1
|
Li YS, Ren HC, Li H, Xing M, Cao JH. From oxidative stress to metabolic dysfunction: The role of TRPM2. Int J Biol Macromol 2025; 284:138081. [PMID: 39603285 DOI: 10.1016/j.ijbiomac.2024.138081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Metabolic syndromes including atherosclerosis, diabetes, obesity, and hypertension are increasingly prevalent worldwide. The disorders are the primary attributes of oxidative stress and inflammation. The transient receptor potential M2 (TRPM2) channel is a pivotal mediator linking oxidative stress to metabolic dysfunction. TRPM2, a non-selective cation channel activated by reactive oxygen species (ROS) and adenosine diphosphate ribose (ADPR), regulates calcium influx, inflammation, and cell death across various tissues. This review explores the structural and activation mechanisms of TRPM2, emphasizing its significance in metabolic diseases. Elevated levels of TRPM2 play a vital role in the disease progression by influencing physiological and cellular processes such as endothelial dysfunction, immune cell activation, and mitochondrial impairment. In conditions such as atherosclerosis, ischemic stroke, diabetes, obesity, and hypertension; TRPM2 exacerbates oxidative damage, amplifies inflammatory responses, and disrupts metabolic homeostasis. Recent research highlights the potential of TRPM2 as a therapeutic target, developing specified inhibitors. This review underscores the multifaceted role of TRPM2 in metabolic disorders and its promise as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Ying-Shuang Li
- Intravenous Drug Administration Center, Department of Pharmacy, Qingdao Third People's Hospital affiliated with Qingdao University, Qingdao, Shandong 266041, PR China
| | - Hua-Cheng Ren
- Intravenous Drug Administration Center, Department of Pharmacy, Qingdao Third People's Hospital affiliated with Qingdao University, Qingdao, Shandong 266041, PR China
| | - Hui Li
- Intravenous Drug Administration Center, Department of Pharmacy, Qingdao Third People's Hospital affiliated with Qingdao University, Qingdao, Shandong 266041, PR China
| | - Man Xing
- Intravenous Drug Administration Center, Department of Pharmacy, Qingdao Third People's Hospital affiliated with Qingdao University, Qingdao, Shandong 266041, PR China
| | - Jian-Hua Cao
- Intravenous Drug Administration Center, Department of Pharmacy, Qingdao Third People's Hospital affiliated with Qingdao University, Qingdao, Shandong 266041, PR China.
| |
Collapse
|
2
|
Liu DQ, Mei W, Zhou YQ, Xi H. Targeting TRPM channels for cerebral ischemia-reperfusion injury. Trends Pharmacol Sci 2024; 45:862-867. [PMID: 39019763 DOI: 10.1016/j.tips.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024]
Abstract
Transient receptor potential melastatin (TRPM) channels have emerged as potential therapeutic targets for cerebral ischemia-reperfusion (I/R) injury. We highlight recent findings on the involvement of TRPM channels in oxidative stress, mitochondrial dysfunction, inflammation, and calcium overload. We also discuss the challenges and future directions in targeting TRPM channels for cerebral I/R injury.
Collapse
Affiliation(s)
- Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hong Xi
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
3
|
Yao J, Wang Z, Song W, Zhang Y. Targeting NLRP3 inflammasome for neurodegenerative disorders. Mol Psychiatry 2023; 28:4512-4527. [PMID: 37670126 DOI: 10.1038/s41380-023-02239-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Neuroinflammation is a key pathological feature in neurological diseases, including Alzheimer's disease (AD). The nucleotide-binding domain leucine-rich repeat-containing proteins (NLRs) belong to the pattern recognition receptors (PRRs) family that sense stress signals, which play an important role in inflammation. As a member of NLRs, the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) is predominantly expressed in microglia, the principal innate immune cells in the central nervous system (CNS). Microglia release proinflammatory cytokines to cause pyroptosis through activating NLRP3 inflammasome. The active NLRP3 inflammasome is involved in a variety of neurodegenerative diseases (NDs). Recent studies also indicate the key role of neuronal NLRP3 in the pathogenesis of neurological disorders. In this article, we reviewed the mechanisms of NLRP3 expression and activation and discussed the role of active NLRP3 inflammasome in the pathogenesis of NDs, particularly focusing on AD. The studies suggest that targeting NLRP3 inflammasome could be a novel approach for the disease modification.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, Zhejiang, China.
