1
|
Han Z, Wang B, Wen YQ, Li YN, Feng CX, Ding XS, Shen Y, Yang Q, Gao L. Acteoside alleviates lipid peroxidation by enhancing Nrf2-mediated mitophagy to inhibit ferroptosis for neuroprotection in Parkinson's disease. Free Radic Biol Med 2024; 223:493-505. [PMID: 39048340 DOI: 10.1016/j.freeradbiomed.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Increasing evidence underscores the pivotal role of ferroptosis in Parkinson's Disease (PD) pathogenesis. Acteoside (ACT) has been reported to possess neuroprotective properties. However, the effects of ACT on ferroptosis and its molecular mechanisms remain unknown. This study aimed to explore whether ACT can regulate ferroptosis in dopaminergic (DA) neurons within both in vitro and in vivo PD models and to elucidate the underlying regulatory mechanisms. PD models were established and treated with various concentrations of ACT. Cell viability assays, Western blot, lipid peroxidation assessments, immunohistochemistry, and transmission electron microscopy were employed to confirm ACT's inhibition of ferroptosis and its protective effect on DA neurons across PD models. Immunofluorescence staining, MitoSOX staining, and confocal laser scanning microscopy further validated ACT's regulation regulatory effects on ferroptosis via the Nrf2-mitophagy pathway. Four animal behavioral tests were used to assess behavioral improvements in PD animals. ACT inhibited ferroptosis in PD models in vitro, as evidenced by increased cell viability, the upregulation of GPX4 and SLC7A11, reduced lipid peroxides, and attenuation of mitochondrial morphological alterations typical of ferroptosis. By activating the Nrf2-mitophagy axis, ACT enhanced mitochondrial integrity and reduced lipid peroxidation, mitigating ferroptosis. These in vitro results were consistent with in vivo findings, where ACT treatment significantly preserved DA neurons, curbed ferroptosis in these cells, and alleviated cognitive and behavioral deficits. This study is the first demonstration of ACT's capability to inhibit neuronal ferroptosis and protect DA neurons, thus alleviating behavioral and cognitive impairments in both in vitro and in vivo PD models. Furthermore, The suppression of ferroptosis by ACT is achieved through the activation of the Nrf2-mitophagy signaling pathway. Our results show that ACT is beneficial for both treating and preventing PD. They also offer novel therapeutic options for treating PD and molecular targets for regulating ferroptosis.
Collapse
Affiliation(s)
- Zheng Han
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Department of Neurosurgery, 967th Hospital of the PLA Joint Logistic Support Force, Dalian, Liaoning Province, 116021, China
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Center for Frontier Medicine Innovation, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yu-Qi Wen
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yang-Ni Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Chen-Xi Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Xv-Shen Ding
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yun Shen
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| |
Collapse
|
2
|
Chen F, Pu S, Tian L, Zhang H, Zhou H, Yan Y, Hu X, Wu Q, Chen X, Cheng SH, Xu S. Radix Rehmanniae Praeparata promoted zebrafish fin regeneration through aryl hydrocarbon receptor-dependent autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118272. [PMID: 38710459 DOI: 10.1016/j.jep.2024.118272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE Rehmanniae Radix Praeparata (RRP), a staple in traditional Chinese medicine, is derived from Rehmannia glutinosa Libosch and is renowned for its wound-healing properties. Despite its clinical prevalence, the molecular mechanisms underlying RRP's wound-healing effects have not been fully elucidated. AIM OF THE STUDY This research endeavored to delineate the molecular and cellular mechanisms underlying the beneficial effects of RRP on wound healing, utilizing a zebrafish model. MATERIALS AND METHODS Zebrafish larvae at 3 days post-fertilization were amputated at the fin and subsequently treated with RRP. The pro-wound healing and regenerative effects of RRP were evaluated through morphological analysis, assessment of cell proliferation and apoptosis, Additionally, mechanistic insights were gained through a comprehensive approach encompassing network pharmacology analysis, cell tracing, RNA-sequencing, CRISPR/Cas9 gene editing, and pharmacological inhibition. RESULTS Our findings demonstrate that RRP significantly accelerates caudal fin regeneration in zebrafish following injury by suppressing cell apoptosis, promoting cell proliferation, and upregulating the expression of regenerative-related genes. Furthermore, RRP triggers autophagy signals during the regenerative process, which is attenuated by the autophagy inhibitor chloroquine (CQ). Notably, the administration of RRP enhances the expression of ahr1 and ahr2 in the regenerating fin. Genetic knockout of ahr1a, ahr1b, or ahr2 using CRISPR/Cas9, or pharmacological blockade of AHR signals with the antagonist CH-223191, diminishes the regenerative potential of RRP. Remarkably, zebrafish lacking ahr2 completely lose their fin regeneration ability. Additionally, inhibition of AHR signaling suppresses autophagy signaling during fin regeneration. CONCLUSIONS This study uncovers that RRP stimulates fin regeneration in zebrafish by inducing AHR signals and, at least partially, activating the autophagy process. These findings provide novel insights into the molecular mechanisms underlying the wound-healing effects of RRP and may pave the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Fengyan Chen
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; College of Life Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Shiming Pu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; College of Life Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Li Tian
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China
| | - Huan Zhang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Huixian Zhou
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; College of Life Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yijing Yan
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; College of Life Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiaolin Hu
- School of Economics and Management, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Qiong Wu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; College of Life Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xueping Chen
- Vitargent (International) Biotechnology Limited, Unit 516, 5/F. Biotech Centre 2, No. 11 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong SAR, China
| | - Shuk Han Cheng
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China
| | - Shisan Xu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; College of Life Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China.
