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 01/23/2017] [Indexed: 11/10/2022] Open
Abstract
Background Toll-like receptors (TLRs) are transmembrane pattern-recognition receptors of the innate immune system recognizing diverse pathogen-derived and tissue damage-related ligands. It has been suggested that TLR signaling contributes to the pathogenesis of age-related, neurodegenerative diseases, including Alzheimer’s disease (AD). AD is associated to oligomers of the amyloid β peptide (Aβo) that cause intracellular Ca2+ dishomeostasis and neuron cell death in rat hippocampal neurons. Here we assessed the interplay between inflammation and Aβo in long-term cultures of rat hippocampal neurons, an in vitro model of neuron aging and/or senescence. Methods Ca2+ imaging and immunofluorescence against annexin V and TLR4 were applied in short- and long-term cultures of rat hippocampal neurons to test the effects of TLR4-agonist LPS and Aβo on cytosolic [Ca2+] and on apoptosis as well as on expression of TLR4. Results LPS increases cytosolic [Ca2+] and promotes apoptosis in rat hippocampal neurons in long-term culture considered aged and/or senescent neurons, but not in short-term cultured neurons considered young neurons. TLR4 antagonist CAY10614 prevents both effects. TLR4 expression in rat hippocampal neurons is significantly larger in aged hippocampal cultures. Treatment of aged hippocampal cultures with Aβo increases TLR4 expression and enhances LPS-induced Ca2+ responses and neuron cell death. Conclusions Aging and amyloid β oligomers, the neurotoxin involved in Alzheimer’s disease, enhance TLR4 expression as well as LPS-induced Ca2+ responses and neuron cell death in rat hippocampal neurons aged in vitro. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0802-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Calvo-Rodríguez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carmen de la Fuente
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Mónica García-Durillo
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carmen García-Rodríguez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carlos Villalobos
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain.
| | - Lucía Núñez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain.,Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
19
|
Calvo-Rodríguez M, García-Durillo M, Villalobos C, Núñez L. In vitro aging promotes endoplasmic reticulum (ER)-mitochondria Ca 2+ cross talk and loss of store-operated Ca 2+ entry (SOCE) in rat hippocampal neurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2637-2649. [PMID: 27503411 DOI: 10.1016/j.bbamcr.2016.08.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/11/2022]
Abstract
Aging is associated to cognitive decline and susceptibility to neuron death, two processes related recently to subcellular Ca2+ homeostasis. Memory storage relies on mushroom spines stability that depends on store-operated Ca2+ entry (SOCE). In addition, Ca2+ transfer from endoplasmic reticulum (ER) to mitochondria sustains energy production but mitochondrial Ca2+ overload promotes apoptosis. We have addressed whether SOCE and ER-mitochondria Ca2+ transfer are influenced by culture time in long-term cultures of rat hippocampal neurons, a model of neuronal aging. We found that short-term cultured neurons show large SOCE, low Ca2+ store content and no functional coupling between ER and mitochondria. In contrast, in long-term cultures reflecting aging neurons, SOCE is essentially lost, Stim1 and Orai1 are downregulated, Ca2+ stores become overloaded, Ca2+ release is enhanced, expression of the mitochondrial Ca2+ uniporter (MCU) increases and most Ca2+ released from the ER is transferred to mitochondria. These results suggest that neuronal aging is associated to increased ER-mitochondrial cross talking and loss of SOCE. This subcellular Ca2+ remodeling might contribute to cognitive decline and susceptibility to neuron cell death in the elderly.
Collapse
Affiliation(s)
- María Calvo-Rodríguez
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Mónica García-Durillo
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carlos Villalobos
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain.
| | - Lucía Núñez
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain; Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|