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
| |
Collapse
|
4
|
Okada Y, Numata T, Sabirov RZ, Kashio M, Merzlyak PG, Sato-Numata K. Cell death induction and protection by activation of ubiquitously expressed anion/cation channels. Part 3: the roles and properties of TRPM2 and TRPM7. Front Cell Dev Biol 2023; 11:1246955. [PMID: 37842082 PMCID: PMC10576435 DOI: 10.3389/fcell.2023.1246955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cell volume regulation (CVR) is a prerequisite for animal cells to survive and fulfill their functions. CVR dysfunction is essentially involved in the induction of cell death. In fact, sustained normotonic cell swelling and shrinkage are associated with necrosis and apoptosis, and thus called the necrotic volume increase (NVI) and the apoptotic volume decrease (AVD), respectively. Since a number of ubiquitously expressed ion channels are involved in the CVR processes, these volume-regulatory ion channels are also implicated in the NVI and AVD events. In Part 1 and Part 2 of this series of review articles, we described the roles of swelling-activated anion channels called VSOR or VRAC and acid-activated anion channels called ASOR or PAC in CVR and cell death processes. Here, Part 3 focuses on therein roles of Ca2+-permeable non-selective TRPM2 and TRPM7 cation channels activated by stress. First, we summarize their phenotypic properties and molecular structure. Second, we describe their roles in CVR. Since cell death induction is tightly coupled to dysfunction of CVR, third, we focus on their participation in the induction of or protection against cell death under oxidative, acidotoxic, excitotoxic, and ischemic conditions. In this regard, we pay attention to the sensitivity of TRPM2 and TRPM7 to a variety of stress as well as to their capability to physicall and functionally interact with other volume-related channels and membrane enzymes. Also, we summarize a large number of reports hitherto published in which TRPM2 and TRPM7 channels are shown to be involved in cell death associated with a variety of diseases or disorders, in some cases as double-edged swords. Lastly, we attempt to describe how TRPM2 and TRPM7 are organized in the ionic mechanisms leading to cell death induction and protection.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| | - Ravshan Z. Sabirov
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Makiko Kashio
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
| | - Peter G. Merzlyak
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| |
Collapse
|
5
|
Zhu J, Zhou F, Zhou Q, Xu Y, Li Y, Huang D, Chen L, Liu A, Zou F, Meng X. NLRP3 activation in microglia contributes to learning and memory impairment induced by chronic lead exposure in mice. Toxicol Sci 2023; 191:179-191. [PMID: 36308466 DOI: 10.1093/toxsci/kfac115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lead (Pb)-induced microglial activation and neuroinflammation has been considered as one of the main pathological events of Pb neurotoxicity. The NLRP3 inflammasome signaling pathway is a major contributor to the neuroinflammatory process in the central nervous system. However, the relationship between chronic Pb exposure and neurogenic NLRP3 inflammasome is unclear. Therefore, the aim of this study was to characterize the role of NLRP3 inflammasome activation during the chronic Pb exposure using in vitro and in vivo models. Our results showed that chronic Pb exposure induce learning and memory impairment in mice, mainly related to the activation of microglia and NLRP3 inflammasome. This phenomenon was reversed in mice by treating with the NLRP3 inhibitor MCC950 and using NLRP3-/- mice. In addition, Pb caused the activation of NLRP3 inflammasome, the production of mitochondrial ROS (mtROS), and mitochondrial Ca2+ overload in BV2 cells. Amelioration of mtROS abolished Pb-induced NLRP3 inflammasome activation. Moreover, after regulation of Ca2+ redistribution, mtROS and NLRP3 inflammasome activation was restored. In conclusion, NLRP3 inflammasome activation in microglia plays a vital role in Pb neurotoxicity, by a novel mechanism of enhancing mtROS production and Ca2+ redistribution.