| |
Collapse
|
3
|
Saha R, Majie A, Baidya R, Sarkar B. Verbascoside: comprehensive review of a phenylethanoid macromolecule and its journey from nature to bench. Inflammopharmacology 2024:10.1007/s10787-024-01555-3. [PMID: 39162902 DOI: 10.1007/s10787-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Polyphenolic compounds are among the most widely researched compounds for various therapeutic applications. However, naturally occurring phenylethanoid glycosides are least explored under this class of compounds. One such phenylethanoid glycoside, verbascoside (Vb), abundantly found among 200 species of 23 families, has gained recent attention due to its wide-spectrum therapeutic properties such as antioxidant, antimicrobial, anti-inflammatory, neuroprotective, cardioprotective, skin-protective, and anti-cancer. Despite having multiple therapeutic benefits, due to its large size, the compound has poor bioavailability for oral and topical applications. To meet these limitations, current research on Vb focuses on delivering it through nanoformulations. Presently, most developed formulations are liposome based for various applications, such as corneal epithelial wound healing, anti-neuropathic, anti-wrinkle, anti-hyperalgesia, atopic dermatitis, alopecia, and cutaneous wound healing. Multiple studies have confirmed the least acute and sub-acute toxicity for Vb. Few clinical studies have been performed for the therapeutic application of Vb to manage COVID-19, nephropathy, platelet aggregation, chronic primary glomerulonephritis, and acute hepatitis. Recent studies have shown the immense therapeutic potential of Vb in wound healing, dermatitis, neuroprotection, and anti-cancer activities, which creates a need for developing novel formulations for their respective uses. Long-term toxicity studies and techniques for scaling up Vb production by biotechnological approaches should be emphasized.
Collapse
Affiliation(s)
- Rajdeep Saha
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Ankit Majie
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Ritika Baidya
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Biswatrish Sarkar
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
4
|
Di D, Zhang C, Sun S, Pei K, Gu R, Sun Y, Zhou S, Wang Y, Chen X, Jiang S, Wu H, Zhu B, Xu X. Mechanism of Yishen Chuchan decoction intervention of Parkinson's disease based on network pharmacology and experimental verification. Heliyon 2024; 10:e34823. [PMID: 39149067 PMCID: PMC11325061 DOI: 10.1016/j.heliyon.2024.e34823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
The incidence of Parkinson's disease (PD) rises rapidly with the increase of age. With the advent of global aging, the number of patients with PD is rising along with the elderly population, especially in China. Previously, we found that Yishen chuchan decoction (YCD), prescribed based on clinical experience, has the potential of alleviating symptoms, delaying the progression, and controlling the development of PD. Nonetheless, the underlying mechanistic role is yet to be explored. Aim This research examined the possible therapeutic effects of YCD in alleviating PD via a systematic approach with network pharmacology and experimental validation, aiming at providing a new understanding of traditional Chinese medicine management regarding PD. Methods The chemical structure and properties of YCD were adopted from Traditional Chinese Medicine System Pharmacology Database (TCMSP), SwissADME, PubChem, and PubMed. The potential targets for YCD and PD were identified using Swiss Target Prediction, GeneCard, PubChem, and UniProt. The herbal-component-target network was created via the Cytoscape software. Moreover, by using the STRING database, the protein-protein interaction (PPI) network was screened. Gene function GO and KEGG pathway enrichment analyses were performed via the Metascape database. YCD-medicated Rat Serum from Sprague-Dawley (SD) Rats was prepared, and SH-SY5Y cells were preconditioned with rotenone to develop the PD model. To examine the impact of YCD on these cells and explore the mechanistic role of the p38 mitogen-activated protein kinase (MAPK) pathway, the cells were pretreated with either serum or a p38 MAPK pathway inhibitor. This study employed the Cell Counting Kit (CCK)-8 assay and Hoechst 33,342 staining to evaluate the viability and morphological changes induced by the YCD-medicated rat serum on rotenone-treated SH-SY5Y cells. Apoptosis was assessed by Flow cytometry. Immunofluorescence staining assessed the microtubule-associated protein 2 (MAP2) level. Enzyme-linked immunosorbent assay (ELISA) was employed to quantify the concentrations of inflammatory mediators interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α). Also, reactive oxygen species (ROS) and superoxide dismutase (SOD) levels were determined. Western Blotting measured the expression of total and phospho-p38 MAPK (p-p38). Results This study identified 65 active components in YCD, which were found to target 801 specific genes. By screening, 63 potential core