1
|
Wang Z, Irving BA, Spielmann G, Johannsen N, Greenway F, Dalecki M. A single exposure to 100% normo-baric oxygen therapy appears to improve sequence learning processes by increasing prefrontal cortex oxygen saturation. Brain Res 2024; 1837:148962. [PMID: 38670479 DOI: 10.1016/j.brainres.2024.148962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
Previously, we showed that a normo-baric 100 % oxygen treatment (NbOxTr) enhances motor learning processes, e.g., visuomotor adaptation (VMA) and sequence learning (SL). However, this work was limited to behavioral outcomes and did not identify the physiological mechanistic underpinnings of these improvements. Here, we expand on this research to investigate the effects of a NbOxTr on the oxygen tissue saturation index (TSI) level of the prefrontal cortex (PFC) when performing a SL task and whether potential SL improvements relate to increased TSI levels in the PFC. Twenty four right-handed young, healthy adults were randomly assigned to a NbOxTr group (normo-baric 100 % oxygen, n = 12) or a control group (normal air, n = 12). They received their respective treatments via a nasal cannula during the experiment. Oxygen TSI levels of the right and left PFC were measured via near-infrared spectroscopy (NIRS) throughout different SL task phases (Baseline, Training, Testing). The NbOxTr increased the TSI of the PFC in the Training phase (p < 0.01) and positively affected SL retention in the Testing phase (p < 0.05). We also found a positive correlation between TSI changes in the right PFC during the gas treatment phase (3.4 % increase) and response time (RT) improvements in the SL task training and retention phase (all p < 0.05). Our results suggest that a simple NbOxTr increases the oxygenated hemoglobin availability in the PFC, which appears to mediate the retention of acquired SL improvements in healthy young adults. Future studies should examine treatment-related oxygenation changes in other brain areas involved and their relation to enhanced learning processes. Whether this NbOxTr improves SL in neurologically impaired populations should also be examined.
Collapse
Affiliation(s)
- Zheng Wang
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Brian A Irving
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA; Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Guillaume Spielmann
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA; Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Neil Johannsen
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA; Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Frank Greenway
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Marc Dalecki
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA; German University of Health and Sports, Berlin, Germany
| |
Collapse
|
2
|
Huang F, Huang Y, Huang X, Wang S, Peng Z. Effect of hyperbaric oxygen on symptoms of dementia in patients with delayed encephalopathy after acute carbon monoxide poisoning. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1669-1677. [PMID: 38432857 PMCID: PMC10929946 DOI: 10.11817/j.issn.1672-7347.2023.230240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Indexed: 03/05/2024]
Abstract
OBJECTIVES Delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) is the most severe complication of carbon monoxide poisoning, which seriously endangers patients' quality of life. This study aims to investigate the efficacy of hyperbaric oxygen (HBO2) on improving dementia symptoms in patients with DEACMP. METHODS A retrospective analysis was performed on DEACMP patients, who visited Xiangya Hospital, Central South University from June 2014 to June 2020. Among them, patients who received conventional drug treatment combined with HBO2 treatment were included in an HBO2 group, while those who only received conventional drug treatment were included in a control group. HBO2 was administered once daily. Patients in the HBO2 group received 6 courses of treatment, with each course consisting of 10 sessions. The Hasegawa Dementia Scale (HDS) was used to diagnose dementia, and the Clinical Dementia Rating (CDR) was used to grade the severity of dementia for DEACMP. The Alzheimer's Disease Assessment Scale-Cognitive Section (ADAS-Cog), the Functional Activities Questionnaire (FAQ), the Neuropsychiatric Inventory (NPI), and the Clinician's Interview-Based Impression of Change-Plus Caregiver Input (CIBIC-Plus) were performed to assess cognitive function, ability to perform activities of daily living (ADL), behavioral and psychological symptoms, and overall function. The study further analyzed the results of objective examinations related to patients' dementia symptoms, including magnetic resonance imaging detection of white matter lesions and abnormal electroencephalogram (EEG). The changes of the above indicators before and after treatment, as well as the differences between the 2 groups after treatment were compared. RESULTS There was no significant difference in the HDS score and CDR grading between the 2 groups before treatment (both P>0.05). After treatment, the score of ADAS-Cog, FAQ, NPI, and CIBIC Plus grading of the 2 groups were significantly improved, and the improvement of the above indicators in the HBO2 group was greater than that in the control group (all P<0.05). The effective rate of the HBO2 group in treating DEACMP was significantly higher than that of the control group (89.47% vs 65.87%, P<0.05). The objective examination results (white matter lesions and abnormal EEG) showed that the recovery of patients in the HBO2 group was better than that in the control group. CONCLUSIONS Hyperbaric oxygen can significantly relieve the symptoms of dementia in patients with DEACMP.