Collapse
Affiliation(s)
- Jiawei Zhu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fan Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qin Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yongjie Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunting Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Dingbang Huang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lixuan Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Anfei Liu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
6
|
Yin YL, Liu YH, Zhu ML, Wang HH, Qiu Y, Wan GR, Li P. Floralozone improves cognitive impairment in vascular dementia rats via regulation of TRPM2 and NMDAR signaling pathway. Physiol Behav 2022; 249:113777. [PMID: 35276121 DOI: 10.1016/j.physbeh.2022.113777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022]
Abstract
Vascular dementia (VD) is the second largest type of dementia after Alzheimer's disease. At present, the pathogenesis is complex and there is no effective treatment. Floralozone has been shown to reduce atherosclerosis in rats caused by a high-fat diet. However, whether it plays a role in VD remains elusive. In the present study, the protective activities and relevant mechanisms of Floralozone were evaluated in rats with cognitive impairment, which were induced by bilateral occlusion of the common carotid arteries (BCCAO) in rats. Cognitive function, pathological changes and oxidative stress condition in the brains of VD rats were assessed using Neurobehavioral tests, Morris water maze tests, hematoxylin-eosin staining, Neu N staining, TUNEL staining, Golgi staining, Western blot assay and antioxidant assays (MDA, SOD, GSH), respectively. The results indicated that VD model was established successfully and BCCAO caused a decline in spatial learning and memory and hippocampal histopathological abnormalities of rats. Floralozone (50, 100, 150 mg/kg) dose-dependently alleviated the pathological changes, decreased oxidative stress injury, which eventually reduced cognitive impairment in BCCAO rats. The same results were shown in further experiments with neurobehavioral tests. At the molecular biological level, Floralozone decreased the protein level of transient receptor potential melastatin-related 2 (TRPM2) in VD and normal rats, and increased the protein level of NR2B in hippocampus of N-methyl-D-aspartate receptor (NMDAR). Notably, Floralozone could markedly improved learning and memory function of BCCAO rats in Morris water maze (MWM) and improved neuronal cell loss, synaptic structural plasticity. In conclusion, Floralozone has therapeutic potential for VD, increased synaptic structural plasticity and alleviating neuronal cell apoptosis, which may be related to the TRPM2/NMDAR pathway.
Collapse
Affiliation(s)
- Ya-Ling Yin
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University,Xinxiang, China, 453003; College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Yan-Hua Liu
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Mo-Li Zhu
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Huan-Huan Wang
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Yue Qiu
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Guang-Rui Wan
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Peng Li
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University,Xinxiang, China, 453003; College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| |
Collapse
|
7
|
Wang Q, Liu N, Ni YS, Yang JM, Ma L, Lan XB, Wu J, Niu JG, Yu JQ. TRPM2 in ischemic stroke: Structure, molecular mechanisms, and drug intervention. Channels (Austin) 2021; 15:136-154. [PMID: 33455532 PMCID: PMC7833771 DOI: 10.1080/19336950.2020.1870088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/14/2023] Open
Abstract
Ischemic stroke has a high lethality rate worldwide, and novel treatments are limited. Calcium overload is considered to be one of the mechanisms of cerebral ischemia. Transient receptor potential melastatin 2 (TRPM2) is a reactive oxygen species (ROS)-sensitive calcium channel. Cerebral ischemia-induced TRPM2 activation triggers abnormal intracellular Ca2+ accumulation and cell death, which in turn causes irreversible brain damage. Thus, TRPM2 has emerged as a new therapeutic target for ischemic stroke. This review provides data on the expression, structure, and function of TRPM2 and illustrates its cellular and molecular mechanisms in ischemic stroke. Natural and synthetic TRPM2 inhibitors (both specific and nonspecific) are also summarized. The three-dimensional protein structure of TRPM2 has been identified, and we speculate that molecular simulation techniques will be essential for developing new drugs that block TRPM2 channels. These insights about TRPM2 may be the key to find potent therapeutic approaches for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qing Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Yuan-Shu Ni
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Jia-Mei Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Lin Ma
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Xiao-Bing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Jing Wu
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, China
| | - Jian-Guo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
8
|
Shao Y, Chen C, Zhu T, Sun Z, Li S, Gong L, Dong X, Shen W, Zeng L, Xie Y, Jiang P. TRPM2 contributes to neuroinflammation and cognitive deficits in a cuprizone-induced multiple sclerosis model via NLRP3 inflammasome. Neurobiol Dis 2021; 160:105534. [PMID: 34673151 DOI: 10.1016/j.nbd.2021.105534] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system (CNS) that is characterized by demyelination, axonal injury and neurological deterioration. Few medications are available for progressive MS, which is associated with neuroinflammation confined to the CNS compartment. Transient receptor potential melastatin 2 (TRPM2) is a calcium-permeable, non-selective cation channel that plays pathological roles in a wide range of neuroinflammatory diseases; however, the underlying molecular mechanisms of TRPM2 remain elusive. Here, we established a cuprizone model that presents hallmark MS pathologies to investigate the role of TRPM2 in progressive MS. We demonstrated that genetic deletion of TRPM2 yields protection from the cuprizone-induced demyelination, synapse loss, microglial activation, NLRP3 inflammasome activation and proinflammatory cytokines production and ultimately leads to an improvement in cognitive decline. Furthermore, we showed that the pharmacological inhibition of NLRP3 ameliorated the demyelination, neuroinflammation and cognitive impairment in the model with no additive effects on the TRPM2 KO mice. Taken together, these results indicated that TRPM2 plays important roles in regulating neuroinflammation in progressive MS via NLRP3 inflammasome, and the results shed light on TRPM2's potential role as a therapeutic target for MS.