targets were identified from a pool of 172 overlapping targets between PD and YCD. These targets were examined by GO and KEGG analyses revealing their substantial correlation to MAPK, PI3K-Akt signaling pathways, positively controlling protein phosphorylation, and pathways of neurodegenerative diseases. SH-SY5Y cells were treated with 2 μM rotenone for 48 h, which reduced cell viability to 50 %, and reduced MAP2 expression, increased the rate of apoptosis, oxidative stress, inflammation, and p-p38 expressions. YCD-medicated rat serum significantly improved the viability, reduced the apoptosis rate, and increased the MAP2 expression. YCD-medicated serum increased SOD, reduced ROS and suppressed IL-6, IL-1β and TNF-α levels, thus inhibiting oxidative stress and inflammation in rotenone-treated SH-SY5Y cells. Moreover, YCD-medicated serum substantially lowered the p-p38 expression induced by rotenone. SB203580, a specific inhibitor of p38 MAPK, could also inhibit the p-p38 expression, apoptosis, and restore morphological damage of cells, also improve inflammation and oxidative stress. Conclusion YCD enhanced cell viability and reduced apoptosis rate, inflammation, and oxidative stress in vitro. These beneficial effects could potentially involve the suppression of p38 pathway and suppressed the phosphorylation of p38 MAPK.
Collapse
Affiliation(s)
- Dong Di
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Chencheng Zhang
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, Jiangsu, China
| | - Suping Sun
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Ke Pei
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Renjun Gu
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yan Sun
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Shihan Zhou
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Yanqing Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Xinyi Chen
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Shan Jiang
- Nantong TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, Jiangsu, 226001, China
| | - Haoxin Wu
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Boran Zhu
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Xu Xu
- Nantong TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, Jiangsu, 226001, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
5
|
Zhao Y, Wang S, Pan J, Ma K. Verbascoside: A neuroprotective phenylethanoid glycosides with anti-depressive properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155027. [PMID: 37657207 DOI: 10.1016/j.phymed.2023.155027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Verbascoside is a natural and water-soluble phenylethanoid glycoside found in several medicinal plants. It has extensive pharmacological effects, including antioxidative and antineoplastic actions, and a wide range of therapeutic effects against depression. PURPOSE In this review, we appraised preclinical and limited clinical evidence to fully discuss the anti-depression capacity of verbascoside and its holistic characteristics that can contribute to better management of depression in vivo and in vitro models, as well as, its toxicities and medicinal value. METHODS This review was prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A systematic review of 32 preclinical trials published up to April 2023, combined with a comprehensive bioinformatics analysis of network pharmacology and molecular docking, was conducted to elucidate the antidepressant mechanism of action of verbascoside. Studies included in the systematic review were obtained from 7 electronic databases: PubMed, Scopus, Web of Science, Cochrane, ResearchGate, ScienceDirect, and Google Scholar. RESULTS Studies on the antidepressant effects of verbascoside showed that various pharmacological mechanisms and pathways, such as modulating the levels of monoamine neurotransmitters, inhibiting hypothalamic-pituitary-adrenal (HPA) axis hyperfunction and promoting neuroprotection may be involved in the process of its action against depression. Verbascoside promotes dopamine (DA) biosynthesis by promoting the expression of tyrosine hydroxylase mRNA and protein, upregulates the expression of 5-hydroxytryptamine receptor 1B (5-HT1B), prominence protein, microtubule-associated protein 2 (MAP2), hemeoxygenase-1 (HO-1), SQSTM1, Recombinant Autophagy Related Protein 5 (ATG5) and Beclin-1, and decreases the expression of caspase-3 and a-synuclein, thus exerting antidepressant effects. We identified seven targets (CCL2, FOS, GABARAPL1, CA9, TYR, CA12, and SQSTM1) and three signaling pathways (glutathione metabolism, metabolism of xenobiotics by cytochrome P450, fluid shear stress and atherosclerosis) as potential molecular biological sites for verbascoside. CONCLUSIONS These findings provide strong evidence that verbascoside exerts its antidepressant effects through various pharmacological mechanisms. However, further multicentre clinical case-control and molecularly targeted fishing studies are required to confirm the clinical efficacy of verbascoside and its underlying direct targets.