Collapse
Affiliation(s)
- Fangling Huang
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha 410008.
| | - Yanqing Huang
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha 410008
| | - Xu Huang
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha 410008
| | - Su'e Wang
- Preventive Health Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhengrong Peng
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha 410008.
| |
Collapse
|
3
|
Kjellberg A, Lindholm ME, Zheng X, Liwenborg L, Rodriguez-Wallberg KA, Catrina SB, Lindholm P. Comparing the Blood Response to Hyperbaric Oxygen with High-Intensity Interval Training-A Crossover Study in Healthy Volunteers. Antioxidants (Basel) 2023; 12:2043. [PMID: 38136163 PMCID: PMC10740875 DOI: 10.3390/antiox12122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
High-intensity interval training (HIIT) and hyperbaric oxygen therapy (HBOT) induce reactive oxygen species (ROS) formation and have immunomodulatory effects. The lack of readily available biomarkers for assessing the dose-response relationship is a challenge in the clinical use of HBOT, motivating this feasibility study to evaluate the methods and variability. The overall hypothesis was that a short session of hyperbaric oxygen (HBO2) would have measurable effects on immune cells in the same physiological range as shown in HIIT; and that the individual response to these interventions can be monitored in venous blood and/or peripheral blood mononuclear cells (PBMCs). Ten healthy volunteers performed two interventions; a 28 min HIIT session and 28 min HBO2 in a crossover design. We evaluated bulk RNA sequencing data from PBMCs, with a separate analysis of mRNA and microRNA. Blood gases, peripheral venous oxygen saturation (SpvO2), and ROS levels were measured in peripheral venous blood. We observed an overlap in the gene expression changes in 166 genes in response to HIIT and HBO2, mostly involved in hypoxic or inflammatory pathways. Both interventions were followed by downregulation of several NF-κB signaling genes in response to both HBO2 and HIIT, while several interferon α/γ signaling genes were upregulated. Only 12 microRNA were significantly changed in HBO2 and 6 in HIIT, without overlap between interventions. ROS levels were elevated in blood at 30 min and 60 min compared to the baseline during HIIT, but not during/after HBO2. In conclusion, HBOT changed the gene expression in a number of pathways measurable in PBMC. The correlation of these changes with the dose and individual response to treatment warrants further investigation.
Collapse
Affiliation(s)
- Anders Kjellberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden (P.L.)
- Medical Unit Intensive Care and Thoracic Surgery, Perioperative Medicine and Intensive Care, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Maléne E. Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden (P.L.)
- Department of Medicine, Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xiaowei Zheng
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Lovisa Liwenborg
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden (P.L.)
| | - Kenny Alexandra Rodriguez-Wallberg
- Department of Oncology-Pathology, Karolinska Institutet, 17176 Stockholm, Sweden
- Department of Reproductive Medicine, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Peter Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden (P.L.)
- Division of Hyperbaric Medicine, Department of Emergency Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Pérez-Castro CC, Kormanovski A, Guevara-Balcázar G, Castillo-Hernández MDC, García-Sánchez JR, Olivares-Corichi IM, López-Sánchez P, Rubio-Gayosso I. Hyperbaric oxygenation applied before or after mild or hard stress: effects on the redox state in the muscle tissue. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:9-20. [PMID: 36575929 PMCID: PMC9806638 DOI: 10.4196/kjpp.2023.27.1.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 12/29/2022]
Abstract
The mechanism is unclear for the reported protective effect of hyperbaric oxygen preconditioning against oxidative stress in tissues, and the distinct effects of hyperbaric oxygen applied after stress. The trained mice were divided into three groups: the control, hyperbaric oxygenation preconditioning, and hyperbaric oxygenation applied after mild (fasting) or hard (prolonged exercise) stress. After preconditioning, we observed a decrease in basal levels of nitric oxide, tetrahydrobiopterin, and catalase despite the drastic increase in inducible and endothelial nitric oxide synthases. Moreover, the basal levels of glutathione, related enzymes, and nitrosative stress only increased in the preconditioning group. The control and preconditioning groups showed a similar mild stress response of the endothelial and neuronal nitric oxide synthases. At the same time, the activity of all nitric oxide synthase, glutathione (GSH) in muscle, declined in the experimental groups but increased in control during hard stress. The results suggested that hyperbaric oxygen preconditioning provoked uncoupling of nitric oxide synthases and the elevated levels of GSH in muscle during this study, while hyperbaric oxygen applied after stress showed a lower level of GSH but higher recovery post-exercise levels in the majority of antioxidant enzymes. We discuss the possible mechanisms of the redox response and the role of the nitric oxide in this process.
