1
|
QingNing S, Mohd Ismail ZI, Ab Patar MNA, Mat Lazim N, Hadie SNH, Mohd Noor NF. The limelight of adipose-derived stem cells in the landscape of neural tissue engineering for peripheral nerve injury. Tissue Cell 2024; 91:102556. [PMID: 39293138 DOI: 10.1016/j.tice.2024.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND AND AIMS Challenges in treating peripheral nerve injury include prolonged repair time and insufficient functional recovery. Stem cell therapy coupled with neural tissue engineering has been shown to induce nerve regeneration following peripheral nerve injury. Among these stem cells, adipose-derived stem cells (ADSCs) are preferred due to their accessibility, expansion, multidirectional differentiation, and production of essential nutrient factors for nerve growth. In recent years, ADSC-laden nerve guide conduit has been utilized to enhance the therapeutic effects of tissue-engineered nerve grafts. This review explores existing research that recognizes the roles played by ADSCs in inducing peripheral nerve regeneration following injury and summarizes the different methods of application of ADSC-laden nerve conduit in neural tissue engineering.
Collapse
Affiliation(s)
- Sun QingNing
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia; Department of Rehabilitation, School of Special Education, Zhengzhou Normal University, Zhengzhou 450044, China.
| | - Zul Izhar Mohd Ismail
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Mohd Nor Azim Ab Patar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Siti Nurma Hanim Hadie
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Nor Farid Mohd Noor
- Faculty of Medicine, Universiti Sultan Zainal Abidin Medical Campus, Kuala Terengganu, Terengganu 20400, Malaysia.
| |
Collapse
|
2
|
Deng K, Hu DX, Zhang WJ. Application of cell transplantation in the treatment of neuropathic pain. Neuroscience 2024; 554:43-51. [PMID: 38986736 DOI: 10.1016/j.neuroscience.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/15/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Nerve injury can not only lead to sensory and motor dysfunction, but also be complicated with neuropathic pain (NPP), which brings great psychosomatic injury to patients. At present, there is no effective treatment for NPP. Based on the functional characteristics of cell transplantation in nerve regeneration and injury repair, cell therapy has been used in the exploratory treatment of NPP and has become a promising treatment of NPP. In this article, we discuss the current mainstream cell types for the treatment of NPP, including Schwann cells, olfactory ensheathing cells, neural stem cells and mesenchymal stem cells in the treatment of NPP. These bioactive cells transplanted into the host have pharmacological properties of decreasing pain threshold and relieving NPP by exerting nutritional support, neuroprotection, immune regulation, promoting axonal regeneration, and remyelination. Cell transplantation can also change the microenvironment around the nerve injury, which is conducive to the survival of neurons. It can effectively relieve pain by repairing the injured nerve and rebuilding the nerve function. At present, some preclinical and clinical studies have shown that some encouraging results have been achieved in NPP treatment based on cell transplantation. Therefore, we discussed the feasible strategy of cell transplantation as a treatment of NPP and the problems and challenges that need to be solved in the current application of cell transplantation in NPP therapy.
Collapse
Affiliation(s)
- Kan Deng
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China; Ji an College, Ji an City, Jiangxi Province, China
| | - Dong-Xia Hu
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Wen-Jun Zhang
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
3
|
Aisaiti A, Aierxiding S, Shoukeer K, Muheremu A. Mesenchymal stem cells for peripheral nerve injury and regeneration: a bibliometric and visualization study. Front Neurol 2024; 15:1420402. [PMID: 39161869 PMCID: PMC11330774 DOI: 10.3389/fneur.2024.1420402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/10/2024] [Indexed: 08/21/2024] Open
Abstract
Objective To use bibliometric methods to analyze the research hotspots and future development trends regarding the application of mesenchymal stem cells in peripheral nerve injury and regeneration. Methods Articles published from January 1, 2013, to December 31, 2023, were meticulously screened using the MeSH terms: TS = ("Mesenchymal stem cells" AND "Peripheral nerve injury") OR TS = ("Mesenchymal stem cells" AND "Peripheral nerve regeneration") within the Web of Science database. The compiled data was then subjected to in-depth analysis with the aid of VOSviewer and Cite Space software, which facilitated the identification of the most productive countries, organizations, authors, and the predominant keywords prevalent within this research domain. Results An extensive search of the Web of Science database yielded 350 relevant publications. These scholarly works were authored by 2,049 collaborative researchers representing 41 countries and affiliated with 585 diverse academic and research institutions. The findings from this research were disseminated across 167 various journals, and the publications collectively cited 21,064 references from 3,339 distinct journals. Conclusion Over the past decade, there has been a consistent upward trajectory in the number of publications and citations pertaining to the use of mesenchymal stem cells in the realm of peripheral nerve injury and regeneration. The domain of stem cell therapy for nerve injury has emerged as a prime focus of research, with mesenchymal stem cell therapy taking center stage due to its considerable promise in the treatment of nerve injuries. This therapeutic approach holds the potential to significantly enhance treatment options and rehabilitation prospects for patients suffering from such injuries.
Collapse
Affiliation(s)
- Aikebaierjiang Aisaiti
- Key Laboratory of Orthopedic Regenerative Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Shalayiding Aierxiding
- Key Laboratory of Orthopedic Regenerative Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Kutiluke Shoukeer
- Key Laboratory of Orthopedic Regenerative Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Aikeremujiang Muheremu
- Key Laboratory of Orthopedic Regenerative Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
- Beijing Darwin Cell Biotechnology Co., Ltd., Beijing, China
| |
Collapse
|
4
|
Xiang YT, Wu JJ, Ma J, Xing XX, Zhang JP, Hua XY, Zheng MX, Xu JG. Peripheral nerve transfers for dysfunctions in central nervous system injuries: a systematic review. Int J Surg 2024; 110:3814-3826. [PMID: 38935818 PMCID: PMC11175768 DOI: 10.1097/js9.0000000000001267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/21/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND The review highlights recent advancements and innovative uses of nerve transfer surgery in treating dysfunctions caused by central nervous system (CNS) injuries, with a particular focus on spinal cord injury (SCI), stroke, traumatic brain injury, and cerebral palsy. METHODS A comprehensive literature search was conducted regarding nerve transfer for restoring sensorimotor functions and bladder control following injuries of spinal cord and brain, across PubMed and Web of Science from January 1920 to May 2023. Two independent reviewers undertook article selection, data extraction, and risk of bias assessment with several appraisal tools, including the Cochrane Risk of Bias Tool, the JBI Critical Appraisal Checklist, and SYRCLE's ROB tool. The study protocol has been registered and reported following PRISMA and AMSTAR guidelines. RESULTS Nine hundred six articles were retrieved, of which 35 studies were included (20 on SCI and 15 on brain injury), with 371 participants included in the surgery group and 192 in the control group. These articles were mostly low-risk, with methodological concerns in study types, highlighting the complexity and diversity. For SCI, the strength of target muscle increased by 3.13 of Medical Research Council grade, and the residual urine volume reduced by more than 100 ml in 15 of 20 patients. For unilateral brain injury, the Fugl-Myer motor assessment (FMA) improved 15.14-26 score in upper extremity compared to 2.35-26 in the control group. The overall reduction in Modified Ashworth score was 0.76-2 compared to 0-1 in the control group. Range of motion (ROM) increased 18.4-80° in elbow, 20.4-110° in wrist and 18.8-130° in forearm, while ROM changed -4.03°-20° in elbow, -2.08°-10° in wrist, -2.26°-20° in forearm in the control group. The improvement of FMA in lower extremity was 9 score compared to the presurgery. CONCLUSION Nerve transfer generally improves sensorimotor functions in paralyzed limbs and bladder control following CNS injury. The technique effectively creates a 'bypass' for signals and facilitates functional recovery by leveraging neural plasticity. It suggested a future of surgery, neurorehabilitation and robotic-assistants converge to improve outcomes for CNS.
Collapse
Affiliation(s)
- Yun-Ting Xiang
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine
| | - Jia-Jia Wu
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jie Ma
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiang-Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jun-Peng Zhang
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine
| | - Xu-Yun Hua
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine
| | - Mou-Xiong Zheng
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine
| | - Jian-Guang Xu
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Zhang X, Zhang W, Sun H, Wang H. The effects of exosomes originating from different cell sources on the differentiation of bone marrow mesenchymal stem cells into schwann cells. J Nanobiotechnology 2024; 22:220. [PMID: 38698449 PMCID: PMC11067703 DOI: 10.1186/s12951-024-02450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) can differentiate into Schwann cells (SCs) during peripheral nerve injury; in our previous research, we showed that SC-derived exosomes (SC-exos) played a direct induction role while fibroblast-derived exosomes (Fb-exos) had no obvious induction role. The induction role of neural stem cell (NSC)-derived exosomes (NSC-exos) has also been widely confirmed. However, no studies have compared the induction effects of these three types of cells at the same time. Therefore, by investigating the effect of these three cell-derived exosomes upon the induction of BMSCs to differentiate into SCs, this study explored the role of different exosomes in promoting the differentiation of stem cells into SCs cells, and conducted a comparison between the two groups by RNA sequencing to further narrow the range of target genes and related gene pathways in order to study their related mechanisms. MATERIALS AND METHODS We extracted exosomes from SCs, fibroblasts (Fb) and neural stem cells (NSC) and then investigated the ability of these exosomes to induce differentiation into BMSCs under different culture conditions. The expression levels of key proteins and gene markers were detected in induced cells by fluorescence immunoassays, western blotting and polymerase chain reaction (PCR); then, we statistically compared the relative induction effects under different conditions. Finally, we analyzed the three types of exosomes by RNA-seq to predict target genes and related gene pathways. RESULTS BMSCs were cultured by three media: conventional (no induction), pre-induction or pre-induction + original induction medium (ODM) with exosomes of the same cell origin under different culture conditions. When adding the three different types of exosomes separately, the overall induction of BMSCs to differentiate into SCs was significantly increased (P < 0.05). The induction ability was ranked as follows: pre-induction + ODM + exosome group > pre-induction + exosome group > non-induction + exosome group. Using exosomes from different cell sources under the same culture conditions, we observed the following trends under the three culture conditions: RSC96-exos group ≥ NSC-exos group > Fb-exos group. The overall ability to induce BMSCs into SCs was significantly greater in the RSC96-exos group and the NSC-exos group. Although there was no significant difference in induction efficiency when comparing these two groups, the overall induction ability of the RSC96-exos group was slightly higher than that of the NSC-exos group. By combining the differentiation induction results with the RNA-seq data, the three types of exosomes were divided into three comparative groups: RSC vs. NSC, RSC vs. Fb and NSC vs. Fb. We identified 203 differentially expressed mRNA target genes in these three groups. Two differentially expressed genes were upregulated simultaneously, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). We did not identify any co-upregulated target genes for the miRNAs, but did identify one target gene of the lncRNAs, namely ENSRNOG00000065005. Analysis identified 90 GO terms related to nerves and axons in the mRNAs; in addition, KEGG enrichment and GASA analysis identified 13 common differential expression pathways in the three groups. CONCLUSIONS Our analysis found that pre-induction + ODM + RSC96/NSC-exos culture conditions were most conducive with regards to induction and differentiation. RSC96-exos and NSC-exos exhibited significantly greater differentiation efficiency of BMSCs into SCs. Although there was no statistical difference, the data indicated a trend for RSC96-exos to be advantageous We identified 203 differentially expressed mRNAs between the three groups and two differentially expressed target mRNAs were upregulated, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). 90 GO terms were related to nerves and axons. Finally, we identified 13 common differentially expressed pathways across our three types of exosomes. It is hoped that the efficiency of BMSCs induction differentiation into SCs can be improved, bringing hope to patients and more options for clinical treatment.
Collapse
Affiliation(s)
- Xianxiang Zhang
- Department of Otolaryngology and Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 101101, China
| | - Weiwei Zhang
- Department of Otolaryngology and Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 101101, China
| | - Hao Sun
- Department of Otolaryngology and Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 101101, China
| | - Hui Wang
- Department of Otolaryngology and Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 101101, China.
| |
Collapse
|
6
|
Giri PM, Banerjee A, Ghosal A, Layek B. Neuroinflammation in Neurodegenerative Disorders: Current Knowledge and Therapeutic Implications. Int J Mol Sci 2024; 25:3995. [PMID: 38612804 PMCID: PMC11011898 DOI: 10.3390/ijms25073995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Neurodegenerative disorders (NDs) have become increasingly common during the past three decades. Approximately 15% of the total population of the world is affected by some form of NDs, resulting in physical and cognitive disability. The most common NDs include Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Although NDs are caused by a complex interaction of genetic, environmental, and lifestyle variables, neuroinflammation is known to be associated with all NDs, often leading to permanent damage to neurons of the central nervous system. Furthermore, numerous emerging pieces of evidence have demonstrated that inflammation not only supports the progression of NDs but can also serve as an initiator. Hence, various medicines capable of preventing or reducing neuroinflammation have been investigated as ND treatments. While anti-inflammatory medicine has shown promising benefits in several preclinical models, clinical outcomes are often questionable. In this review, we discuss various NDs with their current treatment strategies, the role of neuroinflammation in the pathophysiology of NDs, and the use of anti-inflammatory agents as a potential therapeutic option.