Collapse
Affiliation(s)
- Yu Shao
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China; Department of Pediatrics, Wenling First People's Hospital, Wenling 317500, China
| | - Chen Chen
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Zengxian Sun
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China; Department of Pediatrics, Lishui Central Hospital, Lishui 323000, China
| | - Shufen Li
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China; Department of Pediatrics, Lishui Central Hospital, Lishui 323000, China
| | - Lifen Gong
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Xinyan Dong
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Weida Shen
- Department of Pharmacy, Zhejiang University City College School of Medicine, Hangzhou 310015, China
| | - Linghui Zeng
- Department of Pharmacy, Zhejiang University City College School of Medicine, Hangzhou 310015, China
| | - Yicheng Xie
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China.
| | - Peifang Jiang
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China.
| |
Collapse
|
9
|
Chen Y, Li Y, Guo L, Hong J, Zhao W, Hu X, Chang C, Liu W, Xiong K. Bibliometric Analysis of the Inflammasome and Pyroptosis in Brain. Front Pharmacol 2021; 11:626502. [PMID: 33551822 PMCID: PMC7854385 DOI: 10.3389/fphar.2020.626502] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Considering the pivotal role of inflammasome/pyroptosis in biological function, we visually analyzed the research hotspots of inflammasome/pyroptosis related to the brain in this work through the method of bibliometrics from the Web of Science (WOS) Core database over the past two decades. Methods: Documents were retrieved from WOS Core Collection on October 16, 2020. The search terms and strategies used for the WOS database are as follow: # 1, “pyroptosis”; # 2, “pyroptotic”; # 3, “inflammasome”; # 4, “pyroptosome”; # 5 “brain”; # 6, “# 1” OR “# 2” OR “# 3” OR “# 4”; # 7, “# 5” AND “# 6”. We selected articles and reviews published in English from 2000 to 2020. Visualization analysis and statistical analysis were performed by VOSviewer 1.6.15 and CiteSpace 5.7. R2. Results: 1,222 documents were selected for analysis. In the approximately 20 years since the pyroptosis was first presented, the publications regarding the inflammasome and pyroptosis in brain were presented since 2005. The number of annual publications increased gradually over a decade, which are involved in this work, and will continue to increase in 2020. The most prolific country was China with 523 documents but the United States was with 16,328 citations. The most influential author was Juan Pablo de Rivero Vaccari with 27 documents who worked at the University of Miami. The bibliometric analysis showed that inflammasome/pyroptosis involved a variety of brain cell types (microglia, astrocyte, neuron, etc.), physiological processes, ER stress, mitochondrial function, oxidative stress, and disease (traumatic brain injuries, stroke, Alzheimer’s disease, and Parkinson’s disease). Conclusion: The research of inflammasome/pyroptosis in brain will continue to be the hotspot. We recommend investigating the mechanism of mitochondrial molecules involved in the complex crosstalk of pyroptosis and regulated cell deaths (RCDs) in brain glial cells, which will facilitate the development of effective therapeutic strategies targeting inflammasome/pyroptosis and large-scale clinical trials. Thus, this study presents the trend and characteristic of inflammasome/pyroptosis in brain, which provided a helpful bibliometric analysis for researchers to further studies.
Collapse
Affiliation(s)
- Yuhua Chen
- Central Laboratory of Medicine School, Xi'an Peihua University, Xi'an, China.,Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China.,Department of Neurosurgery, First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yan Li
- Department of Histology and Embryology, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Limin Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jun Hong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Wenjuan Zhao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Ximin Hu
- Clinical Medicine Eight-year Program, 02 Class, 17 Grade, Xiangya School of Medicine, Central South University, Changsha, China
| | - Cuicui Chang
- Central Laboratory of Medicine School, Xi'an Peihua University, Xi'an, China
| | - Wei Liu
- Department of Neurosurgery, First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|