Collapse
Affiliation(s)
- Claudia Carolina Pérez-Castro
- Escuela Superior de Medicina, Sección de Estudio de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Alexandre Kormanovski
- Escuela Superior de Medicina, Sección de Estudio de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 11340, Mexico,Correspondence Alexandre Kormanovski, E-mail:
| | - Gustavo Guevara-Balcázar
- Escuela Superior de Medicina, Sección de Estudio de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | | | - José Rubén García-Sánchez
- Escuela Superior de Medicina, Sección de Estudio de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Ivonne María Olivares-Corichi
- Escuela Superior de Medicina, Sección de Estudio de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Pedro López-Sánchez
- Escuela Superior de Medicina, Sección de Estudio de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Iván Rubio-Gayosso
- Escuela Superior de Medicina, Sección de Estudio de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| |
Collapse
|
5
|
Huang H, Zhu Y, Zhang Y, Hou B, Zhang Q, Shi X, Min J. Dexmedetomidine suppresses the isoflurane-induced neurological damage by upregulating Heme Oxygenase-1 via activation of the mitogen-activated protein kinase kinase 1/extracellular regulated protein kinases 1/nuclear factor erythroid 2-related factor 2 axis in aged rats. Chem Biol Interact 2022; 367:110114. [PMID: 36027947 DOI: 10.1016/j.cbi.2022.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022]
Abstract
Dexmedetomidine (DEX) displays a neuroprotective role in aged rats with isoflurane (ISO)-induced cognitive impairment through antioxidant, and anti-inflammatory, and anti-apoptotic effects. Therefore, the present study was performed to define the molecular mechanism of DEX on ISO-induced neurological impairment in aged rats in relation to the MEK1/ERK1/Nrf2/HO-1 axis. The study enrolled elderly patients undergoing ISO anesthesia. Patient cognitive function following treatment with DEX was evaluated using mini-mental state examination (MMSE). The results revealed that DEX supplementation of anesthesia contributed to higher MMSE scores in patients one week post treatment. Rat model of neurological impairment was also induced in 18-month-age Wistar rats by ISO, followed by DEX treatment. Based on the results of Morris water maze experiment, ELISA, and TUNEL and hematoxylin-eosin staining, in vivo experiments confirmed that DEX could reduce the oxidative stress and neurological damage induced by ISO in rats. DEX activated the nuclear factor erythroid 2-related factor (Nrf2)/Heme Oxygenase 1 (HO-1) pathway. DEX upregulated the expression of Nrf2 and HO-1 by activating the MEK1/ERK1 pathway, whereby attenuating the ISO-caused oxidative stress and neurological damage in rats. Collectively, DEX suppresses the ISO-induced neurological impairment in the aged rats by promoting HO-1 through activation of the MEK1/ERK1/Nrf2 axis.
Collapse
Affiliation(s)
- Haijin Huang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Yunsheng Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Benchao Hou
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Qin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Xiaoyun Shi
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Jia Min
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
6
|
Wei C, Sun Y, Wang J, Lin D, Cui V, Shi H, Wu A. LncRNA NONMMUT055714 acts as the sponge of microRNA-7684-5p to protect against postoperative cognitive dysfunction. Aging (Albany NY) 2021; 13:12552-12564. [PMID: 33902009 PMCID: PMC8148455 DOI: 10.18632/aging.202932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/21/2021] [Indexed: 11/25/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a neurological complication of surgery especially common in elderly patients. In this study, we investigated the role of NONMMUT055714 in POCD via regulation of miR-7684-5p. In a POCD mouse model, we induced overexpression of NONMUTT055714 via transfection of lentivrus into the hippocampus, and used the Morris water maze for assessment of cognitive function. Silencing of NONMUTT055714 and miR-7684-5p was induced in primary hippocampal neurons to observe the effects of these regulatory RNAs on cellular processes. Bioinformatics analysis and a double luciferase reporter experiment were performed to further explore the relationship between NONMMUT055714, miR-7684-5p, and SORLA. Cell and animal rescue experiments were performed to verify the ability of miR-7684-5p to reverse the protective effects of NONMMUT055714 overexpression in POCD. We observed that NONMMUT055714 has decreased expression in the POCD mouse model. Overexpression of NONMMUT055714 protected against cognitive impairment of the POCD mouse model in vivo. We identified miR-7684-5p as a NONMMUT055714-related miRNA and in turn as an upstream regulator of SORLA. We found that NONMMUT055714 downregulation is associated with decreased SORLA, increased Aβ and p-tau expression, increased inflammatory biomarkers, increased markers of oxidative stress, and increased neuronal apoptosis in vitro. The effects of NONMMUT055714 downregulation were reversed by silencing miR-7684-5p in vitro and in vivo. Taken together, our findings suggest that NONMMUT055714 is protective against the development of POCD via its function as a ceRNA (or miRNA sponge) in the regulation of miR-7684-5p and SORLA. We therefore propose NONMMUT055714 as a novel target for the investigation and prevention of POCD.