Collapse
Affiliation(s)
- Paras Mani Giri
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Anurag Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Arpita Ghosal
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
7
|
Zhang Z, Zhang H, Hu B, Luan Y, Zhu K, Ma B, Zhang Z, Zheng X. R-Loop Defines Neural Stem/Progenitor Cells During Mouse Neurodevelopment. Stem Cells Dev 2023; 32:719-730. [PMID: 37823735 DOI: 10.1089/scd.2023.0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Neural stem/progenitor cells (NSPCs) are present in the mammalian brain throughout life and are involved in neurodevelopment and central nervous system repair. Although typical epigenetic signatures, including DNA methylation, histone modifications, and microRNAs, play a pivotal role in regulation of NSPCs, several of the epigenetic regulatory mechanisms of NSPCs remain unclear. Thus, defining a novel epigenetic feature of NSPCs is crucial for developing stem cell therapy to address neurologic disorders caused by injury. In this study, we aimed to define the R-loop, a three-stranded nucleic acid structure, as an epigenetic characteristic of NSPCs during neurodevelopment. Our results demonstrated that R-loop levels change dynamically throughout neurodevelopment. Cells with high levels of R-loops consistently decreased and were enriched in the area of neurogenesis. Additionally, these cells costained with SOX2 during neurodevelopment. Furthermore, these cells with high R-loop levels expressed Ki-67 and exhibited a high degree of overlap with the transcriptional activation markers, H3K4me3, ser5, and H3K27ac. These findings suggest that R-loops may serve as an epigenetic feature for transcriptional activation in NSPCs, indicating their role in gene expression regulation and neurogenesis.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hanyue Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Baoqi Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Kun Zhu
- Department of Neurology, and The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhichao Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaoyan Zheng
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Solomevich SO, Oranges CM, Kalbermatten DF, Schwendeman A, Madduri S. Natural polysaccharides and their derivatives as potential medical materials and drug delivery systems for the treatment of peripheral nerve injuries. Carbohydr Polym 2023; 315:120934. [PMID: 37230605 DOI: 10.1016/j.carbpol.2023.120934] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Peripheral nerve repair following injury is one of the most serious problems in neurosurgery. Clinical outcomes are often unsatisfactory and associated with a huge socioeconomic burden. Several studies have revealed the great potential of biodegradable polysaccharides for improving nerve regeneration. We review here the promising therapeutic strategies involving different types of polysaccharides and their bio-active composites for promoting nerve regeneration. Within this context, polysaccharide materials widely used for nerve repair in different forms are highlighted, including nerve guidance conduits, hydrogels, nanofibers and films. While nerve guidance conduits and hydrogels were used as main structural scaffolds, the other forms including nanofibers and films were generally used as additional supporting materials. We also discuss the issues of ease of therapeutic implementation, drug release properties and therapeutic outcomes, together with potential future directions of research.
Collapse
Affiliation(s)
- Sergey O Solomevich
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Carlo M Oranges
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Daniel F Kalbermatten
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Srinivas Madduri
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Zhang M, An H, Zhang F, Jiang H, Wan T, Wen Y, Han N, Zhang P. Prospects of Using Chitosan-Based Biopolymers in the Treatment of Peripheral Nerve Injuries. Int J Mol Sci 2023; 24:12956. [PMID: 37629137 PMCID: PMC10454829 DOI: 10.3390/ijms241612956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Peripheral nerve injuries are common neurological disorders, and the available treatment options, such as conservative management and surgical repair, often yield limited results. However, there is growing interest in the potential of using chitosan-based biopolymers as a novel therapeutic approach to treating these injuries. Chitosan-based biopolymers possess unique characteristics, including biocompatibility, biodegradability, and the ability to stimulate cell proliferation, making them highly suitable for repairing nerve defects and promoting nerve regeneration and functional recovery. Furthermore, these biopolymers can be utilized in drug delivery systems to control the release of therapeutic agents and facilitate the growth of nerve cells. This comprehensive review focuses on the latest advancements in utilizing chitosan-based biopolymers for peripheral nerve regeneration. By harnessing the potential of chitosan-based biopolymers, we can pave the way for innovative treatment strategies that significantly improve the outcomes of peripheral nerve injury repair, offering renewed hope and better prospects for patients in need.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China; (H.A.)
| | - Fengshi Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Haoran Jiang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China; (H.A.)
| | - Na Han
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| |
Collapse
|
10
|
Liu Y, Zhang X, Xiao C, Liu B. Engineered hydrogels for peripheral nerve repair. Mater Today Bio 2023; 20:100668. [PMID: 37273791 PMCID: PMC10232914 DOI: 10.1016/j.mtbio.2023.100668] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Peripheral nerve injury (PNI) is a complex disease that often appears in young adults. It is characterized by a high incidence, limited treatment options, and poor clinical outcomes. This disease not only causes dysfunction and psychological disorders in patients but also brings a heavy burden to the society. Currently, autologous nerve grafting is the gold standard in clinical treatment, but complications, such as the limited source of donor tissue and scar tissue formation, often further limit the therapeutic effect. Recently, a growing number of studies have used tissue-engineered materials to create a natural microenvironment similar to the nervous system and thus promote the regeneration of neural tissue and the recovery of impaired neural function with promising results. Hydrogels are often used as materials for the culture and differentiation of neurogenic cells due to their unique physical and chemical properties. Hydrogels can provide three-dimensional hydration networks that can be integrated into a variety of sizes and shapes to suit the morphology of neural tissues. In this review, we discuss the recent advances of engineered hydrogels for peripheral nerve repair and analyze the role of several different therapeutic strategies of hydrogels in PNI through the application characteristics of hydrogels in nerve tissue engineering (NTE). Furthermore, the prospects and challenges of the application of hydrogels in the treatment of PNI are also discussed.
Collapse
Affiliation(s)
- Yao Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| | - Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Bin Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| |
Collapse
|
11
|
Semita IN, Utomo DN, Suroto H. Mechanism of spinal cord injury regeneration and the effect of human neural stem cells-secretome treatment in rat model. World J Orthop 2023; 14:64-82. [PMID: 36844381 PMCID: PMC9945248 DOI: 10.5312/wjo.v14.i2.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/22/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Globally, complete neurological recovery of spinal cord injury (SCI) is still less than 1%, and 90% experience permanent disability. The key issue is that a pharmacological neuroprotective-neuroregenerative agent and SCI regeneration mechanism have not been found. The secretomes of stem cell are an emerging neurotrophic agent, but the effect of human neural stem cells (HNSCs) secretome on SCI is still unclear.
AIM To investigate the regeneration mechanism of SCI and neuroprotective-neuroregenerative effects of HNSCs-secretome on subacute SCI post-laminectomy in rats.
METHODS An experimental study was conducted with 45 Rattus norvegicus, divided into 15 normal, 15 control (10 mL physiologic saline), and 15 treatment (30 μL HNSCs-secretome, intrathecal T10, three days post-traumatic). Locomotor function was evaluated weekly by blinded evaluators. Fifty-six days post-injury, specimens were collected, and spinal cord lesion, free radical oxidative stress (F2-Isoprostanes), nuclear factor-kappa B (NF-κB), matrix metallopeptidase 9 (MMP9), tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), transforming growth factor-beta (TGF-β), vascular endothelial growth factor (VEGF), B cell lymphoma-2 (Bcl-2), nestin, brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) were analyzed. The SCI regeneration mechanism was analyzed using partial least squares structural equation modeling (PLS SEM).
RESULTS HNSCs-secretome significantly improved locomotor recovery according to Basso, Beattie, Bresnahan (BBB) scores and increased neurogenesis (nestin, BDNF, and GDNF), neuroangiogenesis (VEGF), anti-apoptotic (Bcl-2), anti-inflammatory (IL-10 and TGF-β), but decreased pro-inflammatory (NF-κB, MMP9, TNF-α), F2-Isoprostanes, and spinal cord lesion size. The SCI regeneration mechanism is valid by analyzed outer model, inner model, and hypothesis testing in PLS SEM, started with pro-inflammation followed by anti-inflammation, anti-apoptotic, neuroangiogenesis, neurogenesis, and locomotor function.
CONCLUSION HNSCs-secretome as a potential neuroprotective-neuroregenerative agent for the treatment of SCI and uncover the SCI regeneration mechanism.
Collapse
Affiliation(s)
- I Nyoman Semita
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Orthopedic and Traumatology, Faculty of Medicine, University of Jember, Jember 68121, Indonesia
| | - Dwikora Novembri Utomo
- Department of Orthopedic and Traumatology, Faculty of Medicine, Universitas Airlangga, Surabaya 60118, East Java, Indonesia
| | - Heri Suroto
- Department of Orthopedic and Traumatology, Faculty of Medicine, Universitas Airlangga, Surabaya 60118, East Java, Indonesia
| |
Collapse
|
12
|
Barroca N, da Silva DM, Pinto SC, Sousa JPM, Verstappen K, Klymov A, Fernández-San-Argimiro FJ, Madarieta I, Murua O, Olalde B, Papadimitriou L, Karali K, Mylonaki K, Stratakis E, Ranella A, Marques PAAP. Interfacing reduced graphene oxide with an adipose-derived extracellular matrix as a regulating milieu for neural tissue engineering. BIOMATERIALS ADVANCES 2023; 148:213351. [PMID: 36842343 DOI: 10.1016/j.bioadv.2023.213351] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Enthralling evidence of the potential of graphene-based materials for neural tissue engineering is motivating the development of scaffolds using various structures related to graphene such as graphene oxide (GO) or its reduced form. Here, we investigated a strategy based on reduced graphene oxide (rGO) combined with a decellularized extracellular matrix from adipose tissue (adECM), which is still unexplored for neural repair and regeneration. Scaffolds containing up to 50 wt% rGO relative to adECM were prepared by thermally induced phase separation assisted by carbodiimide (EDC) crosslinking. Using partially reduced GO enables fine-tuning of the structural interaction between rGO and adECM. As the concentration of rGO increased, non-covalent bonding gradually prevailed over EDC-induced covalent conjugation with the adECM. Edge-to-edge aggregation of rGO favours adECM to act as a biomolecular physical crosslinker to rGO, leading to the softening of the scaffolds. The unique biochemistry of adECM allows neural stem cells to adhere and grow. Importantly, high rGO concentrations directly control cell fate by inducing the differentiation of both NE-4C cells and embryonic neural progenitor cells into neurons. Furthermore, primary astrocyte fate is also modulated as increasing rGO boosts the expression of reactivity markers while unaltering the expression of scar-forming ones.
Collapse
Affiliation(s)
- Nathalie Barroca
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal.
| | - Daniela M da Silva
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal
| | - Susana C Pinto
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal
| | - Joana P M Sousa
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal
| | - Kest Verstappen
- Radboud University Nijmegen Medical Centre, Department of Regenerative Biomaterials, 6500HB Nijmegen, the Netherlands
| | - Alexey Klymov
- Radboud University Nijmegen Medical Centre, Department of Regenerative Biomaterials, 6500HB Nijmegen, the Netherlands
| | | | - Iratxe Madarieta
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain
| | - Olatz Murua
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain
| | - Beatriz Olalde
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain
| | - Lina Papadimitriou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - Kanelina Karali
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - Konstantina Mylonaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - Anthi Ranella
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece.
| | - Paula A A P Marques
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal.
| |
Collapse
|
13
|
Sharifi M, Farahani MK, Salehi M, Atashi A, Alizadeh M, Kheradmandi R, Molzemi S. Exploring the Physicochemical, Electroactive, and Biodelivery Properties of Metal Nanoparticles on Peripheral Nerve Regeneration. ACS Biomater Sci Eng 2023; 9:106-138. [PMID: 36545927 DOI: 10.1021/acsbiomaterials.2c01216] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the advances in the regeneration/rehabilitation field of damaged tissues, the functional recovery of peripheral nerves (PNs), especially in a long gap injury, is considered a great medical challenge. Recent progress in nanomedicine has provided great hope for PN regeneration through the strategy of controlling cell behavior by metal nanoparticles individually or loaded on scaffolds/conduits. Despite the confirmed toxicity of metal nanoparticles due to long-term accumulation in nontarget tissues, they play a role in the damaged PN regeneration based on the topography modification of scaffolds/conduits, enhancing neurotrophic factor secretion, the ion flow improvement, and the regulation of electrical signals. Determining the fate of neural progenitor cells would be a major achievement in PN regeneration, which seems to be achievable by metal nanoparticles through altering cell vital approaches and controlling their functions. Therefore, in this literature, an attempt was made to provide an overview of the effective activities of metal nanoparticles on the PN regeneration, until the vital clues of the PN regeneration and how they are changed by metal nanoparticles are revealed to the researcher.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Mohammad Kamalabadi Farahani
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Faculty of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Rasoul Kheradmandi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Sahar Molzemi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| |
Collapse
|
14
|
Yin Q, Zou T, Sun S, Yang D. Cell therapy for neuropathic pain. Front Mol Neurosci 2023; 16:1119223. [PMID: 36923653 PMCID: PMC10008860 DOI: 10.3389/fnmol.2023.1119223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Neuropathic pain (NP) is caused by a lesion or a condition that affects the somatosensory system. Pathophysiologically, NP can be ascribed to peripheral and central sensitization, implicating a wide range of molecular pathways. Current pharmacological and non-pharmacological approaches are not very efficacious, with over half of NP patients failing to attain adequate pain relief. So far, pharmacological and surgical treatments have focused primarily on symptomatic relief by modulating pain transduction and transmission, without treating the underlying pathophysiology. Currently, researchers are trying to use cell therapy as a therapeutic alternative for the treatment of NP. In fact, mounting pre-clinical and clinical studies showed that the cell transplantation-based therapy for NP yielded some encouraging results. In this review, we summarized the use of cell grafts for the treatment of NP caused by nerve injury, synthesized the latest advances and adverse effects, discussed the possible mechanisms to inform pain physicians and neurologists who are endeavoring to develop cell transplant-based therapies for NP and put them into clinical practice.