Collapse
Affiliation(s)
- Yi Zhao
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Sijia Wang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jin Pan
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ke Ma
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
6
|
Sonohata M, Doi A, Uchihashi K, Hashimoto A, Kii S, Inoue T, Mawatari M. Short-Term Collagen Nerve Wrapping Facilitates Motor and Sensory Recovery from Nerve Degeneration in a Sciatic Nerve Injury Rat Model. J Pain Res 2023; 16:1683-1695. [PMID: 37234570 PMCID: PMC10208243 DOI: 10.2147/jpr.s401126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Purpose This study used a sciatic nerve injury rat model to investigate the short-term effects of a polyglycolic acid (PGA)-collagen tube for nerve injury in continuity. Materials and Methods Sixteen female Wistar rats (6-8 weeks) were used, and the left sciatic nerve was crushed with a Sugita aneurysm clip. Sciatic nerve model rats were randomly categorized into two groups (n = 8; control group, n = 8; nerve wrapping group). Then, we measured four sensory thresholds, magnetically stimulated the lumbar region to induce motor-evoked potentials (MEPs), and evaluated the sciatic nerve histopathologically. Results In the sensory thresholds, there were significant differences for the main effect in 250 and 2000 Hz stimulation (p = 0.048 and 0.006, respectively). Further, a significant difference was observed with 2000 Hz stimulation at 1 week (p = 0.003). In the heat stimulation, there were significant differences for the main effect in both weeks and groups (p = 0.0002 and 0.0185, respectively). The post-hoc test showed a significant difference between groups only in 2W (p = 0.0283). Three weeks after the surgery, both 2nd and 3rd MEPs waves-related latencies in the nerve wrapping group were significantly shorter than those in the control group (p = 0.0207 and 0.0271, respectively). Histological evaluation of the sciatic nerve revealed considerable differences in the number of axons between the two groups (p = 0.0352). Conclusion The short-term PGA-collagen tube nerve wrapping facilitated motor and sensory recovery from nerve degeneration in the sciatic nerve injury rat model.
Collapse
Affiliation(s)
- Motoki Sonohata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
- Department of Orthopaedic Surgery, Saga Central Hospital, Saga, Japan
| | - Atsushi Doi
- Department of Rehabilitation, Kumamoto Health Science University, Kumamoto, Japan
| | - Kazuyoshi Uchihashi
- Department of Surgical Pathology, National Hospital Organization Saga Hospital, Saga, Japan
| | - Akira Hashimoto
- Department of Orthopaedic Surgery, Saga Central Hospital, Saga, Japan
| | - Sakumo Kii
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Takao Inoue
- Organization of Research Initiatives, Yamaguchi University, Yamaguchi, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
7
|
Zhang L, Park JY, Zhao D, Kwon HC, Yang HO. Neuroprotective Effect of Astersaponin I against Parkinson's Disease through Autophagy Induction. Biomol Ther (Seoul) 2021; 29:615-629. [PMID: 34210894 PMCID: PMC8551730 DOI: 10.4062/biomolther.2021.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 11/05/2022] Open
Abstract
An active compound, triterpene saponin, astersaponin I (AKNS-2) was isolated from Aster koraiensis Nakai (AKNS) and the autophagy activation and neuroprotective effect was investigated on in vitro and in vivo Parkinson's disease (PD) models. The autophagy-regulating effect of AKNS-2 was monitored by analyzing the expression of autophagy-related protein markers in SHSY5Y cells using Western blot and fluorescent protein quenching assays. The neuroprotection of AKNS-2 was tested by using a 1-methyl-4-phenyl-2,3-dihydropyridium ion (MPP+)-induced in vitro PD model in SH-SY5Y cells and an MPTP-induced in vivo PD model in mice. The compound-treated SH-SY5Y cells not only showed enhanced microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and decreased sequestosome 1 (p62) expression but also showed increased phosphorylated extracellular signal-regulated kinases (p-Erk), phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated unc-51-like kinase (p-ULK) and decreased phosphorylated mammalian target of rapamycin (p-mTOR) expression. AKNS-2-activated autophagy could be inhibited by the Erk inhibitor U0126 and by AMPK siRNA. In the MPP+-induced in vitro PD model, AKNS-2 reversed the reduced cell viability and tyrosine hydroxylase (TH) levels and reduced the induced α-synuclein level. In an MPTP-induced in vivo PD model, AKNS-2 improved mice behavioral performance, and it restored dopamine synthesis and TH and α-synuclein expression in mouse brain tissues. Consistently, AKNS-2 also modulated the expressions of autophagy related markers in mouse brain tissue. Thus, AKNS-2 upregulates autophagy by activating the Erk/mTOR and AMPK/mTOR pathways. AKNS-2 exerts its neuroprotective effect through autophagy activation and may serve as a potential candidate for PD therapy.
