1
|
Zhang J, Yang X, Chang Z, Zhu W, Ma Y, He H. Polymeric nanocarriers for therapeutic gene delivery. Asian J Pharm Sci 2025; 20:101015. [PMID: 39931356 PMCID: PMC11808530 DOI: 10.1016/j.ajps.2025.101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 02/13/2025] Open
Abstract
The recent commercialization of gene products has sparked significant interest in gene therapy, necessitating efficient and precise gene delivery via various vectors. Currently, viral vectors and lipid-based nanocarriers are the predominant choices and have been extensively investigated and reviewed. Beyond these vectors, polymeric nanocarriers also hold the promise in therapeutic gene delivery owing to their versatile functionalities, such as improving the stability, cellar uptake and endosomal escape of nucleic acid drugs, along with precise delivery to targeted tissues. This review presents a brief overview of the status quo of the emerging polymeric nanocarriers for therapeutic gene delivery, focusing on key cationic polymers, nanocarrier types, and preparation methods. It also highlights targeted diseases, strategies to improve delivery efficiency, and potential future directions in this research area. The review is hoped to inspire the development, optimization, and clinical translation of highly efficient polymeric nanocarriers for therapeutic gene delivery.
Collapse
Affiliation(s)
- Jiayuan Zhang
- Key Laboratory of Smart Drug Delivery of Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, School of Pharmacy, Qinghai Minzu University, Xining 810007, China
| | - Xinyu Yang
- Key Laboratory of Smart Drug Delivery of Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhichao Chang
- Key Laboratory of Smart Drug Delivery of Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenwei Zhu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuhua Ma
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, School of Pharmacy, Qinghai Minzu University, Xining 810007, China
| | - Haisheng He
- Key Laboratory of Smart Drug Delivery of Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
2
|
van Silfhout NY, van Muilekom MM, van Karnebeek CD, Haverman L, van Eeghen AM. PROs for RARE: protocol for development of a core patient reported outcome set for individuals with genetic intellectual disability. Orphanet J Rare Dis 2024; 19:354. [PMID: 39334201 PMCID: PMC11428331 DOI: 10.1186/s13023-024-03264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/16/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Rare genetic neurodevelopmental disorders and intellectual disability (ID), collectively called genetic ID (GID), can profoundly impact daily functioning and overall well-being of affected individuals. To improve our understanding of the impact of GID and advancing both care and research, measuring relevant patient reported outcomes (PROs) is crucial. Currently, various PROs are measured for GID. Given the shared comorbidities across disorders, we aim to develop a generic core PRO set for children and adults with GID. METHODS AND RESULTS Developing the generic core PRO set entails the following steps: 1) providing an overview of potentially relevant PROs by scoping reviews and qualitative research; 2) integrating and conceptualizing these PROs (i.e., describing the content of the PROs in detail) into a pilot generic core PRO set; and 3) prioritizing relevant PROs by a European Delphi survey and consensus meetings. CONCLUSIONS This protocol presents the steps for developing a generic core PRO set for children and adults with GID. The next step involves selecting suitable patient reported outcome measures (PROMs) to adequately measure these PROs: the generic core PROM set. This generic core PROM set needs validation in the GID population, and eventually implementation in care and research, facilitating the aggregation and analysis of PRO data and guaranteeing continuous integration of the patient perspective in both care and research.
Collapse
Affiliation(s)
- Nadia Y van Silfhout
- Department of Child and Adolescent Psychiatry & Psychosocial Care, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Mental health and Personalized Medicine, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Child Development, Amsterdam, The Netherlands
| | - Maud M van Muilekom
- Department of Child and Adolescent Psychiatry & Psychosocial Care, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Mental health and Personalized Medicine, Amsterdam, The Netherlands
| | - Clara D van Karnebeek
- Department of Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Child Development, Amsterdam, The Netherlands
| | - Lotte Haverman
- Department of Child and Adolescent Psychiatry & Psychosocial Care, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Mental health and Digital Health, Amsterdam, The Netherlands
| | - Agnies M van Eeghen
- Department of Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands.
- Amsterdam Reproduction & Development Research Institute, Child Development, Amsterdam, The Netherlands.
- Amsterdam Public Health Research Institute, Aging & Later life and Personalized Medicine, Amsterdam, The Netherlands.
- Advisium's Heeren Loo, Amersfoort, The Netherlands.