Collapse
Affiliation(s)
- Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yi Sun
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Dandan Lin
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Victoria Cui
- Department of General Surgery, MedStar Georgetown University Hospital, Washington, D.C., USA
| | - Hui Shi
- Department of Clinical Psychology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Sen S, Sen S. Therapeutic effects of hyperbaric oxygen: integrated review. Med Gas Res 2021; 11:30-33. [PMID: 33642335 PMCID: PMC8103971 DOI: 10.4103/2045-9912.310057] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 11/15/2022] Open
Abstract
Hyperbaric oxygen therapy refers to inhalation of pure oxygen in a closed chamber. Hyperbaric oxygen has a therapeutic effect in numerous pathological conditions, such as decompression sickness, arterial gas embolism, carbon monoxide poisoning and smoke inhalation, osteomylitis, osteoradionecrosis and wound healing. Hyperbaric oxygen therapy is used for treating underlying hypoxia. This review indicates the action of hyperbaric oxygen on biochemical and various physiological changes in cellular level. Narrative review covers the current indications and contraindications of hyperbaric oxygen therapy. The review also focuses on the therapeutic effects of hyperbaric oxygen pretreatment and precondition in different pathological conditions. The complications and side effects of hyperbaric oxygen therapy are discussed.
Collapse
Affiliation(s)
- Suman Sen
- Department of Oral Medicine and Radiology, Haldia Institute of Dental Sciences and Research, Haldia, West Bengal, India
| | - Sheuli Sen
- Department of Pediatric Nursing, Sumandeep Nursing College, Sumandeep University, Vadodara, Gujarat, India
| |
Collapse
|
8
|
Cozene B, Sadanandan N, Gonzales-Portillo B, Saft M, Cho J, Park YJ, Borlongan CV. An Extra Breath of Fresh Air: Hyperbaric Oxygenation as a Stroke Therapeutic. Biomolecules 2020; 10:E1279. [PMID: 32899709 PMCID: PMC7563917 DOI: 10.3390/biom10091279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Stroke serves as a life-threatening disease and continues to face many challenges in the development of safe and effective therapeutic options. The use of hyperbaric oxygen therapy (HBOT) demonstrates pre-clinical effectiveness for the treatment of acute ischemic stroke and reports reductions in oxidative stress, inflammation, and neural apoptosis. These pathophysiological benefits contribute to improved functional recovery. Current pre-clinical and clinical studies are testing the applications of HBOT for stroke neuroprotection, including its use as a preconditioning regimen. Mild oxidative stress may be able to prime the brain to tolerate full extensive oxidative stress that occurs during a stroke, and HBOT preconditioning has displayed efficacy in establishing such ischemic tolerance. In this review, evidence on the use of HBOT following an ischemic stroke is examined, and the potential for HBOT preconditioning as a neuroprotective strategy. Additionally, HBOT as a stem cell preconditioning is also discussed as a promising strategy, thus maximizing the use of HBOT for ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.C.); (N.S.); (B.G.-P.); (M.S.); (J.C.); (Y.J.P.)
| |
Collapse
|
9
|
Gardin C, Bosco G, Ferroni L, Quartesan S, Rizzato A, Tatullo M, Zavan B. Hyperbaric Oxygen Therapy Improves the Osteogenic and Vasculogenic Properties of Mesenchymal Stem Cells in the Presence of Inflammation In Vitro. Int J Mol Sci 2020; 21:ijms21041452. [PMID: 32093391 PMCID: PMC7073059 DOI: 10.3390/ijms21041452] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023] Open
Abstract
Hyperbaric oxygen (HBO) therapy has been reported to be beneficial for treating many conditions of inflammation-associated bone loss. The aim of this work was to in vitro investigate the effect of HBO in the course of osteogenesis of human Mesenchymal Stem Cells (MSCs) grown in a simulated pro-inflammatory environment. Cells were cultured with osteogenic differentiation factors in the presence or not of the pro-inflammatory cytokine Tumor Necrosis Factor-α (TNF-α), and simultaneously exposed daily for 60 min, and up to 21 days, at 2,4 atmosphere absolute (ATA) and 100% O2. To elucidate osteogenic differentiation-dependent effects, cells were additionally pre-committed prior to treatments. Cell metabolic activity was evaluated by means of the MTT assay and DNA content quantification, whereas osteogenic and vasculogenic differentiation was assessed by quantification of extracellular calcium deposition and gene expression analysis. Metabolic activity and osteogenic properties of cells did not differ between HBO, high pressure (HB) alone, or high oxygen (HO) alone and control if cells were pre-differentiated to the osteogenic lineage. In contrast, when treatments started contextually to the osteogenic differentiation of the cells, a significant reduction in cell metabolic activity first, and in mineral deposition at later time points, were observed in the HBO-treated group. Interestingly, TNF-α supplementation determined a significant improvement in the osteogenic capacity of cells subjected to HBO, which was not observed in TNF-α-treated cells exposed to HB or HO alone. This study suggests that exposure of osteogenic-differentiating MSCs to HBO under in vitro simulated inflammatory conditions enhances differentiation towards the osteogenic phenotype, providing evidence of the potential application of HBO in all those processes requiring bone regeneration.