Collapse
Affiliation(s)
- Lijun Zhang
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea.,Division of Bio-medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.,State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, Guangxi Normal University, Guilin 541004, China
| | - Jeoung Yun Park
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Dong Zhao
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea.,Division of Bio-medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hak Cheol Kwon
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Hyun Ok Yang
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea.,Division of Bio-medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.,Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
8
|
Wang L, Yang YF, Chen L, He ZQ, Bi DY, Zhang L, Xu YW, He JC. Compound Dihuang Granule Inhibits Nigrostriatal Pathway Apoptosis in Parkinson's Disease by Suppressing the JNK/AP-1 Pathway. Front Pharmacol 2021; 12:621359. [PMID: 33897417 PMCID: PMC8060647 DOI: 10.3389/fphar.2021.621359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/12/2021] [Indexed: 12/28/2022] Open
Abstract
Compound Dihuang Granule (CDG) is widely used in traditional Chinese medicine (TCM) for the treatment of Parkinson's disease (PD). It has been shown to alleviate PD symptoms. However, the molecular mechanisms of its action have not been established. To establish the molecular mechanisms of CDG against PD, we used TCM network pharmacology methods to predict its molecular targets and signaling pathways, followed by experimental validation. The Core Protein protein interaction (PPI) network of the 150 intersections between CDG and PD-related genes, comprising 23 proteins, including CASP3 (caspase-3), MAPK8 (JNK), FOS (c-Fos), and JUN (c-Jun). KEGG and GO analyses revealed that apoptotic regulation and MAPK signaling pathways were significantly enriched. Since c-Jun and c-Fos are AP-1 subunits, an important downstream JNK effector, we investigated if the JNK/AP-1 pathway influences CDG against apoptosis through the nigrostriatal pathways in PD rat models. Molecular docking analysis found that the top three bioactive compounds exhibiting the highest Degree Centrality following online database and LC-MS analysis had high affinities for JNK. Experimental validation analysis showed that CDG decreased the number of rotating laps and suppressed the levels of phosphorylated c-Jun, c-Fos, and JNK, as well as the number of TUNEL positive cells and the cleaved caspase-3 level in the nigrostriatal pathway. Furthermore, CDG treatment elevated the number of TH neurons, TH expression level, and Bcl-2/Bax protein ratio in a 6-OHDA-induced PD rat. These findings are in tandem with those obtained using SP600125, a specific JNK inhibitor. In conclusion, CDG suppresses the apoptosis of the nigrostriatal pathway and relieves PD symptoms by suppressing the JNK/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Li Wang
- Department of Diagnostics of Traditional Chinese Medicine, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Experiment Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-fang Yang
- Department of Diagnostics of Traditional Chinese Medicine, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhu-qing He
- Department of Diagnostics of Traditional Chinese Medicine, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dian-yong Bi
- Department of Diagnostics of Traditional Chinese Medicine, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Zhang
- Department of Diagnostics of Traditional Chinese Medicine, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-wu Xu
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-cheng He
- Department of Diagnostics of Traditional Chinese Medicine, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Kambey PA, Chengcheng M, Xiaoxiao G, Abdulrahman AA, Kanwore K, Nadeem I, Jiao W, Gao D. The orphan nuclear receptor Nurr1 agonist amodiaquine mediates neuroprotective effects in 6-OHDA Parkinson's disease animal model by enhancing the phosphorylation of P38 mitogen-activated kinase but not PI3K/AKT signaling pathway. Metab Brain Dis 2021; 36:609-625. [PMID: 33507465 DOI: 10.1007/s11011-021-00670-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/07/2021] [Indexed: 01/23/2023]
Abstract
Recent studies implicate the defects or altered expression of the orphan nuclear receptor Nurr1 gene in the substantia nigra in Parkinson's disease pathogenesis. In an attempt to corroborate the treatment-modifying disease that would replicate the effect of Nurr1, it has been found that amodiaquine and Nurr1 had the same chemical scaffolding, indicating a crucial structure-activity relationship. Interestingly, amodiaquine stimulate the transcriptional function of Nurr1 by physical interaction with its ligand-binding domain (LBD). However, the signaling route by which Nurr1 is activated by amodiaquine to cause the protective effect remains to be elucidated. We first demonstrated that amodiaquine treatment ameliorated behavioural deficits in 6-OHDA Parkinson's disease mouse model, and it promoted dopaminergic neurons protection signified by Tyrosine hydroxylase (TH) and dopamine transporter (DAT) mRNA; Tyrosine hydroxylase (TH) protein expression level and the immunoreactivity in the substantia nigra compacta. Subsequently, we used inhibitors to ascertain the effect of amodiaquine on Akt and P38 Mapk as crucial signaling pathways for neuroprotection. Wortmannin (Akt Inhibitor) induced a significant reduction of Akt mRNA; however, there was no statistical difference between the amodiaquine-treated group and the control group suggesting that amodiaquine may not be the active stimulant of Akt. Western blot analysis confirmed that the phosphorylated Akt decreased significantly in the amodiaquine group compared to the control group. In the same vein, we found that amodiaquine substantially increased the level of phosphorylated P38 Mapk. When P38 Mapk inhibited by SB203580 (P38-Mapk Inhibitor), the total P38 Mapk but not the phosphorylated P38 Mapk decreased significantly, while tyrosine hydroxylase significantly increased. These results collectively suggest that amodiaquine can augment tyrosine hydroxylase expression via phosphorylated P38 Mapk while negatively regulating the phosphorylated Akt in protein expression.