Collapse
Affiliation(s)
- QingHua Yin
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - TianHao Zou
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ShuJun Sun
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Yang
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Wang H, Wang F, Wang Y, Li X, Di C, Liang C, Mu Y, Zhou J. Study on the Mechanism of BMSCs in Regulating NF-κB Signal Pathway by Targeting miR-449a to Improve the Inflammatory Response to Peripheral Nerve Injury. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2022; 22:546-561. [PMID: 36458392 PMCID: PMC9716300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate the mechanism of Bone Marrow Mesenchymal Stem Cells (BMSCs) in regulating NF-κB signal pathway by targeting miR-449a. METHODS Stem cells were transfected by over-expressing and inhibiting miR-449a to detect the levels and viability of miR-449a in stem cells after transfection. Stem cells and neurons were co-cultured in vitro to evaluate the in vitro mechanism of stem cells over-expressing miR-449a on neurons. RESULTS After the addition of neurons, the neuronal activity of miR-449a over-expression group increased significantly, the expression of NF-κB signal pathway proteins (IκBα, p50, and p65) decreased, and the inflammatory cytokines (TNF-α and IL-1β) decreased significantly (P<0.05). In vivo experiments in rats also showed that rats were unresponsive, did not chirp or elude after being stimulated. After stem cell therapy, the weight and response of rats gradually returned to normal levels. miR-449a expression significantly increased in the stem cell + miR-449a over-expression group, expression of NF-κB signal pathway proteins (IκBα, p50, and p65) decreased, inflammatory cytokines (TNF-α and IL-1β) significantly decreased, and cell activity significantly increased (P<0.05). CONCLUSIONS BMSCs can modulate NF-κB signaling pathway by targeting miR-449a, so as to reduce the inflammatory response to peripheral nerve injury and repair nerve injury.
Collapse
Affiliation(s)
- Hongjiao Wang
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical College, China
| | - Fangyuan Wang
- Department of General Surgery, Qiqihar First Hospital, China
| | - Yuejing Wang
- Department of Histology and Embryology, Qiqihar Medical College, China
| | - Xiaonan Li
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical College, China
| | - Cihan Di
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical College, China
| | - Chunming Liang
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical College, China
| | - Yuyuan Mu
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical College, China
| | - Jiexin Zhou
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical College, China
| |
Collapse
|
16
|
Zhou H, Li J, Guan Y, He H, Huang Fu L. Experimental study of different dehydration methods in the process of preparing frozen brain sections. IBRAIN 2022; 10:164-171. [PMID: 38915949 PMCID: PMC11193860 DOI: 10.1002/ibra.12075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 06/26/2024]
Abstract
This study aimed to provide a recommendable protocol for the preparation of brain cryosections of rats to reduce and avoid ice crystals. We have designed five different dewatering solutions (Scheme 1: dehydrate with 15%, 20%, and 30% sucrose-phosphate-buffered saline solution; Scheme 2: 20% sucrose and 30% sucrose; Scheme 3: 30% sucrose; Scheme 4: 10%, 20%, and 30% sucrose; and Scheme 5: the tissue was dehydrated with 15% and 30% sucrose polyacetate I until it sank to the bottom, followed by placement in 30% sucrose polyacetate II) to minimize the formation of ice crystals. Cryosections from different protocols were stained with Nissl staining and compared with each other by density between cells and the distance of intertissue spaces. The time required for the dehydration process from Scheme 1 to Scheme 5 was 24, 23, 24, 24, and 33 h, respectively. Density between cells gradually decreased from Scheme 1 to Scheme 5, and the distance of intertissue spaces was differentiated and irregular in different schemes according to the images of Nissl staining. We recommend the dewatering method of Scheme 4 (the brain tissues were dehydrated in 10%, 20% and 30% sucrose solution in turn until the tissue samples were completely immersed in the solution and then immersed in the next concentration solution for dehydration).
Collapse
Affiliation(s)
- Hong‐Su Zhou
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
- Department of Experimental AnimalsKunming Medical UniversityKunmingYunnanChina
| | - Jing Li
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Yi‐Huan Guan
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Hua He
- Department of Experimental AnimalsKunming Medical UniversityKunmingYunnanChina
| | - Li‐Ren Huang Fu
- Department of Experimental AnimalsKunming Medical UniversityKunmingYunnanChina
- Faculty of Health SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
17
|
Jiang Y, Tang X, Li T, Ling J, Yang Y. The success of biomaterial-based tissue engineering strategies for peripheral nerve regeneration. Front Bioeng Biotechnol 2022; 10:1039777. [PMID: 36329703 PMCID: PMC9622790 DOI: 10.3389/fbioe.2022.1039777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
Peripheral nerve injury is a clinically common injury that causes sensory dysfunction and locomotor system degeneration, which seriously affects the quality of the patients' daily life. Long gapped defects in large nerve are difficult to repair via surgery and limited donor source of autologous nerve greatly challenges the successful nerve repair by transplantation. Significantly, remarkable progress has been made in repairing the peripheral nerve injury using artificial nerve grafts and a variety of products for peripheral nerve repair have emerged been approved globally in recent years. The raw materials of these commercial products includes natural/synthetic polymers, extracellular matrix. Despite a lot of effort, the desirable functional recovery still remains great challenges in long gapped nerve defects. Thus this review discusses the recent development of tissue engineering products for peripheral nerve repair and the design of bionic grafts improving the local microenvironment for accelerating nerve regeneration against locomotor disorder, which may provide potential strategies for the repair of long gaps or thick nerve defects by multifunctional biomaterials.
Collapse
Affiliation(s)
- Yuhui Jiang
- Medical School of Nantong University, Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Xiaoxuan Tang
- Medical School of Nantong University, Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Tao Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yumin Yang
- Medical School of Nantong University, Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| |
Collapse
|
18
|
Feng Y, Wang K, Wang N, Jia P, Zhang L, Yuan H, Lu P, Lu Y, Zhang H, Li R, Zhang Y, Li Q, Zhang P. Tetramethylpyrazine protects neural stem cells against sevoflurane-induced toxicity through Akt/GSK-3β pathway. Metab Brain Dis 2022; 37:2457-2466. [PMID: 35838869 DOI: 10.1007/s11011-022-01008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
Sevoflurane, a commonly used anesthetic, has been found to cause neural stem cell (NSC) injury, thereby contributing to neurocognitive impairment following general anesthesia. Tetramethylpyrazine (TMP), one of the most widely used medicinal compounds isolated from a traditional Chinese herb, possess neuroprotective activity. However, its effect on sevoflurane-induced NSC injury remains unclear. NSCs were pretreated with indicated concentrations of TMP for 2 h and then exposed to sevoflurane for 6 h. Cell injury was measured using lactate dehydrogenase (LDH) release assay. Cell viability and proliferation were detected by cell counting kit-8 (CCK-8) assay and 5-bromo-2'-deoxyuridine (BrdU) labeling, respectively. Apoptotic cells were detected using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The levels of cleaved caspase-3, phosphorylated protein kinase B (Akt) and phosphorylated glycogen synthase kinase-3β (GSK-3β) were detected by western blotting. Our results showed exposure to sevoflurane decreased the viability and proliferation of NSCs, while TMP preserved NSC viability and proliferation after sevoflurane exposure. In addition, the expression of cleaved caspase-3 and TUNEL positive cells were markedly decreased in TMP-treated NSCs compared with the control. Furthermore, pretreatment with TMP significantly increased the levels of phosphorylated Akt and GSK-3β in sevoflurane-injured NSCs. However, an upstream inhibitor of Akt, LY294002 abolished the protective of TMP on the cell viability of NSCs. In conclusion, these findings indicate that TMP protects NSCs from sevoflurane-induced toxicity through Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Yan Feng
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
- Department of Anesthesiology, Xi'an People's Hospital (Xi'an Fourth Hospital), 710004, Xi'an, Shaanxi, China
| | - Kui Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Ning Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Pengyu Jia
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Lei Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
- Department of Anesthesiology, Xi'an People's Hospital (Xi'an Fourth Hospital), 710004, Xi'an, Shaanxi, China
| | - Haozheng Yuan
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Pan Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Yang Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Hong Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Rong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Qianqian Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, 710004, Xi'an, Shaanxi, China.
| |
Collapse
|
19
|
Sumarwoto T, Suroto H, Mahyudin F, Utomo DN, Romaniyanto FNU, Prijosedjati A, Notobroto HB, Tinduh D, Prakoeswa CRS, Rantam FA, Rhatomy S. Prospect of Stem Cells as Promising Therapy for Brachial Plexus Injury: A Systematic Review. Stem Cells Cloning 2022; 15:29-42. [PMID: 35770243 PMCID: PMC9234311 DOI: 10.2147/sccaa.s363415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/11/2022] [Indexed: 12/09/2022] Open
Abstract
Background Brachial plexus injury is an advanced and devastating neurological injury, for which both nerve surgery and tendon transfers sometimes remain insufficient in restoring normal movement. Stem cell therapy may be applicable to rescue the injured motor neurons from degeneration which potentially improves muscle strength. Study Design Systematic Review; Level of evidence V. Data Sources A systematic literature search was conducted on PubMed (MEDLINE), EMBASE, the Cochrane Library, and Scopus using the terms ("stem cell") AND ("brachial plexus") as search keywords. Methods The process of study selection was summarized by PRISMA flow diagram. The study included in vivo and in vitro studies with English language, humans or animals with some brachial plexus injuries, interventions, some applications of stem cells to the groups of study, with functional, biomechanical, or safety outcomes. Results In total, there were 199 studies identified from the literature sources where 75 articles were qualified for forward evaluation following selecting the titles and abstracts. Ten studies were finally included in this systematic review after full-text assessment. Stem cells can produce neurotrophic factors in vitro and in vivo in rats, and their level was increased after injury. Electrophysiological measurement showed that the intervention group had distinctly higher CMAP amplitude and evidently shorter CMAP latency than the model group. Application of bone marrow stem cells (BMSCs) showed an elevation in the numbers of axons and density of myelinated fibers, the density of nerve fibers, the diameter of regenerating axons, and a decrease in axonal degeneration. A study in humans indicated an improvement of the movements in a patient with traumatic total BPI after injection of Ad-MSC. It is associated with increased muscle mass and sensory recovery and also suggested that mononuclear cell injection enhances muscle regeneration and reinnervation in the partly denervated muscle of brachial plexus injury. Various muscle groups had obtained strength together with restoration, the muscle strength attained after the previous transplantation were preserved. The results of this review support stem cell treatment in brachial plexus injury. Conclusion This review provides evidence of the positive effects of stem cell treatment in brachial plexus injury.