Collapse
Affiliation(s)
- Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35128 Padova, Italy; (G.B.); (S.Q.); (A.R.)
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Quartesan
- Department of Biomedical Sciences, University of Padova, 35128 Padova, Italy; (G.B.); (S.Q.); (A.R.)
| | - Alex Rizzato
- Department of Biomedical Sciences, University of Padova, 35128 Padova, Italy; (G.B.); (S.Q.); (A.R.)
| | - Marco Tatullo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70121 Bari, Italy
- Correspondence: (B.Z.); (M.T.); Tel.: +39-0532-455-502 (B.Z.)
| | - Barbara Zavan
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (B.Z.); (M.T.); Tel.: +39-0532-455-502 (B.Z.)
| |
Collapse
|
10
|
Gautier A, Graff EC, Bacek L, Fish EJ, White A, Palmer L, Kuo K. Effects of Ovariohysterectomy and Hyperbaric Oxygen Therapy on Systemic Inflammation and Oxidation in Dogs. Front Vet Sci 2020; 6:506. [PMID: 32010716 PMCID: PMC6974478 DOI: 10.3389/fvets.2019.00506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Introduction: Hyperbaric oxygen therapy (HBOT) involves breathing 100% oxygen in a specialized compression chamber leading to hyperoxia. This treatment modality is associated with anti-inflammatory, antioxidant, and healing properties in people and laboratory animals. However, there are relatively few reports that evaluate the effects of HBOT in companion animals. The goal of this study was to investigate the physiological effects of HBOT on surgically induced systemic inflammation and oxidation in dogs. Material and Methods: Twelve healthy female beagle dogs were spayed and randomized into control and HBOT groups (n = 6). Both groups received conventional post-ovariohysterectomy therapy, and the HBOT group received two hyperbaric treatments at 2.0 atmosphere of absolute pressure and 100% oxygen for 35 min, 6 and 18 h after surgery. Blood samples were collected 3 h prior to ovariohysterectomy, 6, 18, and 30 h after surgery, prior to HBOT when applicable. Inflammatory biomarkers, including C-reactive protein, circulating cytokines, and changes in iron homeostasis were evaluated at each time point to determine the effects of surgery and HBOT on inflammation. Similarly, serum total oxidant status and total antioxidant status were measured to assess the oxidative stress. Pain and incision scores were recorded and compared between groups. Results: Following ovariohysterectomy, all dogs had significantly increased serum concentrations of C-reactive protein, KC-like, IL-6, and increased unsaturated iron-binding capacity compared to their pre-surgical values (p < 0.02), while serum iron, total iron-binding capacity and transferrin saturation were significantly decreased after surgery (p < 0.02). There was no significant difference between the control group and the HBOT group for any of the variables. There were no overt adverse effects in the HBOT group. Conclusion: This is the first prospective randomized controlled study to investigate the effects of HBOT on surgically induced systemic inflammation in dogs. While elective ovariohysterectomy resulted in mild inflammation, the described HBOT protocol portrayed no outward adverse effect and did not induce any detectable pro-inflammatory, anti-inflammatory, or antioxidant effects. Additional investigation is required to identify objective markers to quantify the response to HBOT and determine its role as an adjunctive therapy in dogs with more severe, complicated or chronic diseases.