Collapse
Affiliation(s)
- Piniel Alphayo Kambey
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ma Chengcheng
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Guo Xiaoxiao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ayanlaja Abiola Abdulrahman
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kouminin Kanwore
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Iqra Nadeem
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Wu Jiao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Dianshuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
10
|
Song Y, Zeng K, Jiang Y, Tu P. Cistanches Herba, from an endangered species to a big brand of Chinese medicine. Med Res Rev 2021; 41:1539-1577. [PMID: 33521978 DOI: 10.1002/med.21768] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022]
Abstract
Cistanches Herba (CH, Chinese name: Roucongrong), is a very precious, tonic Chinese medicine. Cistanche deserticola and Cistanche tubulosa are the two commonly used species and authenticated in Chinese Pharmacopoeia. Due to the parasitic nature of Cistanche plants, the wild source was once endangered and listed in the Appendix II of Convention on International Trade in Endangered Species of Wild Fauna and Flora. However, after continuously struggling in the past decades, CH has grown up to a big brand of Chinese medicine featured with the cultivation area as 1.26 million mu, the annual output as 6000 tons, and the related industrial output value as more than 20 billion China Yuan, attributing to large-scale cultivation and in-depth phytochemical and pharmacological investigations. Noteworthily, great achievements have reached concerning the research and development of relevant products, such as modern drugs, traditional Chinese medicine prescriptions, and dietary supplements. The current review summarizes the research progresses concerning the distribution and cultivation, phytochemistry, pharmacology, metabolism and product development of CH in the past decades, and the emerging challenges and developing prospects are discussed as well.
Collapse
Affiliation(s)
- Yuelin Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Ahmed WMS, Helmy NA, Ibrahim MA, Hassan HM, Zaki AR. Premna odorata extract as a protective agent on neurotoxic effect of aluminum: neurochemical, molecular, and histopathological alterations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2146-2157. [PMID: 32870428 DOI: 10.1007/s11356-020-10659-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/26/2020] [Indexed: 05/04/2023]
Abstract
Premna odorata Blanco (Lamiaceae) is an ethnomedicinal plant, where some reports claimed their anti-inflammatory, cytotoxic, and antituberculosis effects, without investigating its role on the brain. Therefore, forty mature male rats were equally divided into 4 groups; the 1st was kept as control. Rats in groups 2 and 4 were orally given P. odorata extract daily at a dose of 500 mg/kg B.W., while those in groups 3 and 4 were daily administrated aluminum chloride "AlCl3" (70 mg/kg B.W.). The treatments extended for 30 successive days. At the end of the experimental period, brain samples were collected for biochemical assay of glutathione reductase (GSH), catalase, malondialdehyde (MDA), and acetylcholinesterase activity (AChE). Besides, monoamines (norepinephrine, dopamine, serotonin), amino acids (glutamine, serine, arginine, taurine and gamma-aminobutyric acid (GABA)), neurotransmitters, DNA damage, cyclooxygenase-2 (COX-2), and tumor necrosis factor (TNF)-α genes were estimated. Moreover, brain samples were obtained for histopathological investigation. Aluminum toxicity resulted in a decline of GSH concentration, elevation of MDA, and AChE activity. Except for GABA which exhibited a significant decrease, there was a marked increase in the measured amino acid and monoamine neurotransmitters. Also, an increase in mRNA expressions of TNF-α and COX-2 was detected. It was noticed that Premna odorata extract reduced the oxidative stress and counteracted the augmentations in AChE caused by AlCl3. Marked improvements in most measured neurotransmitters with downregulation of pro-inflammatory gene expression were recorded in P. odorata + AlCl3 group. Premna odorata restores the altered histopathological feature induced by AlCl3. In conclusion, the present findings clarify that P. odorata extract could be important in improving and treatment of neurodegenerative disorders as it was able to reduce oxidative stress, DNA damage, biochemical alterations, and histopathological changes in rats exposed to AlCl3 toxicity.
Collapse
Affiliation(s)
- Walaa M S Ahmed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Nermeen A Helmy
- Department of Physiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Amr R Zaki
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
12
|
Neuroprotective effects of protocatechuic aldehyde through PLK2/p-GSK3β/Nrf2 signaling pathway in both in vivo and in vitro models of Parkinson's disease. Aging (Albany NY) 2019; 11:9424-9441. [PMID: 31697645 PMCID: PMC6874433 DOI: 10.18632/aging.102394] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction and oxidative damage are closely related to the pathogenesis of Parkinson's disease (PD). The pharmacological mechanism of protocatechuic aldehyde (PCA) for PD treatment have retained unclear. The purposes of the present study were to clarify the neuroprotective effects of post-treatment of PCA for PD treatment by mitigating mitochondrial dysfunction and oxidative damage, and to further determine whether its effects were mediated by the polo-like kinase 2/phosphorylated glycogen synthase kinase 3 β/nuclear factor erythroid-2-related factor 2 (PLK2/p-GSK3β/Nrf2) pathways. We found that PCA improved 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced behavioral deficits and dopaminergic cell loss. Moreover, PCA increased the expressions of PLK2, p-GSK3β and Nrf2, following the decrease of α-synuclein (α-Syn) in MPTP-intoxicated mice. Cell viability was increased and the apoptosis rate was reduced by PCA in 1-methyl-4-phenylpyridinium iodide (MPP+)-incubated cells. Mitochondrial membrane potential (MMP), mitochondrial complex I activity and reactive oxygen species (ROS) levels in MPP+-incubated cells were also ameliorated by treatment with PCA. The neuroprotective effects of PCA were abolished by inhibition or knockdown of PLK2, whereas overexpression of PLK2 strengthened the protection of PCA. Furthermore, GSK3β and Nrf2 were involved in PCA-induced protection. These results indicated that PCA has therapeutic effects on PD by the PLK2/p-GSK3β/Nrf2 pathway.