Collapse
Affiliation(s)
- Tito Sumarwoto
- Doctoral Program, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
- Department of Orthopaedics and Traumatology, Prof Soeharso Orthopaedic Hospital/Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia
| | - Heri Suroto
- Department of Orthopaedics and Traumatology, Dr. Soetomo General Hospital/Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Ferdiansyah Mahyudin
- Department of Orthopaedics and Traumatology, Dr. Soetomo General Hospital/Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Dwikora Novembri Utomo
- Department of Orthopaedics and Traumatology, Dr. Soetomo General Hospital/Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - F N U Romaniyanto
- Department of Orthopaedics and Traumatology, Prof Soeharso Orthopaedic Hospital/Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia
| | - Andhi Prijosedjati
- Department of Orthopaedics and Traumatology, Prof Soeharso Orthopaedic Hospital/Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia
| | | | - Damayanti Tinduh
- Physical Medicine and Rehabilitation Department, Universitas Airlangga, Surabaya, Indonesia
| | - Cita Rosita Sigit Prakoeswa
- Department of Dermatology and Venereology, Dr. Soetomo General Hospital/Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Virology and Immunology Laboratory, Microbiology Department, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
- Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia
| | - Sholahuddin Rhatomy
- Department of Orthopaedics and Traumatology, Dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia
- Faculty of medicine, public health and nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
20
|
Abdelbasset WK, Jasim SA, Sharma SK, Margiana R, Bokov DO, Obaid MA, Hussein BA, Lafta HA, Jasim SF, Mustafa YF. Alginate-Based Hydrogels and Tubes, as Biological Macromolecule-Based Platforms for Peripheral Nerve Tissue Engineering: A Review. Ann Biomed Eng 2022; 50:628-653. [PMID: 35446001 DOI: 10.1007/s10439-022-02955-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/20/2022] [Indexed: 12/25/2022]
Abstract
Unlike the central nervous system, the peripheral nervous system (PNS) has an inherent capacity to regenerate following injury. However, in the case of large nerve defects where end-to-end cooptation of two nerve stumps is not tension-free, autologous nerve grafting is often utilized to bridge the nerve gaps. To address the challenges associated with autologous nerve grafting, neural guidance channels (NGCs) have been successfully translated into clinic. Furthermore, hydrogel-based drug delivery systems have been extensively studied for the repair of PNS injuries. There are numerous biomaterial options for the production of NGCs and hydrogels. Among different candidates, alginate has shown promising results in PNS tissue engineering. Alginate is a naturally occurring polysaccharide which is biocompatible, non-toxic, non-immunogenic, and possesses modifiable properties. In the current review, applications, challenges, and future perspectives of alginate-based NGCs and hydrogels in the repair of PNS injuries will be discussed.
Collapse
Affiliation(s)
- Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, P.O. Box. 173, Al-Kharj, 11942, Saudi Arabia. .,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, 12613, Egypt.
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq
| | - Satish Kumar Sharma
- Pharmacology Department, Glocal School of Pharmacy, The Glocal University, Saharanpur, India
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, Russian Federation, 119991.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr, Moscow, Russian Federation, 109240
| | - Maithm A Obaid
- College of Pharmacy, National University of Science and Technology, Thi Qar, Iraq
| | | | | | - Sara Firas Jasim
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| |
Collapse
|
21
|
Kaplan B, Levenberg S. The Role of Biomaterials in Peripheral Nerve and Spinal Cord Injury: A Review. Int J Mol Sci 2022; 23:ijms23031244. [PMID: 35163168 PMCID: PMC8835501 DOI: 10.3390/ijms23031244] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/18/2022] Open
Abstract
Peripheral nerve and spinal cord injuries are potentially devastating traumatic conditions with major consequences for patients’ lives. Severe cases of these conditions are currently incurable. In both the peripheral nerves and the spinal cord, disruption and degeneration of axons is the main cause of neurological deficits. Biomaterials offer experimental solutions to improve these conditions. They can be engineered as scaffolds that mimic the nerve tissue extracellular matrix and, upon implantation, encourage axonal regeneration. Furthermore, biomaterial scaffolds can be designed to deliver therapeutic agents to the lesion site. This article presents the principles and recent advances in the use of biomaterials for axonal regeneration and nervous system repair.
Collapse
Affiliation(s)
- Ben Kaplan
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel;
- Bruce Rapaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel;
- Correspondence:
| |
Collapse
|
22
|
Transplanted neural lineage cells derived from dental pulp stem cells promote peripheral nerve regeneration. Hum Cell 2022; 35:462-471. [PMID: 34993901 DOI: 10.1007/s13577-021-00634-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023]
Abstract
Cell therapy for peripheral nerve injury is a promising strategy as regenerative medicine that restores neurological function. However, challenges remain in producing suitable and sufficient amounts of autologous cells for promoting nerve regeneration. This study aimed to identify the characteristics of neural lineage cells (NLCs) differentiated from dental pulp stem cells (DPSCs) and reveal their effect on functional recovery and nerve regeneration after cell transplantation into an immunodeficient rat using a nerve guide conduit. Here we report a protocol of neural induction in monolayer culture and characterize NLCs in vitro. Furthermore, NLCs were transplanted into an immunodeficient rat model with a 10-mm sciatic nerve defect, and cell survival and differentiation were investigated in vivo. Outcomes of nerve regeneration were also assessed using the remyelinated axon numbers, myelin sheath thickness, electrophysiological activities, and gastrocnemius muscle mass. NLCs comprised neuronal, astrocyte, oligodendrocyte, and neural crest lineage cells. NLCs enhanced the activities of endothelial cells, Schwann cells, and neurons in a paracrine-dependent manner in vitro. At 2 weeks post-transplantation, numerous transplanted NLCs differentiated into platelet-derived growth factor receptor alpha (PDGFRα) + oligodendrocyte progenitor cells (OPCs) and a few PDGFRα + /p75 neurotrophin receptor + Schwann cell-like cells derived from OPCs were observed. At 12 weeks post-transplantation, human Schwann cell-like cells survived, and axon growth, remyelination, electrophysiological activities, and muscle atrophy were improved. This study demonstrates the broad application of our protocol of neural induction of DPSCs and portrays the efficacy of transplantation of NLCs derived from human DPSCs as a promising strategy for peripheral nerve regeneration.
Collapse
|
23
|
Mirancea N, Mirancea GV, Moroşanu AM, Moroşanu AM. Telocytes inside of the peripheral nervous system - a 3D endoneurial network and putative role in cell communication. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:335-347. [PMID: 36374139 PMCID: PMC9804078 DOI: 10.47162/rjme.63.2.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we developed the hypothesis concerning the reasons to assimilate endoneurial fibroblast-like dendritic phenotype [shortly termed endoneurial dendritic cells (EDCs)] to the endoneurial telocytes (TCs). We reviewed the literature concerning EDCs status and report our observations on ultrastructure and some immune electron microscopic aspects of the cutaneous peripheral nerves. Our data demonstrate that EDCs long time considered as fibroblasts or fibroblast-like, with an ovoidal nucleus and one or more moniliform cell extensions [telopodes (Tps)], which perform homocellular junctions, also able to shed extracellular microvesicles can be assimilated to TC phenotype. Sometimes, small profiles of basement membrane accompany to some extent Tps. Altogether data resulted from scientific literature and our results strength the conclusion EDCs are really TCs inside of the peripheral nervous system. The inner three-dimensional (3D) network of endoneurial TCs by their homo- and heterocellular communications appears as a genuine cell-to-cell communication system inside of each peripheral nerve.
Collapse
Affiliation(s)
- Nicolae Mirancea
- Department of Developmental Biology, Institute of Biology Bucharest of Romanian Academy, Bucharest, Romania;
| | | | - Ana-Maria Moroşanu
- Department of Developmental Biology, Institute of
Biology Bucharest of Romanian Academy, Bucharest, Romania
| | | | | | | |
Collapse
|
24
|
Lee Y, Lee HJ, Ham S, Jeong D, Lee M, Lee U, Lee M, Kwon T, Ko K. Plant-derived human recombinant growth factors and serum albumin maintain stemness of human-induced pluripotent stem cells. Cell Biol Int 2022; 46:139-147. [PMID: 34694043 PMCID: PMC9298993 DOI: 10.1002/cbin.11715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 11/23/2022]
Abstract
Stem cells are an important therapeutic source for recovery and regeneration, as their ability of self-renewal and differentiation offers an unlimited supply of highly specialized cells for therapeutic transplantation. Growth factors and serum are essential for maintaining the characteristics of stem cells in culture and for inducing differentiation. Because growth factors are produced mainly in bacterial (Escherichia coli) or animal cells, the use of such growth factors raises safety concerns that need to be resolved for the commercialization of stem cell therapeutics. To overcome this problem, studies on proteins produced in plants have been conducted. Here, we describe the functions of plant-derived fibroblast growth factor 2 (FGF2) and human serum albumin in the maintenance and differentiation of human-induced pluripotent stem cells (hiPSCs). Plant-derived FGF2 and human epidermal growth factor EGF were able to differentiate hiPSCs into neural stem cells (NSCs). These NSCs could differentiate into neuronal and glial cells. Our results imply that culturing stem cells in animal-free culture medium, which is composed of plant-derived proteins, would facilitate stem cell application research, for example, for cell therapy, by reducing contamination risk.
Collapse
Affiliation(s)
- Yukyeong Lee
- Department of Stem Cell BiologyKonkuk University School of MedicineSeoulRepublic of Korea
| | - Hye Jeong Lee
- Department of Stem Cell BiologyKonkuk University School of MedicineSeoulRepublic of Korea
| | - Seokbeom Ham
- Department of Stem Cell BiologyKonkuk University School of MedicineSeoulRepublic of Korea
| | - Dahee Jeong
- Department of Stem Cell BiologyKonkuk University School of MedicineSeoulRepublic of Korea
| | - Minseong Lee
- Department of Stem Cell BiologyKonkuk University School of MedicineSeoulRepublic of Korea
| | - Uiil Lee
- Xcell TherapeuticsSeoulRepublic of Korea
| | | | - Tae‐Ho Kwon
- Natural Bio‐Materials Inc.IksanRepublic of Korea
| | - Kinarm Ko
- Department of Stem Cell BiologyKonkuk University School of MedicineSeoulRepublic of Korea
- Research, Institute of Medical ScienceKonkuk UniversitySeoulRepublic of Korea
| |
Collapse
|
25
|
Cai NN, Geng Q, Jiang Y, Zhu WQ, Yang R, Zhang BY, Xiao YF, Tang B, Zhang XM. Schisandrin A and B affect the proliferation and differentiation of neural stem cells. J Chem Neuroanat 2021; 119:102058. [PMID: 34896558 DOI: 10.1016/j.jchemneu.2021.102058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 10/31/2021] [Accepted: 12/06/2021] [Indexed: 01/20/2023]
Abstract
Schisandrin A and B (Sch A and B) are the important components of Asian dietary supplement and phytomedicine Schisandra chinensis (S. chinensis). They can enhance adult neurogenesis in vivo; however, these effects still need to be verified. Here NE-4 C neural stem cells (NSCs) were employed as the in vitro model and treated with Sch A and B at 0.1 μg/mL. EdU (5-Ethynyl-2'-deoxyuridine) labeling showed that both Sch A and B treatments enhanced NSC proliferation. Real-time PCR analysis showed the mRNA abundances of telomerase gene Tert and cell cycle gene Cyclin D1 were significantly up-regulated after the treatments. During the neurosphere induction, Sch B enhanced the neurosphere formation and neuronal differentiation, and increased the neurosphere semidiameters. Detection of the neuron differentiation marker Mapt indicates that both Sch A and B, especially Sch B, benefits the induced neuronal differentiation. Sch B treatment also enhanced mRNA expressions of the neurosphere-specific adhesion molecule Cdh2 and Wnt pathway-related genes including Mmp9, Cyclin D1 and β-catenin. Together, Sch A especially Sch B, promotes the proliferation, affects the survival, differentiation and neurogenesis of NSCs, which is consistent with their in vivo effects. This study provides further clue on the potential neuropharmacological effects of S. chinensis.
Collapse
Affiliation(s)
- Ning-Ning Cai
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, China.
| | - Qi Geng
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Yu Jiang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wen-Qian Zhu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Rui Yang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bo-Yang Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu-Feng Xiao
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xue-Ming Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
26
|
Qiu X, Chen H, Feng D, Dong W. [G-protein coupled receptor Smo positively regulates proliferation and migration of adult neural stem cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1588-1592. [PMID: 34755677 DOI: 10.12122/j.issn.1673-4254.2021.10.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the role of G-protein coupled receptor Smoothened (Smo) in regulating proliferation and migration of adult neural stem cells (ANSCs) and explore the underlying mechanism. METHODS Cultured ANSCs were treated with purmorphamine (PM, an agonist of Smo) or cyclopamine (CPM, an inhibitor of Smo), and the changes in cell proliferation migration abilities were assessed using cell counting kit-8 (CCK8) assay and wound healing assay, respectively. The mRNA expressions of membrane receptor Patched 1 (Ptch1), Smo, glioma-associated oncogene homolog 1 (Gli1), axon guidance cue slit1 (Slit1) and brain-derived neurotrophic factor (BDNF) in the treated cells were detected using real-time quantitative PCR (RT-PCR). RESULTS PM significantly promoted the proliferation (P < 0.01) and migration of ANSCs (P < 0.01), and up-regulated the mRNA expressions of Ptch1, Smo, Gli1, Slit1 and BDNF. Treatment with CPM significantly inhibited the proliferation and migration of ANSCs. CONCLUSION Modulating Smo activity can positively regulate the proliferation and migration of ANSCs possibly by regulating the expressions of BDNF and Slit1.