Collapse
Affiliation(s)
- Anais Gautier
- Department of Emergency and Critical Care, Auburn University Veterinary Teaching Hospital, Auburn, AL, United States
| | - Emily C Graff
- Department of Pathobiology, Auburn University Veterinary Teaching Hospital, Auburn, AL, United States
| | - Lenore Bacek
- Department of Emergency and Critical Care, Auburn University Veterinary Teaching Hospital, Auburn, AL, United States
| | - Eric J Fish
- Department of Pathobiology, Auburn University Veterinary Teaching Hospital, Auburn, AL, United States
| | - Amelia White
- Department of Dermatology, Auburn University Veterinary Teaching Hospital, Auburn, AL, United States
| | - Lee Palmer
- Department of Emergency and Critical Care, Auburn University Veterinary Teaching Hospital, Auburn, AL, United States
| | - Kendon Kuo
- Department of Emergency and Critical Care, Auburn University Veterinary Teaching Hospital, Auburn, AL, United States
| |
Collapse
|
11
|
Hyperbaric Oxygen Treatment is Associated with Lipid Inflammatory Response Assessed Uding Serum Platelet Activating Factor. POLISH HYPERBARIC RESEARCH 2019. [DOI: 10.2478/phr-2019-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Abstract
Hyperbaric oxygen (HBO) treatment is generally a relatively safe therapy for various conditions. However, there are some adverse side effects. For example HBO tratment has been reported to increase the production of free oxygen radicals(FRs). Furthermore, to our knowledge, no previous clinical research has been carried out to study the involvement of platelet-activating factor(PAF)as the lipid oxidative stressor in patients undergoing HBO treatment. A total of 45 patients included in this study were first given clinical assessment and laboratory measurements before starting HBO treatment and were named group baseline. After the HBO treatment, the same clinical and laboratory measurements from the same patients were repeated and this was named group sesion >20.As expected, long-term HBO treatment had no effect on oxLDL (oxidized low-density lipoprotein), a lipid oxidative stress(OS) marker. However, the mean PAF values in the second group showed a statistically significant increase compared to their pretreatment values, (P <0. 002).As this is a preliminary study, there is a need for more detailed investigations that demonstrate the association of HBO treatment with the lipid inflammatory response. Therefore, there is need for further clinical study for OS markers such as oxLDL in HBO treatment. Clinical prospective studies are required to confirm our laboratory findings.
Collapse
|
12
|
Hyperbaric Oxygen Preconditioning Can Reduce Postabdominoplasty Complications: A Retrospective Cohort Study. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2417. [PMID: 31772875 PMCID: PMC6846320 DOI: 10.1097/gox.0000000000002417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/17/2019] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is available in the text. Hyperbaric oxygen therapy (HBOT) can improve wound healing and has been found to have positive preconditioning effects in animal models. Among esthetic surgical procedures, abdominoplasty poses the highest rate of postoperative complications. The aim of this study was to evaluate the effect of preoperative HBOT as a preconditioning treatment for expected postsurgical complications.
Collapse
|
13
|
Jiang Y, Gao H, Yuan H, Xu H, Tian M, Du G, Xie W. Amelioration of postoperative cognitive dysfunction in mice by mesenchymal stem cell-conditioned medium treatments is associated with reduced inflammation, oxidative stress and increased BDNF expression in brain tissues. Neurosci Lett 2019; 709:134372. [DOI: 10.1016/j.neulet.2019.134372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/21/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022]
|
14
|
Zhao ZF, Du L, Gao T, Bao L, Luo Y, Yin YQ, Wang YA. Inhibition of α5 GABAA receptors has preventive but not therapeutic effects on isoflurane-induced memory impairment in aged rats. Neural Regen Res 2019; 14:1029-1036. [PMID: 30762015 PMCID: PMC6404482 DOI: 10.4103/1673-5374.250621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The α5 subunit-containing gamma-amino butyric acid type A receptors (α5 GABAARs) are a distinct subpopulation that are specifically distributed in the mammalian hippocampus and also mediate tonic inhibitory currents in hippocampal neurons. These tonic currents can be enhanced by low-dose isoflurane, which is associated with learning and memory impairment. Inverse agonists of α5 GABAARs, such as L-655,708, are able to reverse the short-term memory deficit caused by low-dose isoflurane in young animals. However, whether these negative allosteric modulators have the same effects on aged rats remains unclear. In the present study, we mainly investigated the effects of L-655,708 on low-dose (1.3%) isoflurane-induced learning and memory impairment in elderly rats. Young (3-month-old) and aged (24-month-old) Wistar rats were randomly assigned to receive L-655,708 0.5 hour before or 23.5 hours after 1.3% isoflurane anesthesia. The Morris Water Maze tests demonstrated that L-655,708 injected before or after anesthesia could reverse the memory deficit in young rats. But in aged rats, application of L-655,708 only before anesthesia showed similar effects. Reverse transcription-polymerase chain reaction showed that low-dose isoflurane decreased the mRNA expression of α5 GABAARs in aging hippocampal neurons but increased that in young animals. These findings indicate that L-655,708 prevented but could not reverse 1.3% isoflurane-induced spatial learning and memory impairment in aged Wistar rats. All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Academy of Military Medical Science of China (approval No. NBCDSER-IACUC-2015128) in December 2015.