Collapse
|
13
|
López-Rodríguez R, Herrera-Ruiz M, Trejo-Tapia G, Domínguez-Mendoza BE, González-Cortazar M, Zamilpa A. In Vivo Gastroprotective and Antidepressant Effects of Iridoids, Verbascoside and Tenuifloroside from Castilleja tenuiflora Benth. Molecules 2019; 24:molecules24071292. [PMID: 30987044 PMCID: PMC6479932 DOI: 10.3390/molecules24071292] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 01/01/2023] Open
Abstract
Stress is an important factor in the etiology of some illnesses such as gastric ulcers and depression. Castilleja tenuiflora Benth. (Orobanchaceae) is used in Mexican traditional medicine for the treatment of gastrointestinal diseases and nervous disorders. Previous studies indicated that organic extracts from C. tenuiflora had gastroprotective effects and antidepressant activity. In this study, we aimed to evaluate the gastroprotective and antidepressant activity of fractions and isolated compounds from the methanolic extract (MECt) of C. tenuiflora in stressed mice. Chromatographic fractionation of MECt produced four fractions (FCt-1, FCt-2, CFt-3, and FCt-4) as well as four bioactive compounds which were identified using TLC, HPLC and NMR analyses. The cold restraint stress (CRS)-induced gastric ulcer model followed by the tail suspension test and the forced swim test were used to evaluate the gastroprotective effect and antidepressant activity of the extract fractions. FCt-2 and FCt-3 at 100 mg/kg had significant gastroprotective and antidepressant effects. All isolated compounds (verbascoside, teniufloroside and mixture geniposide/ musseanoside) displayed gastroprotective effects and antidepressant activity at 1 or 2 mg/kg. The above results allow us to conclude that these polyphenols and iridoids from C. tenuiflora are responsible for the gastroprotective and antidepressant effects.
Collapse
Affiliation(s)
- Ricardo López-Rodríguez
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Col. San Isidro, Yautepec, Morelos C.P. 62731, Mexico.
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec, Morelos C.P. 62790, Mexico.
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec, Morelos C.P. 62790, Mexico.
| | - Gabriela Trejo-Tapia
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Col. San Isidro, Yautepec, Morelos C.P. 62731, Mexico.
| | - Blanca Eda Domínguez-Mendoza
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos C.P. 62209, Mexico.
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec, Morelos C.P. 62790, Mexico.
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec, Morelos C.P. 62790, Mexico.
| |
Collapse
|
14
|
Semaphorin 3A Inhibits Nerve Regeneration During Early Stage after Inferior Alveolar Nerve Transection. Sci Rep 2019; 9:4245. [PMID: 30862799 PMCID: PMC6414535 DOI: 10.1038/s41598-018-37819-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/10/2018] [Indexed: 11/08/2022] Open
Abstract
Neuroma formation at sites of injury can impair peripheral nerve regeneration. Although the involvement of semaphorin 3A has been suggested in neuroma formation, this detailed process after injury is not fully understood. This study was therefore undertaken to examine the effects of semaphorin 3A on peripheral nerve regeneration during the early stage after injury. Immunohistochemistry for semaphorin 3A and PGP9.5, a general neuronal marker, was carried out for clarify chronological changes in their expressions after transection of the mouse inferior alveolar nerve thorough postoperative days 1 to 7. At postoperative day 1, the proximal stump of the damaged IAN exhibited semaphorin 3A, while the distal stump lacked any immunoreactivity. From this day on, its expression lessened, ultimately disappearing completely in all regions of the transected inferior alveolar nerve. A local administration of an antibody to semaphorin 3A into the nerve transection site at postoperative day 3 inhibited axon sprouting at the injury site. This antibody injection increased the number of trigeminal ganglion neurons labeled with DiI (paired t-test, p < 0.05). Immunoreactivity of the semaphorin 3A receptor, neuropilin-1, was also detected at the proximal stump at postoperative day 1. These results suggest that nerve injury initiates semaphorin 3A production in ganglion neurons, which is then delivered through the nerve fibers to the proximal end, thereby contributes to the inhibition of axonal sprouting from the proximal region of injured nerves in the distal direction. To our knowledge, this is the first report to reveal the involvement of Sema3A in the nerve regeneration process at its early stage.