Collapse
Affiliation(s)
- X Qiu
- Experiment Teaching and Administration Center, Southern Medical University, Guangzhou 510515, China
| | - H Chen
- Department of Neurosurgery, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - D Feng
- Institute of Oncology, Southern Medical University, Guangzhou 510515, China
| | - W Dong
- Experiment Teaching and Administration Center, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
27
|
Yao X, Yan Z, Wang X, Jiang H, Qian Y, Fan C. The influence of reduced graphene oxide on stem cells: a perspective in peripheral nerve regeneration. Regen Biomater 2021; 8:rbab032. [PMID: 34188955 PMCID: PMC8226110 DOI: 10.1093/rb/rbab032] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Graphene and its derivatives are fascinating materials for their extraordinary electrochemical and mechanical properties. In recent decades, many researchers explored their applications in tissue engineering and regenerative medicine. Reduced graphene oxide (rGO) possesses remarkable structural and functional resemblance to graphene, although some residual oxygen-containing groups and defects exist in the structure. Such structure holds great potential since the remnant-oxygenated groups can further be functionalized or modified. Moreover, oxygen-containing groups can improve the dispersion of rGO in organic or aqueous media. Therefore, it is preferable to utilize rGO in the production of composite materials. The rGO composite scaffolds provide favorable extracellular microenvironment and affect the cellular behavior of cultured cells in the peripheral nerve regeneration. On the one hand, rGO impacts on Schwann cells and neurons which are major components of peripheral nerves. On the other hand, rGO-incorporated composite scaffolds promote the neurogenic differentiation of several stem cells, including embryonic stem cells, mesenchymal stem cells, adipose-derived stem cells and neural stem cells. This review will briefly introduce the production and major properties of rGO, and its potential in modulating the cellular behaviors of specific stem cells. Finally, we present its emerging roles in the production of composite scaffolds for nerve tissue engineering.
Collapse
Affiliation(s)
- Xiangyun Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Xu Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Huiquan Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Metro loop Road Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
28
|
Song S, McConnell KW, Amores D, Levinson A, Vogel H, Quarta M, Rando TA, George PM. Electrical stimulation of human neural stem cells via conductive polymer nerve guides enhances peripheral nerve recovery. Biomaterials 2021; 275:120982. [PMID: 34214785 DOI: 10.1016/j.biomaterials.2021.120982] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 01/09/2023]
Abstract
Severe peripheral nerve injuries often result in permanent loss of function of the affected limb. Current treatments are limited by their efficacy in supporting nerve regeneration and behavioral recovery. Here we demonstrate that electrical stimulation through conductive nerve guides (CNGs) enhances the efficacy of human neural progenitor cells (hNPCs) in treating a sciatic nerve transection in rats. Electrical stimulation strengthened the therapeutic potential of NPCs by upregulating gene expression of neurotrophic factors which are critical in augmenting synaptic remodeling, nerve regeneration, and myelination. Electrically-stimulated hNPC-containing CNGs are significantly more effective in improving sensory and motor functions starting at 1-2 weeks after treatment than either treatment alone. Electrophysiology and muscle assessment demonstrated successful re-innervation of the affected target muscles in this group. Furthermore, histological analysis highlighted an increased number of regenerated nerve fibers with thicker myelination in electrically-stimulated hNPC-containing CNGs. The elevated expression of tyrosine kinase receptors (Trk) receptors, known to bind to neurotrophic factors, indicated the long-lasting effect from electrical stimulation on nerve regeneration and distal nerve re-innervation. These data suggest that electrically-enhanced stem cell-based therapy provides a regenerative rehabilitative approach to promote peripheral nerve regeneration and functional recovery.
Collapse
Affiliation(s)
- Shang Song
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly W McConnell
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Danielle Amores
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexa Levinson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Marco Quarta
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital, Palo Alto, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital, Palo Alto, CA, USA
| | - Paul M George
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
29
|
Bioactive Nanofiber-Based Conduits in a Peripheral Nerve Gap Management-An Animal Model Study. Int J Mol Sci 2021; 22:ijms22115588. [PMID: 34070436 PMCID: PMC8197537 DOI: 10.3390/ijms22115588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
The aim was to examine the efficiency of a scaffold made of poly (L-lactic acid)-co-poly(ϵ-caprolactone), collagen (COL), polyaniline (PANI), and enriched with adipose-derived stem cells (ASCs) as a nerve conduit in a rat model. P(LLA-CL)-COL-PANI scaffold was optimized and electrospun into a tubular-shaped structure. Adipose tissue from 10 Lewis rats was harvested for ASCs culture. A total of 28 inbred male Lewis rats underwent sciatic nerve transection and excision of a 10 mm nerve trunk fragment. In Group A, the nerve gap remained untouched; in Group B, an excised trunk was used as an autograft; in Group C, nerve stumps were secured with P(LLA-CL)-COL-PANI conduit; in Group D, P(LLA-CL)-COL-PANI conduit was enriched with ASCs. After 6 months of observation, rats were sacrificed. Gastrocnemius muscles and sciatic nerves were harvested for weight, histology analysis, and nerve fiber count analyses. Group A showed advanced atrophy of the muscle, and each intervention (B, C, D) prevented muscle mass decrease (p < 0.0001); however, ASCs addition decreased efficiency vs. autograft (p < 0.05). Nerve fiber count revealed a superior effect in the nerve fiber density observed in the groups with the use of conduit (D vs. B p < 0.0001, C vs. B p < 0.001). P(LLA-CL)-COL-PANI conduits with ASCs showed promising results in managing nerve gap by decreasing muscle atrophy.
Collapse
|
30
|
Saffari TM, Chan K, Saffari S, Zuo KJ, McGovern RM, Reid JM, Borschel GH, Shin AY. Combined local delivery of tacrolimus and stem cells in hydrogel for enhancing peripheral nerve regeneration. Biotechnol Bioeng 2021; 118:2804-2814. [PMID: 33913523 DOI: 10.1002/bit.27799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022]
Abstract
The application of scaffold-based stem cell transplantation to enhance peripheral nerve regeneration has great potential. Recently, the neuroregenerative potential of tacrolimus (a U.S. Food and Drug Administration-approved immunosuppressant) has been explored. In this study, a fibrin gel-based drug delivery system for sustained and localized tacrolimus release was combined with rat adipose-derived mesenchymal stem cells (MSC) to investigate cell viability in vitro. Tacrolimus was encapsulated in poly(lactic-co-glycolic) acid (PLGA) microspheres and suspended in fibrin hydrogel, using concentrations of 0.01 and 100 ng/ml. Drug release over time was measured. MSCs were cultured in drug-released media collected at various days to mimic systemic exposure. MSCs were combined with (i) hydrogel only, (ii) empty PLGA microspheres in the hydrogel, (iii) 0.01, and (iv) 100 ng/ml of tacrolimus PLGA microspheres in the hydrogel. Stem cell presence and viability were evaluated. A sustained release of 100 ng/ml tacrolimus microspheres was observed for up to 35 days. Stem cell presence was confirmed and cell viability was observed up to 7 days, with no significant differences between groups. This study suggests that combined delivery of 100 ng/ml tacrolimus and MSCs in fibrin hydrogel does not result in cytotoxic effects and could be used to enhance peripheral nerve regeneration.
Collapse
Affiliation(s)
- Tiam M Saffari
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Katelyn Chan
- Division of Plastic and Reconstructive Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Engineering, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sara Saffari
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Kevin J Zuo
- Division of Plastic and Reconstructive Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Neurosciences and Mental Health, SickKids Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Renee M McGovern
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joel M Reid
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Gregory H Borschel
- Division of Plastic and Reconstructive Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Division of Plastic Surgery, Riley Hospital for Children, Indiana University, Indianapolis, Indiana, USA
| | - Alexander Y Shin
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
31
|
Joshi HP, Jo HJ, Kim YH, An SB, Park CK, Han I. Stem Cell Therapy for Modulating Neuroinflammation in Neuropathic Pain. Int J Mol Sci 2021; 22:ijms22094853. [PMID: 34063721 PMCID: PMC8124149 DOI: 10.3390/ijms22094853] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain (NP) is a complex, debilitating, chronic pain state, heterogeneous in nature and caused by a lesion or disease affecting the somatosensory system. Its pathogenesis involves a wide range of molecular pathways. NP treatment is extremely challenging, due to its complex underlying disease mechanisms. Current pharmacological and nonpharmacological approaches can provide long-lasting pain relief to a limited percentage of patients and lack safe and effective treatment options. Therefore, scientists are focusing on the introduction of novel treatment approaches, such as stem cell therapy. A growing number of reports have highlighted the potential of stem cells for treating NP. In this review, we briefly introduce NP, current pharmacological and nonpharmacological treatments, and preclinical studies of stem cells to treat NP. In addition, we summarize stem cell mechanisms—including neuromodulation in treating NP. Literature searches were conducted using PubMed to provide an overview of the neuroprotective effects of stem cells with particular emphasis on recent translational research regarding stem cell-based treatment of NP, highlighting its potential as a novel therapeutic approach.
Collapse
Affiliation(s)
- Hari Prasad Joshi
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
- Spinal Cord Research Centre, Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Hyun-Jung Jo
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
| | - Yong-Ho Kim
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
| | - Seong-Bae An
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
| | - Chul-Kyu Park
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
- Correspondence: (C.-K.P.); (I.H.)
| | - Inbo Han
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
- Correspondence: (C.-K.P.); (I.H.)
| |
Collapse
|
32
|
Wang J, Zhu YQ, Wang Y, Xu HG, Xu WJ, Wang YX, Cheng XQ, Quan Q, Hu YQ, Lu CF, Zhao YX, Jiang W, Liu C, Xiao L, Lu W, Zhu C, Wang AY. A novel tissue engineered nerve graft constructed with autologous vein and nerve microtissue repairs a long-segment sciatic nerve defect. Neural Regen Res 2021; 16:143-149. [PMID: 32788469 PMCID: PMC7818853 DOI: 10.4103/1673-5374.286977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Veins are easy to obtain, have low immunogenicity, and induce a relatively weak inflammatory response. Therefore, veins have the potential to be used as conduits for nerve regeneration. However, because of the presence of venous valves and the great elasticity of the venous wall, the vein is not conducive to nerve regeneration. In this study, a novel tissue engineered nerve graft was constructed by combining normal dissected nerve microtissue with an autologous vein graft for repairing 10-mm peripheral nerve defects in rats. Compared with rats given the vein graft alone, rats given the tissue engineered nerve graft had an improved sciatic static index, and a higher amplitude and shorter latency of compound muscle action potentials. Furthermore, rats implanted with the microtissue graft had a higher density and thickness of myelinated nerve fibers and reduced gastrocnemius muscle atrophy compared with rats implanted with the vein alone. However, the tissue engineered nerve graft had a lower ability to repair the defect than autogenous nerve transplantation. In summary, although the tissue engineered nerve graft constructed with autologous vein and nerve microtissue is not as effective as autologous nerve transplantation for repairing long-segment sciatic nerve defects, it may nonetheless have therapeutic potential for the clinical repair of long sciatic nerve defects. This study was approved by the Experimental Animal Ethics Committee of Chinese PLA General Hospital (approval No. 2016-x9-07) on September 7, 2016.