Collapse
Affiliation(s)
- Zi-Fang Zhao
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Lei Du
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Teng Gao
- Department of Anesthesiology, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Lin Bao
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Luo
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Yi-Qing Yin
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Yong-An Wang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Li HZ, Chen JF, Liu M, Shen J. Effect of hyperbaric oxygen on the permeability of the blood-brain barrier in rats with global cerebral ischemia/reperfusion injury. Biomed Pharmacother 2018; 108:1725-1730. [PMID: 30372875 DOI: 10.1016/j.biopha.2018.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/19/2018] [Accepted: 10/04/2018] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the effects of hyperbaric oxygen on the permeability of the blood-brain barrier in rats with global cerebral ischemia/reperfusion injury and explore possible mechanisms. METHODS A rat model of global cerebral ischemia/reperfusion injury established via Pulsinelli four-vessel occlusion method and a total of 162 Wistar rats were randomly divided into three groups, including sham group, global cerebral ischemia/reperfusion group (IR group) and hyperbaric oxygen treated group (HBO group). Permeability of the blood-brain barrier of these rats were evaluated by Evans Blue staining. The expression of caveolin-1 and tight junction protein ZO-1 was examined by Immunohistochemistry staining and western-blotting. RESULTS Successfully establishment of the rat model was verified by W:D ratio, and significantly increased Evans Blue level was found in IR group compared to control group, whereas hyperbaric treatment could result in decreased Evans Blue level in HBO group. Increased expression of caveolin-1 and tight junction protein ZO-1 were found in rats with hyperbaric oxygen exposure compared to those in IS group. CONCLUSIONS Hyperbaric oxygen exposure improved the permeability of the blood-brain barrier in rats with global cerebral ischemia/reperfusion injury, and increased expression of caveolin-1 and tight junction protein ZO-1 were involved in the mechanisms.
Collapse
Affiliation(s)
- Hong-Zhi Li
- Center of Emergency & Intensive Care Unit, Shanghai, 201508, PR China; Medical Center of Chemical Injury, Shanghai, 201508, PR China; Medical Research Centre for Chemical Injury, Emergency and Critical Care, Jinshan Hospital, Fudan University, Shanghai, 201508, PR China
| | - Jun-Feng Chen
- Center of Emergency & Intensive Care Unit, Shanghai, 201508, PR China; Medical Center of Chemical Injury, Shanghai, 201508, PR China; Medical Research Centre for Chemical Injury, Emergency and Critical Care, Jinshan Hospital, Fudan University, Shanghai, 201508, PR China
| | - Ming Liu
- Center of Emergency & Intensive Care Unit, Shanghai, 201508, PR China; Medical Center of Chemical Injury, Shanghai, 201508, PR China; Medical Research Centre for Chemical Injury, Emergency and Critical Care, Jinshan Hospital, Fudan University, Shanghai, 201508, PR China
| | - Jie Shen
- Center of Emergency & Intensive Care Unit, Shanghai, 201508, PR China; Medical Center of Chemical Injury, Shanghai, 201508, PR China; Medical Research Centre for Chemical Injury, Emergency and Critical Care, Jinshan Hospital, Fudan University, Shanghai, 201508, PR China.
| |
Collapse
|
16
|
Hong-Qiang H, Mang-Qiao S, Fen X, Shan-Shan L, Hui-Juan C, Wu-Gang H, Wen-Jun Y, Zheng-Wu P. Sirt1 mediates improvement of isoflurane-induced memory impairment following hyperbaric oxygen preconditioning in middle-aged mice. Physiol Behav 2018; 195:1-8. [PMID: 30040951 DOI: 10.1016/j.physbeh.2018.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 01/04/2023]
Abstract
Hyperbaric oxygen (HBO) preconditioning (PC) has been suggested as a feasible method to provide neuroprotection from postoperative cognitive dysfunction (POCD). However, whether HBO-PC can ameliorate cognitive deficits induced by isoflurane, and the possible mechanism by which it may exert its effect, has not yet been clarified. In the present study, middle-aged mice were exposed to isoflurane anesthesia (1.5 minimal alveolar concentration [MAC]) for 2 h to establish a POCD model. After HBO preconditioning, cognitive function and expression of hippocampal sirtuin 1 (Sirt1), nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) were evaluated 24 h following isoflurane treatment, in the presence or absence of Sirt1 knockdown by short hairpin RNA (shRNA). HBO preconditioning increased the expression of Sirt1, Nrf2, and HO-1 and ameliorated memory dysfunction. Meanwhile, Sirt1 knockdown inhibited the expression of Nrf2 and HO-1 and attenuated the HBO preconditioning-associated memory improvement. Our results suggest that the application of HBO preconditioning is a useful treatment for POCD, and that Sirt1 may be a potential molecular target for POCD therapy.