Collapse
|
15
|
Frezza C, Bianco A, Serafini M, Foddai S, Salustri M, Reverberi M, Gelardi L, Bonina A, Bonina FP. HPLC and NMR analysis of the phenyl-ethanoid glycosides pattern of Verbascum thapsus L. cultivated in the Etnean area. Nat Prod Res 2018; 33:1310-1316. [DOI: 10.1080/14786419.2018.1473398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Claudio Frezza
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza” , Roma, Italy
| | | | - Mauro Serafini
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza” , Roma, Italy
| | - Sebastiano Foddai
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza” , Roma, Italy
| | - Manuel Salustri
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza” , Roma, Italy
| | - Massimo Reverberi
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza” , Roma, Italy
| | | | | | | |
Collapse
|
16
|
Chen JF, Wang M, Zhuang YH, Behnisch T. Intracerebroventricularly-administered 1-methyl-4-phenylpyridinium ion and brain-derived neurotrophic factor affect catecholaminergic nerve terminals and neurogenesis in the hippocampus, striatum and substantia nigra. Neural Regen Res 2018; 13:717-726. [PMID: 29722326 PMCID: PMC5950684 DOI: 10.4103/1673-5374.230300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease is a progressive neurological disease characterized by the degeneration of dopaminergic neurons in the substantia nigra. A highly similar pattern of neurodegeneration can be induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium ion (MPP+), which cause the death of dopaminergic neurons. Administration of MPTP or MPP+ results in Parkinson's disease-like symptoms in rodents. However, it remains unclear whether intracerebroventricular MPP+ administration affects neurogenesis in the substantia nigra and subgranular zone or whether brain-derived neurotrophic factor alters the effects of MPP+. In this study, MPP+ (100 nmol) was intracerebroventricularly injected into mice to model Parkinson's disease. At 7 days after administration, the number of bromodeoxyuridine (BrdU)-positive cells in the subgranular zone of the hippocampal dentate gyrus increased, indicating enhanced neurogenesis. In contrast, a reduction in BrdU-positive cells was detected in the substantia nigra. Administration of brain-derived neurotrophic factor (100 ng) 1 day after MPP+ administration attenuated the effect of MPP+ in the subgranular zone and the substantia nigra. These findings reveal the complex interaction between neurotrophic factors and neurotoxins in the Parkinsonian model that result in distinct effects on the catecholaminergic system and on neurogenesis in different brain regions.
Collapse
Affiliation(s)
- Jun-Fang Chen
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Man Wang
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Ying-Han Zhuang
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Thomas Behnisch
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Razavi BM, Zargarani N, Hosseinzadeh H. Anti-anxiety and hypnotic effects of ethanolic and aqueous extracts of Lippia citriodora leaves and verbascoside in mice. AVICENNA JOURNAL OF PHYTOMEDICINE 2017; 7:353-365. [PMID: 28884085 PMCID: PMC5580873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The extract of Lippia citriodora and its main component, verbascoside, are known for their hypnotic effects in traditional medicine. In this study, the anxiolytic and hypnotic effects of L. citriodora leave extracts and verbascoside were evaluated in mice. MATERIALS AND METHODS Animals were divided into 11 groups of six mice each. Group I received normal saline, Group II received Diazepam (2 mg/kg) as positive control, Groups III, IV and V received L. citriodora ethanolic extracts (50, 100 and 200 mg/kg, respectively), Groups VI, VII and VIII received L. citriodora aqueous extracts (50, 100 and 200 mg/kg, respectively) and Groups IX, X and XI received Verbascoside (25, 50 and 100 mg/kg, respectively). All agents were administrated intraperitoneally. To evaluate hypnotic activity, pentobarbital sleeping test, and for anxiolytic activity, elevated plus-maze (EPM), locomotor activity, open field and motor coordination (rotarod test) tests were used. To understand the role of GABAA receptor, flumazenil was also administered. RESULTS The extracts and verbascoside increased the time spent and number of entries in the open arms of EPM. Moreover, these agents significantly increased the sleeping time induced by pentobarbital. In addition, the highest dose of extracts and verbascoside reduced time spent on the rod and total locomotion in the open field tests, respectively. Flumazenil inhibited the effects of extracts and verbascoside in EPM and hypnotic tests. CONCLUSION These results suggested that ethanolic and aqueous extracts of L. citriodora and verbascoside exhibit anxiolytic, hypnotic and muscle relaxant effects especially at the highest doses and these effects are partially due to the interaction with GABAA receptor.
Collapse
Affiliation(s)
- Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naser Zargarani
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding Author: Tel: +985138819042, Fax: +985138823251,
| |
Collapse
|