Collapse
Affiliation(s)
- Jing Wang
- Spine Research Center of Wannan Medical College, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province; Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Ya-Qiong Zhu
- Department of Ultrasound, Chinese PLA General Hospital; Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing; Medical College of Nankai University, Tianjin, China
| | - Yu Wang
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing; The Neural Regeneration Co-Innovation Center of Jiangsu Province, Nantong, Jiangsu Province, China
| | - Hong-Guang Xu
- Spine Research Center of Wannan Medical College, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Wen-Jing Xu
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yue-Xiang Wang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Qing Cheng
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qi Quan
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yong-Qiang Hu
- Department of Anesthesiology, the Second Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia Autonomous Region, China
| | - Chang-Feng Lu
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yan-Xu Zhao
- Department of Orthopedic Surgery, Yan'an University Affiliated Hospital, Yan'an, Shaanxi Province, China
| | - Wen Jiang
- Department of Orthopedic Surgery, the First Affiliated Hospital of Medical College, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Chen Liu
- Spine Research Center of Wannan Medical College, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Liang Xiao
- Spine Research Center of Wannan Medical College, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Wei Lu
- Department of Orthopedic Surgery, The First Peoples' Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Chen Zhu
- Department of Orthopedic Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Heifei, Anhui Province, China
| | - Ai-Yuan Wang
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing; The Neural Regeneration Co-Innovation Center of Jiangsu Province, Nantong, Jiangsu Province, China
| |
Collapse
|
33
|
Saffari S, Saffari TM, Ulrich DJO, Hovius SER, Shin AY. The interaction of stem cells and vascularity in peripheral nerve regeneration. Neural Regen Res 2021; 16:1510-1517. [PMID: 33433464 PMCID: PMC8323682 DOI: 10.4103/1673-5374.303009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The degree of nerve regeneration after peripheral nerve injury can be altered by the microenvironment at the site of injury. Stem cells and vascularity are postulated to be a part of a complex pathway that enhances peripheral nerve regeneration; however, their interaction remains unexplored. This review aims to summarize current knowledge on this interaction, including various mechanisms through which trophic factors are promoted by stem cells and angiogenesis. Angiogenesis after nerve injury is stimulated by hypoxia, mediated by vascular endothelial growth factor, resulting in the growth of pre-existing vessels into new areas. Modulation of distinct signaling pathways in stem cells can promote angiogenesis by the secretion of various angiogenic factors. Simultaneously, the importance of stem cells in peripheral nerve regeneration relies on their ability to promote myelin formation and their capacity to be influenced by the microenvironment to differentiate into Schwann-like cells. Stem cells can be acquired through various sources that correlate to their differentiation potential, including embryonic stem cells, neural stem cells, and mesenchymal stem cells. Each source of stem cells serves its particular differentiation potential and properties associated with the promotion of revascularization and nerve regeneration. Exosomes are a subtype of extracellular vesicles released from cell types and play an important role in cell-to-cell communication. Exosomes hold promise for future transplantation applications, as these vesicles contain fewer membrane-bound proteins, resulting in lower immunogenicity. This review presents pre-clinical and clinical studies that focus on selecting the ideal type of stem cell and optimizing stem cell delivery methods for potential translation to clinical practice. Future studies integrating stem cell-based therapies with the promotion of angiogenesis may elucidate the synergistic pathways and ultimately enhance nerve regeneration.
Collapse
Affiliation(s)
- Sara Saffari
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tiam M Saffari
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dietmar J O Ulrich
- Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Steven E R Hovius
- Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander Y Shin
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
34
|
Hedgehog signaling promotes endoneurial fibroblast migration and Vegf-A expression following facial nerve injury. Brain Res 2020; 1751:147204. [PMID: 33189691 DOI: 10.1016/j.brainres.2020.147204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Peripheral nerve injuries are a common clinical problem which may result in permanent loss of motor or sensory function. A better understanding of the signaling pathways that lead to successful nerve regeneration may help in discovering new therapeutic targets. The Hedgehog (Hh) signaling pathway plays significant roles in nerve development and regeneration. In a mouse model of facial nerve injury, Hedgehog-responsive fibroblasts increase in number both at the site of injury and within the distal nerve. However, the role of these cells in facial nerve regeneration is not fully understood. We hypothesize that the Hh pathway plays an angiogenic and pro-migratory role following facial nerve injury. METHODS Hedgehog pathway modulators were applied to murine endoneurial fibroblasts isolated from the murine facial nerve. The impact of pathway modulation on endoneurial fibroblast migration and cell proliferation was assessed. Gene expression changes of known Hedgehog target genes and the key angiogenic factor Vegf-A were determined by qPCR. In vivo, mice were treated with pathway agonist (SAG21k) and injured facial nerve specimens were analyzed via immunofluorescence and in situ hybridization. RESULTS Hedgehog pathway activation in facial nerve fibroblasts via SAG21k treatment increases Gli1 and Ptch1 expression, the rate of cellular migration, and Vegf-A expression in vitro. In vivo, expression of Gli1 and Vegf-A expression appears to increase after injury, particularly at the site of nerve injury and the distal nerve, as detected by immunofluorescence and in situ hybridization. Additionally, Gli1 transcripts co-localize with Vegf-A following transection injury to the facial nerve. DISCUSSION These findings describe an angiogenic and pro-migratory role for the Hedgehog pathway mediated through effects on nerve fibroblasts. Given the critical role of Vegf-A in nerve regeneration, modulation of this pathway may represent a potential therapeutic target to improve facial nerve regeneration following injury.
Collapse
|
35
|
He J, Zhang N, Zhu Y, Jin R, Wu F. MSC spheroids-loaded collagen hydrogels simultaneously promote neuronal differentiation and suppress inflammatory reaction through PI3K-Akt signaling pathway. Biomaterials 2020; 265:120448. [PMID: 33068892 DOI: 10.1016/j.biomaterials.2020.120448] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
It is critical for the clinical success to take the anti-inflammatory function into consideration when integrating the neurogenesis into the nerve repair materials. To this aim, we prepared mesenchymal stem cell (MSC) spheroids-loaded collagen (Col) hydrogels with combined superior anti-inflammatory efficacy and neurogenic activity. The size of the MSC spheroids showed a strong modulation effect on both functions, and the MSC spheroids-100 sample exhibited the best neuronal and anti-inflammatory potentials. The observed dual functions were likely based on the elevated intrinsic cell-cell contacts and cell-extracellular matrix interactions from the MSC spheroids. MSC self-assembly as spheroids expedited the secretions of endogenous trophic factors and extracellular matrix (ECM), which was beneficial to drive neural stem cell differentiation into the neuronal lineage. In addition, the formation of the MSC spheroids secreted more amounts and types of cytokines as well as immunomodulatory paracrine factors to suppress LPS-induced inflammatory reaction. LC-MS/MS analysis further demonstrated that MSC spheroids contributed to the activation of neuroactive ligand-receptor interaction, thereby triggering downstream PI3K-Akt signal pathway, which was likely due to the acceleration of ECM-receptor interaction, gap junction and tight junction. Importantly, inhibiting Akt pathway significantly suppressed the neuronal differentiation, indicating that PI3K-Akt signal pathway was critically involved in the Col-MSC spheroid hydrogel mediated neuroprotection and neurogenesis. Such findings not only provided a simple approach for improving MSC-based therapies for neuron-related diseases, but also shed insight on understanding the underlying mechanisms of MSC-mediated neuronal differentiation.
Collapse
Affiliation(s)
- Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Nihui Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yue Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| | - Fang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| |
Collapse
|
36
|
Lien BV, Brown NJ, Ransom SC, Lehrich BM, Shahrestani S, Tafreshi AR, Ransom RC, Sahyouni R. Enhancing peripheral nerve regeneration with neurotrophic factors and bioengineered scaffolds: A basic science and clinical perspective. J Peripher Nerv Syst 2020; 25:320-334. [DOI: 10.1111/jns.12414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Brian V. Lien
- School of Medicine University of California Irvine California USA
| | - Nolan J. Brown
- School of Medicine University of California Irvine California USA
| | - Seth C. Ransom
- College of Medicine University of Arkansas for Medical Sciences Little Rock Arkansas USA
| | - Brandon M. Lehrich
- Department of Biomedical Engineering University of California Irvine California USA
| | - Shane Shahrestani
- Keck School of Medicine University of Southern California Los Angeles California USA
- Department of Medical Engineering California Institute of Technology Pasadena California USA
| | - Ali R. Tafreshi
- Department of Neurological Surgery Geisinger Health System Danville Pennsylvania USA
| | - Ryan C. Ransom
- Department of Neurological Surgery Mayo Clinic Rochester Minnesota USA
| | - Ronald Sahyouni
- Department of Neurological Surgery University of California San Diego California USA
| |
Collapse
|
37
|
Texakalidis P, Tora MS, Canute S, Hardcastle N, Poth K, Donsante A, Federici T, Javidfar J, Boulis NM. Minimally Invasive Injection to the Phrenic Nerve in a Porcine Hemidiaphragmatic Paralysis Model: A Pilot Study. Neurosurgery 2020; 87:847-853. [PMID: 31625573 DOI: 10.1093/neuros/nyz473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/18/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Neurodegenerative diseases and spinal cord injury can affect respiratory function often through motor neuron loss innervating the diaphragm. To reinnervate this muscle, new motor neurons could be transplanted into the phrenic nerve (PN), allowing them to extend axons to the diaphragm. These neurons could then be driven by an optogenetics approach to regulate breathing. This type of approach has already been demonstrated in the peripheral nerves of mice. However, there is no established thoracoscopic approach to PN injection. Also, there is currently a lack of preclinical large animal models of diaphragmatic dysfunction in order to evaluate the efficacy of potential treatments. OBJECTIVE To evaluate the feasibility of thoracoscopic drug delivery into the PN and to assess the viability of hemidiaphragmatic paralysis in a porcine model. METHODS Two Landrace farm pigs underwent a novel procedure for thoracoscopic PN injections, including 1 nonsurvival and 1 survival surgery. Nonsurvival surgery involved bilateral PN injections and ligation. Survival surgery included a right PN injection and transection proximal to the injection site to induce hemidiaphragmatic paralysis. RESULTS PN injections were successfully performed in both procedures. The animal that underwent survival surgery recovered postoperatively with an established right hemidiaphragmatic paralysis. Over the 5-d postoperative period, the animal displayed stable vital signs and oxygenation saturation on room air with voluntary breathing. CONCLUSION Thoracoscopic targeting of the porcine PN is a feasible approach to administer therapeutic agents. A swine model of hemidiaphragmatic paralysis induced by unilateral PN ligation or transection may be potentially used to study diaphragmatic reinnervation following delivery of therapeutics.
Collapse
Affiliation(s)
- Pavlos Texakalidis
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Muhibullah S Tora
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Skyler Canute
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Nathan Hardcastle
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Kelly Poth
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Anthony Donsante
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Thais Federici
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Jeffrey Javidfar
- Division of Cardiothoracic Surgery, Department of Surgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
38
|
Chen T, Li Y, Ni W, Tang B, Wei Y, Li J, Yu J, Zhang L, Gao J, Zhou J, Zhang W, Xu H, Hu J. Human Neural Stem Cell-Conditioned Medium Inhibits Inflammation in Macrophages Via Sirt-1 Signaling Pathway In Vitro and Promotes Sciatic Nerve Injury Recovery in Rats. Stem Cells Dev 2020; 29:1084-1095. [PMID: 32560594 DOI: 10.1089/scd.2020.0020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic persistent inflammation is thought to impede axon regeneration and cause demyelinating disease also with neuropathic pain, leading to more severe dysfunction after peripheral nerve injury. Increasing evidence indicates that neural stem cells (NSCs) have immunomodulatory effects, and previous studies have shown that many of the beneficial effects attributed to stem cell therapy may exert their therapeutic effects through paracrine mechanisms. In this research, the repairing effect of NSC-conditioned medium (NSC-CM) on sciatic nerve injury and its mechanism of repair were further explored. The present research showed that NSC-CM promoted histopathological and functional recovery after crush injury in rats, and what counts is that NSC-CM inhibited the inflammation of sciatic nerve in the late stage of injury. NSC-CM significantly downregulated the infiltration of proinflammatory factors [tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and IL-1β] as well as decreased the CD68 inflammatory macrophages infiltrating in the sciatic nerve. In addition, to study the effect of NSC-CM on the inflammatory state of macrophages in vitro, lipopolysaccharide (LPS) was used to induce the proinflammation of macrophages. The results showed that NSC-CM decreased the expression of macrophage proinflammatory-related proteins (IL-6, IL-1β, TNF-α, inducible nitric oxide synthase) induced by LPS. The activation of Sirt-1 signaling in macrophages effectively countered the proinflammation induced by LPS in the presence of NSC-CM. Using Sirt-1-specific inhibitor EX527 partially weakened the anti-inflammatory effect of NSC-CM. Altogether, this study demonstrated for the first time that NSC-CM promotes functional recovery after sciatic nerve crush injury in vivo and also inhibits the inflammation in activated macrophages by activating Sirt-1 signaling pathway in vitro.
Collapse
Affiliation(s)
- Tianyan Chen
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yilei Li
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wei Ni
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Bin Tang
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yusheng Wei
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jing Li
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiahong Yu
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lei Zhang
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianyi Gao
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiqin Zhou
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Weining Zhang
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hong Xu
- Department of Clinical Laboratory, Zhenjiang Centre for Disease Prevention and Control, Zhenjiang, China
| | - Jiabo Hu
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
39
|
The Potential of Acellular Dermal Matrix Combined With Neural Stem Cells Induced From Human Adipose-Derived Stem Cells in Nerve Tissue Engineering. Ann Plast Surg 2020; 82:S108-S118. [PMID: 30540605 DOI: 10.1097/sap.0000000000001731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Reconstruction of segmental peripheral nerve gap is still challenging when the autografts are unavailable owing to limited availability of donor site and functional recovery. The creation of artificial conduits composed of biological or synthetic materials is still developing. Acellular dermal matrix (ADM) has been widely studied and its extension and plasticity properties may become suitable nerve conduits under different forms of nerve gaps. Adipose-derived stem cells (ADSCs) have the potential to differentiate into various cell types of different germ layers including neural stem cells (NSCs). The purpose of this experiment is to use ADM as a scaffold combined with NSCs induced by ADSCs to establish neural tissue engineering. METHODS The ADSCs were isolated from syringe-liposuction adipose tissue harvested from abdominal fat and then cultured in keratinocyte serum free media to trigger into neural stem cells. Stem cells were confirmed by the expression of surface markers nestin and SOX2 in NSCs with Western blot and immunofluorescent staining. Matrix enzyme treatment was used to obtain ADM to remove immunogenic cells while maintaining the integrity of the basement membrane complex and the extracellular matrix structure of the dermis. The NSCs were cocultured with ADM for 3 days, and survival markers Ki67 and neural stem cell markers nestin were detected. RESULTS These NSCs can form neurospheres and express nestin and SOX2. The NSC can further coculture with ADM, and it will continue to express survivor markers and neural stem cell markers on ADM. CONCLUSIONS These findings provide evidence that the combination of ADM and NSC has the same potential as neural tissue engineering as other acellular sciatic nerve.