| |
Collapse
|
3
|
Müller AR, van Silfhout NY, den Hollander B, Kampman DHC, Bakkum L, Brands MMMG, Haverman L, Terwee CB, Schuengel C, Daams J, Hessl D, Wijburg FA, Boot E, van Eeghen AM. Navigating the outcome maze: a scoping review of outcomes and instruments in clinical trials in genetic neurodevelopmental disorders and intellectual disability. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241245721. [PMID: 38681798 PMCID: PMC11047260 DOI: 10.1177/26330040241245721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/14/2024] [Indexed: 05/01/2024]
Abstract
Background Individuals with genetic neurodevelopmental disorders (GNDs) or intellectual disability (ID) are often affected by complex neuropsychiatric comorbidities. Targeted treatments are increasingly available, but due to the heterogeneity of these patient populations, choosing a key outcome and corresponding outcome measurement instrument remains challenging. Objectives The aim of this scoping review was to describe the research on outcomes and instruments used in clinical trials in GNDs and ID. Eligibility criteria Clinical trials in individuals with GNDs and ID for any intervention over the past 10 years were included in the review. Sources of evidence MEDLINE, PsycINFO, and Cochrane CENTRAL were searched. Titles and abstracts were independently screened for eligibility with a subsample of 10% double-screening for interrater reliability. Data from full texts were independently reviewed. Discrepancies were discussed until consensus was reached. Charting methods Information was recorded on patient populations, interventions, designs, outcomes, measurement instruments, and type of reporter when applicable. Qualitative and descriptive analyses were performed. Results We included 312 studies reporting 91 different outcomes, with cognitive function most frequently measured (28%). Various outcome measurement instruments (n = 457) were used, with 288 in only a single clinical trial. There were 18 genetic condition-specific instruments and 16 measures were designed ad-hoc for one particular trial. Types of report included proxy-report (39%), self-report (22%), clinician-report (16%), observer-report (6%), self-assisted report (1%), or unknown (16%). Conclusion This scoping review of current practice reveals a myriad of outcomes and outcome measurement instruments for clinical trials in GNDs and ID. This complicates generalization, evidence synthesis, and evaluation. It underlines the need for consensus on suitability, validity, and relevancy of instruments, ultimately resulting in a core outcome set. A series of steps is proposed to move from the myriad of measures to a more unified approach.
Collapse
Affiliation(s)
- Annelieke R. Müller
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Advisium, ’s Heeren Loo, Amersfoort, Utrecht, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nadia Y. van Silfhout
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Child Development, Amsterdam, The Netherlands
- Emma Children’s Hospital, Child and Adolescent Psychiatry & Psychosocial Care, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Bibiche den Hollander
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Dick H. C. Kampman
- Faculty of Science, Operational Management, ICT Department, Utrecht University, Utrecht, The Netherlands
| | - Lianne Bakkum
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Clinical Child and Family Studies, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marion M. M. G. Brands
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Child Development, Amsterdam, The Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Lotte Haverman
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Child Development, Amsterdam, The Netherlands
- Emma Children’s Hospital, Child and Adolescent Psychiatry & Psychosocial Care, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Caroline B. Terwee
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Carlo Schuengel
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Clinical Child and Family Studies, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joost Daams
- Medical Library, Research Support, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - David Hessl
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, CA, USA
| | - Frits A. Wijburg
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Erik Boot
- Advisium, ’s Heeren Loo, Amersfoort, Utrecht, The Netherlands
- The Dalglish Family 22q Clinic, Toronto, ON, Canada
- Department of Psychiatry & Neuropsychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Agnies M. van Eeghen
- Emma Center for Personalized Medicine, Amsterdam UMC, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- Advisium, ’s Heeren Loo, Berkenweg 11, 3818 LA, Amersfoort, The Netherlands
- Amsterdam Public Health Research Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Child Development, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Ophir O, Levy G, Bar E, Kimchi Feldhorn O, Rokach M, Elad Sfadia G, Barak B. Deletion of Gtf2i via Systemic Administration of AAV-PHP.eB Virus Increases Social Behavior in a Mouse Model of a Neurodevelopmental Disorder. Biomedicines 2023; 11:2273. [PMID: 37626769 PMCID: PMC10452363 DOI: 10.3390/biomedicines11082273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder characterized by distinctive cognitive and personality profiles which also impacts various physiological systems. The syndrome arises from the deletion of about 25 genes located on chromosome 7q11.23, including Gtf2i. Prior research indicated a strong association between pre-natal Gtf2i deletion, and the hyper-social phenotypes observed in WS, as well as myelination deficits. As most studies addressed pre-natal Gtf2i deletion in mouse models, post-natal neuronal roles of Gtf2i were unknown. To investigate the impact of post-natal deletion of neuronal Gtf2i on hyper-sociability, we intravenously injected an AAV-PHP.eB virus expressing Cre-recombinase under the control of αCaMKII, a promoter in a mouse model with floxed Gtf2i. This targeted deletion was performed in young mice, allowing for precise and efficient brain-wide infection leading to the exclusive removal of Gtf2i from excitatory neurons. As a result of such gene deletion, the mice displayed hyper-sociability, increased anxiety, impaired cognition, and hyper-mobility, relative to controls. These findings highlight the potential of systemic viral manipulation as a gene-editing technique to modulate behavior-regulating genes during the post-natal stage, thus presenting novel therapeutic approaches for addressing neurodevelopmental dysfunction.