Collapse
Affiliation(s)
- Hu Hong-Qiang
- Department of Anesthesiology, PLA No. 174 Hospital, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Shu Mang-Qiao
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Psychiatry, Changan Hospital, Xi'an 710016, China
| | - Xue Fen
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Liu Shan-Shan
- Department of Anesthesiology, PLA No. 174 Hospital, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Cao Hui-Juan
- Department of Anesthesiology, PLA No. 174 Hospital, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Hou Wu-Gang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yan Wen-Jun
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou 730000, China.
| | - Peng Zheng-Wu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
17
|
Pan Y, Li H, Zheng S, Zhang B, Deng ZY. Implication of the Significance of Dietary Compatibility: Based on the Antioxidant and Anti-Inflammatory Interactions with Different Ratios of Hydrophilic and Lipophilic Antioxidants among Four Daily Agricultural Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7461-7474. [PMID: 29920091 DOI: 10.1021/acs.jafc.8b01690] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The hydrophilic extracts of eggplant peel (HEEP) and purple sweet potato (HEPP) and lipophilic extracts of tomato (LET) and carrot (LEC) were mixed in different ratios to assess the significance of the compatibility of aliments, based on their antioxidant and anti-inflammatory interactions in H9c2 cells. The results indicated that groups of some combinational extracts (HEPP-HEEP F1/10, LEC-HEEP F3/10, LEC-HEPP F3/10) showed stronger synergistic antioxidant and anti-inflammatory effects than individual groups. For example, the glutathione peroxidase (GPx) activity of the LEC-HEEP (F3/10) group (86.71 ± 1.88) was higher than that in the HEEP (79.97 ± 1.68) and LEC (77.31 ± 1.85) groups. The level of reactive oxygen species (ROS) was 30.37 ± 0.25 in the LEC-HEEP (F3/10) group while the levels were 34.34 ± 0.36 and 46.23 ± 0.51 in the HEEP and LEC groups, respectively. And the level of malondialdehyde (MDA) was 1.82 ± 0.24 in the LEC-HEEP (F3/10) group while the levels were 2.48 ± 0.13 and 3.01 ± 0.24 in the HEEP and LEC groups, respectively. The expressions of inflammatory mediators (IL-1β, IL-6, IL-8) and cell adhesion molecules (VCAM-1, ICAM-1) showed similar tendencies. However, some groups (LET-LEC F5/10, LET-LEC F9/10, LET-HEPP F7/10) showed antagonistic effects based on these indicators. The principal component analysis showed that samples could be defined by two principal components: PC1, the main phenolic acids and flavonoids; PC2, carotenoids. Moreover, phenolics and anthoyanins were in the majority in synergistic groups, and carotenoids were in the majority in antagonistic groups. These results indicated that there exist synergistic or antagonistic interactions of aliments on antioxidation and anti-inflammation, which implied the significance of food compatibility.
Collapse
Affiliation(s)
- Yao Pan
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
| | - Shilian Zheng
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang 330047 , Jiangxi , China
- Institute for Advanced Study , University of Nanchang , Nanchang 330031 , Jiangxi , China
| |
Collapse
|
18
|
Liska GM, Lippert T, Russo E, Nieves N, Borlongan CV. A Dual Role for Hyperbaric Oxygen in Stroke Neuroprotection: Preconditioning of the Brain and Stem Cells. CONDITIONING MEDICINE 2018; 1:151-166. [PMID: 30079404 PMCID: PMC6075658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stroke continues to be an extremely prevalent disease and poses a great challenge in developing safe and effective therapeutic options. Hyperbaric oxygen therapy (HBOT) has demonstrated significant pre-clinical effectiveness for the treatment of acute ischemic stroke, and limited potential in treating chronic neurological deficits. Reported benefits include reductions in oxidative stress, inflammation, neural apoptosis, and improved physiological metrics such as edema and oxygen perfusion, all of which contribute to improved functional recovery. This pre-clinical evidence has failed to translate into an effective evidence-based therapy, however, due in large part to significant inconsistencies in treatment protocols and design of clinical studies. While the medical community works to standardize clinical protocols in an effort to advance HBOT for acute stroke, pre-clinical investigations continue to probe novel applications of HBOT in an effort to optimize stroke neuroprotection. One such promising strategy is HBOT preconditioning. Based upon the premise of mild oxidative stress priming the brain for tolerating the full-blown oxidative stress inherent in stroke, HBOT preconditioning has displayed extensive efficacy. Here, we first review the pre-clinical and clinical evidence supporting HBOT delivery following ischemic stroke and then discuss the scientific basis for HBOT preconditioning as a neuroprotective strategy. Finally, we propose the innovative concept of stem cell preconditioning, in tandem with brain preconditioning, as a promising regenerative pathway for maximizing the application of HBOT for ischemic stroke treatment.
Collapse
Affiliation(s)
| | | | | | | | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL
| |
Collapse
|