Collapse
|
40
|
Chen X, Ye K, Yu J, Gao J, Zhang L, Ji X, Chen T, Wang H, Dai Y, Tang B, Xu H, Sun X, Hu J. Regeneration of sciatic nerves by transplanted microvesicles of human neural stem cells derived from embryonic stem cells. Cell Tissue Bank 2020; 21:233-248. [PMID: 32052220 DOI: 10.1007/s10561-020-09816-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Injured nerves cannot regenerate on their own, and a lack of engraftable human nerves has been a major obstacle in cell-based therapies for regenerating damaged nerves. A monolayer culture approach to obtain adherent neural stem cells from human embryonic stem cells (hESC-NSCs) was established, and the greatest number of stemness characteristics were achieved by the eighth generation of hESC-NSCs (P8 hESC-NSCs). To overcome deficits in cell therapy, we used microvesicles secreted from P8 hESC-NSCs (hESC-NSC-MVs) instead of entire hESC-NSCs. To investigate the therapeutic efficacy of hESC-NSC-MVs in vitro, hESC-NSC-MVs were cocultured with dorsal root ganglia to determine the length of axons. In vivo, we transected the sciatic nerve in SD rats and created a 5-mm gap. A sciatic nerve defect was bridged using a silicone tube filled with hESC-NSC-MVs (45 μg) in the MVs group, P8 hESC-NSCs (1 × 106 single cells) in the cell group and PBS in the control group. The hESC-NSC-MVs group showed better morphological recovery and a significantly greater number of regenerated axons than the hESC-NSCs group 12 weeks after nerve injury. These results indicated that the hESC-NSC-MVs group had the greatest ability to repair and reconstruct nerve structure and function. As a result, hESC-NSC-MVs may have potential for applications in the field of nerve regenerative repair.
Collapse
Affiliation(s)
- Xiang Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
- Department of Clinical Laboratory, Nantong First People's Hospital, Nantong, 226000, Jiangsu, China
| | - Kai Ye
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Jiahong Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Jianyi Gao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Xianyan Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Tianyan Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Hui Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Yao Dai
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Bin Tang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Hong Xu
- Department of Clinical Laboratory, Zhenjiang Centre for Disease Prevention and Control, Zhenjiang, 212003, Jiangsu, China
| | - Xiaochun Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Jiabo Hu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China.
| |
Collapse
|
41
|
Yi S, Zhang Y, Gu X, Huang L, Zhang K, Qian T, Gu X. Application of stem cells in peripheral nerve regeneration. BURNS & TRAUMA 2020; 8:tkaa002. [PMID: 32346538 PMCID: PMC7175760 DOI: 10.1093/burnst/tkaa002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Traumatic peripheral nerve injury is a worldwide clinical issue with high morbidity. The severity of peripheral nerve injury can be classified as neurapraxia, axonotmesis or neurotmesis, according to Seddon's classification, or five different degrees according to Sunderland's classification. Patients with neurotmesis suffer from a complete transection of peripheral nerve stumps and are often in need of surgical repair of nerve defects. The applications of autologous nerve grafts as the golden standard for peripheral nerve transplantation meet some difficulties, including donor nerve sacrifice and nerve mismatch. Attempts have been made to construct tissue-engineered nerve grafts as supplements or even substitutes for autologous nerve grafts to bridge peripheral nerve defects. The incorporation of stem cells as seed cells into the biomaterial-based scaffolds increases the effectiveness of tissue-engineered nerve grafts and largely boosts the regenerative process. Numerous stem cells, including embryonic stem cells, neural stem cells, bone marrow mesenchymal stem cells, adipose stem cells, skin-derived precursor stem cells and induced pluripotent stem cells, have been used in neural tissue engineering. In the current review, recent trials of stem cell-based tissue-engineered nerve grafts have been summarized; potential concerns and perspectives of stem cell therapeutics have also been contemplated.
Collapse
Affiliation(s)
- Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yu Zhang
- Nuclear Medicine Department, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaokun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Li Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Kairong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Tianmei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
42
|
Carvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Front Bioeng Biotechnol 2019; 7:337. [PMID: 31824934 PMCID: PMC6882937 DOI: 10.3389/fbioe.2019.00337] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve repair and regeneration remains among the greatest challenges in tissue engineering and regenerative medicine. Even though peripheral nerve injuries (PNIs) are capable of some degree of regeneration, frail recovery is seen even when the best microsurgical technique is applied. PNIs are known to be very incapacitating for the patient, due to the deprivation of motor and sensory abilities. Since there is no optimal solution for tackling this problem up to this day, the evolution in the field is constant, with innovative designs of advanced nerve guidance conduits (NGCs) being reported every day. As a basic concept, a NGC should act as a physical barrier from the external environment, concomitantly acting as physical guidance for the regenerative axons across the gap lesion. NGCs should also be able to retain the naturally released nerve growth factors secreted by the damaged nerve stumps, as well as reducing the invasion of scar tissue-forming fibroblasts to the injury site. Based on the neurobiological knowledge related to the events that succeed after a nerve injury, neuronal subsistence is subjected to the existence of an ideal environment of growth factors, hormones, cytokines, and extracellular matrix (ECM) factors. Therefore, it is known that multifunctional NGCs fabricated through combinatorial approaches are needed to improve the functional and clinical outcomes after PNIs. The present work overviews the current reports dealing with the several features that can be used to improve peripheral nerve regeneration (PNR), ranging from the simple use of hollow NGCs to tissue engineered intraluminal fillers, or to even more advanced strategies, comprising the molecular and gene therapies as well as cell-based therapies.
Collapse
Affiliation(s)
- Cristiana R. Carvalho
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| |
Collapse
|
43
|
Peng Z, Li X, Fu M, Zhu K, Long L, Zhao X, Chen Q, Deng DYB, Wan Y. Inhibition of Notch1 signaling promotes neuronal differentiation and improves functional recovery in spinal cord injury through suppressing the activation of Ras homolog family member A. J Neurochem 2019; 150:709-722. [PMID: 31339573 DOI: 10.1111/jnc.14833] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 06/17/2019] [Indexed: 12/28/2022]
Abstract
Neural stem cells (NSCs) transplantation represents a promising strategy for the repair of injured neurons, since NSCs not only produce multiple neurotrophic growth factors but also differentiate into mature cells to replace damaged cells. Previous studies have shown that Notch signaling pathway had negative effects on neuronal differentiation; however, the precise mechanism remained inadequately understood. This research aimed to investigate whether inhibition of Notch1 signaling promotes neuronal differentiation and improves functional recovery in rat spinal cord injury through suppressing the activation of Ras homolog family member A (RhoA). QPCR, western blot, and immunofluorescence experiments were used to analyze Notch1 signaling pathways, RhoA, Ras homologous -associated coiled-coil containing protein kinase 1 (ROCK1), cleaved caspased-3, and neuronal/astrocytic differentiation markers. The expression of RhoA and ROCK1 was inhibited by lentivirus or specific biochemical inhibitors. In spinal cord injury (SCI), motor function was assessed by hind limbs movements and electrophysiology. Tissue repairing was measured by immunofluorescence, Nissl staining, Fluorogold, HE staining, QPCR, western blot, and magnetic resonance imaging (MRI) experiments. Our results demonstrate that inhibition of Notch1 in NSCs can promote the differentiation of NSCs to neurons. Knockdown of RhoA and inhibition of ROCK1 both can promote neuronal differentiation through inhibiting the activation of Notch1 signaling pathway in NSCs. In SCI, silencing RhoA enhanced neuronal differentiation and improved tissue repairing/functional recovery by inhibiting the activation of Notch1 signaling pathway. Since Notch1 inhibits neuronal differentiation through activating the RhoA/ROCK1 signaling pathway in NSCs, our data suggest that the Notch1/RhoA/ROCK1/Hes1/Hes5 signaling pathway may serve as a novel target for the treatment of SCI.
Collapse
Affiliation(s)
- Zhiming Peng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengxia Fu
- Division of Cardiac Surgery, NHC Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Zhu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lingli Long
- Department of Translational Medicine Center Research Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyang Zhao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingui Chen
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - David Y B Deng
- Scientific Research Center and Department of Orthopedic, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Heinrich MA, Liu W, Jimenez A, Yang J, Akpek A, Liu X, Pi Q, Mu X, Hu N, Schiffelers RM, Prakash J, Xie J, Zhang YS. 3D Bioprinting: from Benches to Translational Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805510. [PMID: 31033203 PMCID: PMC6752725 DOI: 10.1002/smll.201805510] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/03/2019] [Indexed: 05/07/2023]
Abstract
Over the last decades, the fabrication of 3D tissues has become commonplace in tissue engineering and regenerative medicine. However, conventional 3D biofabrication techniques such as scaffolding, microengineering, and fiber and cell sheet engineering are limited in their capacity to fabricate complex tissue constructs with the required precision and controllability that is needed to replicate biologically relevant tissues. To this end, 3D bioprinting offers great versatility to fabricate biomimetic, volumetric tissues that are structurally and functionally relevant. It enables precise control of the composition, spatial distribution, and architecture of resulting constructs facilitating the recapitulation of the delicate shapes and structures of targeted organs and tissues. This Review systematically covers the history of bioprinting and the most recent advances in instrumentation and methods. It then focuses on the requirements for bioinks and cells to achieve optimal fabrication of biomimetic constructs. Next, emerging evolutions and future directions of bioprinting are discussed, such as freeform, high-resolution, multimaterial, and 4D bioprinting. Finally, the translational potential of bioprinting and bioprinted tissues of various categories are presented and the Review is concluded by exemplifying commercially available bioprinting platforms.
Collapse
Affiliation(s)
- Marcel Alexander Heinrich
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, Enschede 7500AE, The Netherlands
| | - Wanjun Liu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, P.R. China
| | - Andrea Jimenez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Biomedical Engineering Laboratory, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - Jingzhou Yang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Center of Biomedical Materials 3D Printing, National Engineering Laboratory for Polymer Complex Structure Additive Manufacturing, Baoding 071000, P.R. China
| | - Ali Akpek
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Biomedical Engineering, Istanbul Yeni Yuzyil University, Istanbul 34010, Turkey
| | - Xiao Liu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Qingmeng Pi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, P.R. China
| | - Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Ning Hu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Raymond Michel Schiffelers
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, Enschede 7500AE, The Netherlands
| | - Jingwei Xie
- Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
45
|
Passipieri JA, Dienes J, Frank J, Glazier J, Portell A, Venkatesh KP, Bliley JM, Grybowski D, Schilling BK, Marra KG, Christ GJ. Adipose Stem Cells Enhance Nerve Regeneration and Muscle Function in a Peroneal Nerve Ablation Model. Tissue Eng Part A 2019; 27:297-310. [PMID: 30760135 DOI: 10.1089/ten.tea.2018.0244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Severe peripheral nerve injuries have devastating consequences on the quality of life in affected patients, and they represent a significant unmet medical need. Destruction of nerve fibers results in denervation of targeted muscles, which, subsequently, undergo progressive atrophy and loss of function. Timely restoration of neural innervation to muscle fibers is crucial to the preservation of muscle homeostasis and function. The goal of this study was to evaluate the impact of addition of adipose stem cells (ASCs) to polycaprolactone (PCL) nerve conduit guides on peripheral nerve repair and functional muscle recovery in the setting of a critical size nerve defect. To this end, peripheral nerve injury was created by surgically ablating 6 mm of the common peroneal nerve in a rat model. A PCL nerve guide, filled with ASCs and/or poloxamer hydrogel, was sutured to the nerve ends. Negative and positive controls included nerve ablation only (no repair), and reversed polarity autograft nerve implant, respectively. Tibialis anterior (TA) muscle function was assessed at 4, 8, and 12 weeks postinjury, and nerve and muscle tissue was retrieved at the 12-week terminal time point. Inclusion of ASCs in the PCL nerve guide elicited statistically significant time-dependent increases in functional recovery (contraction) after denervation; ∼25% higher than observed in acellular (poloxamer-filled) implants and indistinguishable from autograft implants, respectively, at 12 weeks postinjury (p < 0.05, n = 7-8 in each group). Analysis of single muscle fiber cross-sectional area (CSA) revealed that ASC-based treatment of nerve injury provided a better recapitulation of the overall distribution of muscle fiber CSAs observed in the contralateral TA muscle of uninjured limbs. In addition, the presence of ASCs was associated with improved features of re-innervation distal to the defect, with respect to neurofilament and S100 (Schwann cell marker) expression. In conclusion, these initial studies indicate significant benefits of inclusion of ASCs to the rate and magnitude of both peripheral nerve regeneration and functional recovery of muscle contraction, to levels equivalent to autograft implantation. These findings have important implications to improved nerve repair, and they provide input for future work directed to restoration of nerve and muscle function after polytraumatic injury. Impact Statement This works explores the application of adipose stem cells (ASCs) for peripheral nerve regeneration in a rat model. Herein, we demonstrate that the addition of ASCs in poloxamer-filled PCL nerve guide conduits impacts nerve regeneration and recovery of muscle function, to levels equivalent to autograft implantation, which is considered to be the current gold standard treatment. This study builds on the importance of a timely restoration of innervation to muscle fibers for preservation of muscle homeostasis, and it will provide input for future work aiming at restoring nerve and muscle function after polytraumatic injury.