Collapse
Affiliation(s)
- Omer Ophir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gilad Levy
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The School of Neurobiology, Biochemistry & Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Galit Elad Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Functionalized PDA/DEX-PEI@HA nanoparticles combined with sleeping-beauty transposons for multistage targeted delivery of CRISPR/Cas9 gene. Biomed Pharmacother 2021; 142:112061. [PMID: 34449313 DOI: 10.1016/j.biopha.2021.112061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022] Open
Abstract
CRISPR/Cas9 system has been used as the most powerful gene editing tool for precision medicine and advanced gene therapy. However, its wide applications are limited by the poor biosafety of lentivirus delivery vectors though with high-efficiency transduction. To construct a safer vector and promote genome integration, the CRISPR/Cas9 gene is cloned into a plasmid-based non-viral safe vector Sleeping-Beauty (SB) transposon in this study to obtain pT2SpCas9. Meanwhile, PDA/DEX-PEI@HA (PDPH) nanoparticles are constructed to facilitate the precise CRISPR/Cas9 targeting delivery, by using polydopamine (PDA) as the carrier, hyaluronic acid (HA) as the cell-targeting ligand and dexamethasone (DEX) as the nuclear localization signal (NLS). The results showed that PDPH could deliver pDNA efficiently into the cell and further into the nucleus. The transfection efficiency of PDPH is much higher than that of NPs without HA and DEX. Remarkably, the cytotoxicity of PDPH is negligible in comparison to PEI25k and PEI10k. Western blots showed that after the transfection of PDPH/pT2SpCas9-Nanog/SB11, Nanog protein in HeLa cells is knocked out, and the proliferation and migration abilities of tumor cells are significantly decreased. This study demonstrates that PDA/DEX-PEI25k@HA/pT2SpCas9 (PDPH25 K/pT2SpCas9) has the great potential as a non-viral gene vector for CRISPR/Cas9 delivery and clinical medication.
Collapse
|
6
|
Kozel BA, Barak B, Ae Kim C, Mervis CB, Osborne LR, Porter M, Pober BR. Williams syndrome. Nat Rev Dis Primers 2021; 7:42. [PMID: 34140529 PMCID: PMC9437774 DOI: 10.1038/s41572-021-00276-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 11/09/2022]
Abstract
Williams syndrome (WS) is a relatively rare microdeletion disorder that occurs in as many as 1:7,500 individuals. WS arises due to the mispairing of low-copy DNA repetitive elements at meiosis. The deletion size is similar across most individuals with WS and leads to the loss of one copy of 25-27 genes on chromosome 7q11.23. The resulting unique disorder affects multiple systems, with cardinal features including but not limited to cardiovascular disease (characteristically stenosis of the great arteries and most notably supravalvar aortic stenosis), a distinctive craniofacial appearance, and a specific cognitive and behavioural profile that includes intellectual disability and hypersociability. Genotype-phenotype evidence is strongest for ELN, the gene encoding elastin, which is responsible for the vascular and connective tissue features of WS, and for the transcription factor genes GTF2I and GTF2IRD1, which are known to affect intellectual ability, social functioning and anxiety. Mounting evidence also ascribes phenotypic consequences to the deletion of BAZ1B, LIMK1, STX1A and MLXIPL, but more work is needed to understand the mechanism by which these deletions contribute to clinical outcomes. The age of diagnosis has fallen in regions of the world where technological advances, such as chromosomal microarray, enable clinicians to make the diagnosis of WS without formally suspecting it, allowing earlier intervention by medical and developmental specialists. Phenotypic variability is considerable for all cardinal features of WS but the specific sources of this variability remain unknown. Further investigation to identify the factors responsible for these differences may lead to mechanism-based rather than symptom-based therapies and should therefore be a high research priority.
Collapse
Affiliation(s)
- Beth A. Kozel
- Translational Vascular Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Boaz Barak
- The Sagol School of Neuroscience and The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Chong Ae Kim
- Department of Pediatrics, Universidade de São Paulo, São Paulo, Brazil
| | - Carolyn B. Mervis
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, USA
| | - Lucy R. Osborne
- Department of Medicine, University of Toronto, Ontario, Canada
| | - Melanie Porter
- Department of Psychology, Macquarie University, Sydney, Australia
| | - Barbara R. Pober
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
7
|
Hu C, Feng P, Yang Q, Xiao L. Clinical and Neurobiological Aspects of TAO Kinase Family in Neurodevelopmental Disorders. Front Mol Neurosci 2021; 14:655037. [PMID: 33867937 PMCID: PMC8044823 DOI: 10.3389/fnmol.2021.655037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the complexity of neurodevelopmental disorders (NDDs), from their genotype to phenotype, in the last few decades substantial progress has been made in understanding their pathophysiology. Recent accumulating evidence shows the relevance of genetic variants in thousand and one (TAO) kinases as major contributors to several NDDs. Although it is well-known that TAO kinases are a highly conserved family of STE20 kinase and play important roles in multiple biological processes, the emerging roles of TAO kinases in neurodevelopment and NDDs have yet to be intensively discussed. In this review article, we summarize the potential roles of the TAO kinases based on structural and biochemical analyses, present the genetic data from clinical investigations, and assess the mechanistic link between the mutations of TAO kinases, neuropathology, and behavioral impairment in NDDs. We then offer potential perspectives from basic research to clinical therapies, which may contribute to fully understanding how TAO kinases are involved in NDDs.
Collapse
Affiliation(s)
- Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Pan Feng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Qian Yang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Lin Xiao
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|