Collapse
Affiliation(s)
- Juliana A Passipieri
- Biomedical Engineering Department, University of Virginia, Charlottesville, Virginia
| | - Jack Dienes
- Biomedical Engineering Department, University of Virginia, Charlottesville, Virginia
| | - Joseph Frank
- Biomedical Engineering Department, University of Virginia, Charlottesville, Virginia
| | - Joshua Glazier
- Biomedical Engineering Department, University of Virginia, Charlottesville, Virginia
| | - Andrew Portell
- Biomedical Engineering Department, University of Virginia, Charlottesville, Virginia
| | - Kaushik P Venkatesh
- Department of Bioengineering and University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jacqueline M Bliley
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Damian Grybowski
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Benjamin K Schilling
- Department of Bioengineering and University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kacey G Marra
- Department of Bioengineering and University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George J Christ
- Biomedical Engineering Department, University of Virginia, Charlottesville, Virginia.,Orthopaedics Department, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
46
|
Li L, Li Y, Fan Z, Wang X, Li Z, Wen J, Deng J, Tan D, Pan M, Hu X, Zhang H, Lai M, Guo J. Ascorbic Acid Facilitates Neural Regeneration After Sciatic Nerve Crush Injury. Front Cell Neurosci 2019; 13:108. [PMID: 30949031 PMCID: PMC6437112 DOI: 10.3389/fncel.2019.00108] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Ascorbic acid (AA) is an essential micronutrient that has been safely used in the clinic for many years. The present study indicates that AA has an unexpected function in facilitating nerve regeneration. Using a mouse model of sciatic nerve crush injury, we found that AA can significantly accelerate axonal regrowth in the early stage [3 days post-injury (dpi)], a finding that was revealed by immunostaining and Western blotting for antibodies against GAP-43 and SCG10. On day 28 post-injury, histomorphometric assessments demonstrated that AA treatment increased the density, size, and remyelination of regenerated axons in the injured nerve and alleviated myoatrophy in the gastrocnemius. Moreover, the results from various behavioral tests and electrophysiological assays revealed that nerve injury-derived functional defects in motor and sensory behavior as well as in nerve conduction were significantly attenuated by treatment with AA. The potential mechanisms of AA in nerve regeneration were further explored by investigating the effects of AA on three types of cells involved in this process [neurons, Schwann cells (SCs) and macrophages] through a series of experiments. Overall, the data illustrated that AA treatment in cultured dorsal root ganglionic neurons resulted in increased neurite growth and lower expression of RhoA, which is an important inhibitory factor in neural regeneration. In SCs, proliferation, phagocytosis, and neurotrophin expression were all enhanced by AA. Meanwhile, AA treatment also improved proliferation, migration, phagocytosis, and anti-inflammatory polarization in macrophages. In conclusion, this study demonstrated that treatment with AA can promote the morphological and functional recovery of injured peripheral nerves and that this effect is potentially due to AA’s bioeffects on neurons, SCs and macrophages, three of most important types of cells involved in nerve injury and regeneration.
Collapse
Affiliation(s)
- Lixia Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Yuanyuan Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Zhihao Fan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Xianghai Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Zhenlin Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Jinkun Wen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Junyao Deng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Dandan Tan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Mengjie Pan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Xiaofang Hu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Haowen Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Muhua Lai
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Jiasong Guo
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
Zhang DY, Yu K, Yang Z, Liu XZ, Ma XF, Li YX. Variation in expression of small ubiquitin-like modifiers in injured sciatic nerve of mice. Neural Regen Res 2019; 14:1455-1461. [PMID: 30964073 PMCID: PMC6524499 DOI: 10.4103/1673-5374.253531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small ubiquitin-like modifiers (SUMOs) have been shown to regulate axonal regeneration, signal transduction, neuronal migration, and myelination, by covalently and reversibly attaching to the protein substrates during neuronal cell growth, development, and differentiation. It has not been reported whether SUMOs play a role in peripheral nerve injury and regeneration. To investigate any association between SUMOylation and potential neuroprotective effects during peripheral nerve injury and regeneration, C57/BL mice were randomly divided into sham and experimental groups. The sciatic nerve was exposed only in the sham group. The experimental group underwent neurotomy and epineurial neurorrhaphy. Real-time quantitative polymerase chain reaction and western blot assay results revealed different mRNA and protein expression levels of SUMO1, SUMO2, SUMO3 and UBC9 in sciatic nerve tissue (containing both 5 mm of proximal and distal stumps at the injury site) at various time points after injury. Compared with the sham group, protein levels of SUMO1 and SUMO2/3 increased in both their covalent and free states after sciatic nerve injury in the experimental group, especially in the covalent state. UBC9 protein levels showed similar changes to those of SUMO1 and SUMO2/3 in the covalent states. Immunohistochemical staining demonstrated that SUMO1 and SUMO2/3 immunopositivities were higher in the experimental group than in the sham group. Our results verified that during the repair of sciatic nerve injury, the mRNA and protein expression of SUMO1, SUMO2, SUMO3 and UBC9 in injured nerve tissues changed in varying patterns and there were clear changes in the expression of SUMO-related proteins. These findings reveal that SUMOs possibly play an important role in the repair of peripheral nerve injury. All animal protocols were approved by the Institutional Animal Care and Use Committee of Tianjin Fifth Central Hospital, China (approval No. TJWZXLL2018041) on November 8, 2018.
Collapse
Affiliation(s)
- Dian-Ying Zhang
- Department of Orthopedics and Trauma, People's Hospital, Peking University, Beijing, China
| | - Kai Yu
- Department of Orthopedics, Tianjin Fifth Central Hospital, Tianjin, China
| | - Zhong Yang
- Department of Orthopedics, Tianjin Fifth Central Hospital, Tianjin, China
| | - Xiao-Zhi Liu
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, China
| | - Xiao-Fang Ma
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, China
| | - Yan-Xia Li
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, China
| |
Collapse
|
48
|
Tan D, Wen J, Li L, Wang X, Qian C, Pan M, Lai M, Deng J, Hu X, Zhang H, Guo J. Inhibition of RhoA-Subfamily GTPases Suppresses Schwann Cell Proliferation Through Regulating AKT Pathway Rather Than ROCK Pathway. Front Cell Neurosci 2018; 12:437. [PMID: 30515082 PMCID: PMC6255816 DOI: 10.3389/fncel.2018.00437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Inhibiting RhoA-subfamily GTPases by C3 transferase is widely recognized as a prospective strategy to enhance axonal regeneration. When C3 transferase is administered for treating the injured peripheral nerves, Schwann cells (SCs, important glial cells in peripheral nerve) are inevitably impacted and therefore SC bioeffects on nerve regeneration might be influenced. However, the potential role of C3 transferase on SCs remains elusive. Assessed by cell counting, EdU and water-soluble tetrazolium salt-1 (WST-1) assays as well as western blotting with PCNA antibody, herein we first found that CT04 (a cell permeable C3 transferase) treatment could significantly suppress SC proliferation. Unexpectedly, using Y27632 to inhibit ROCK (the well-accepted downstream signal molecule of RhoA subfamily) did not impact SC proliferation. Further studies indicated that CT04 could inactivate AKT pathway by altering the expression levels of phosphorylated AKT (p-AKT), PI3K and PTEN, while activating AKT pathway by IGF-1 or SC79 could reverse the inhibitory effect of CT04 on SC proliferation. Based on present data, we concluded that inhibition of RhoA-subfamily GTPases could suppress SC proliferation, and this effect is independent of conventional ROCK pathway but involves inactivation of AKT pathway.
Collapse
Affiliation(s)
- Dandan Tan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Jinkun Wen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Lixia Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Xianghai Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Changhui Qian
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China
- Department of Histology and Embryology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mengjie Pan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Muhua Lai
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Junyao Deng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Xiaofang Hu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Haowen Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Jiasong Guo
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
49
|
Liu Y, Yu F, Zhang B, Zhou M, Bei Y, Zhang Y, Tang J, Yang Y, Huang Y, Xiang Q, Zhao Y, Liang Q, Liu Y. Improving the protective effects of aFGF for peripheral nerve injury repair using sulfated chitooligosaccharides. Asian J Pharm Sci 2018; 14:511-520. [PMID: 32104478 PMCID: PMC7032102 DOI: 10.1016/j.ajps.2018.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 08/17/2018] [Accepted: 09/27/2018] [Indexed: 01/07/2023] Open
Abstract
Injury to the peripheral nerves can result in temporary or life-long neuronal dysfunction and subsequent economic or social disability. Acidic fibroblast growth factor (aFGF) promotes the growth and survival of neurons and is a possible treatment for peripheral nerve injury. Yet, the actual therapeutic utility of aFGF is limited by its short half-life and instability in vivo. In the present study, we prepared sulfated chitooligosaccharides (SCOS), which have heparin-like properties, to improve the bioactivity of aFGF. We investigated the protective effects of SCOS with or without aFGF on RSC96 cells exposed to Na2S2O4 hypoxia/reoxygenation injury. Cell viability was measured by MTT assay and cytotoxicity induced by Na2S2O4 was assessed by lactate dehydrogenase (LDH) release into the culture medium. Pretreatment with aFGF and SCOS dramatically decreased LDH release after injury compared to pretreatment with aFGF or SCOS alone. We subsequently prepared an aFGF/SCOS thermo-sensitive hydrogel with poloxamer and examined its effects in vivo. Paw withdrawal thresholds and thermal withdrawal latencies were measured in rats with sciatic nerve injury. Local injection of the aFGF/SCOS hydrogels (aFGF: 40, 80 µg/kg) increased the efficiency of sciatic nerve repair compared to aFGF (80 µg/kg) hydrogel alone. Especially aFGF/SCOS thermo-sensitive hydrogel decreased paw withdrawal thresholds from 117.75 ± 8.38 (g, 4 d) to 65.74 ± 3.39 (g, 10 d), but aFGF alone group were 140.58 ± 27.54 (g, 4 d) to 89.12 ± 5.60 (g, 10 d) (aFGF dose was 80 µg/kg, P < 0.05, n = 8). The thermal withdrawal latencies decreased from 11.61 ± 2.26 (s, 4 d) to 2.37 ±0.67 (s, 10 d). However, aFGF alone group were from 17.69 ± 1.47 (s, 4 d) to 4.65 ± 1.73 (s, 10 d) (P < 0.05, n = 8). Furthermore, the aFGF/SCOS hydrogels also exhibited good biocompatibility in mice. In summary, SCOS improved the protective effects of aFGF in RSC96 cells injured with Na2S2O4 and increased the efficiency of nerve repair and recovery of function in rats with sciatic nerve injury. These findings pave an avenue for the development of novel prophylactic and therapeutic strategies for peripheral nerve injury.
Collapse
Affiliation(s)
- Yanmei Liu
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Fenglin Yu
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Beibei Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Meng Zhou
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yu Bei
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yifan Zhang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Jianzhong Tang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yan Yang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yueping Zhao
- Department of Stomatology, Jinan University Medical College, Guangzhou 510632, China
| | - Qian Liang
- Department of Stomatology, Jinan University Medical College, Guangzhou 510632, China
| | - Yang Liu
- Department of Stomatology, Jinan University Medical College, Guangzhou 510632, China
| |
Collapse
|
50
|
Trejo JL. Advances in the Ongoing Battle against the Consequences of Peripheral Nerve Injuries. Anat Rec (Hoboken) 2018; 301:1606-1613. [DOI: 10.1002/ar.23936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Affiliation(s)
- JosÉ L. Trejo
- Department of Translational Neuroscience; Cajal Institute, CSIC; Madrid Spain
| |
Collapse
|