1
|
Sheveleva O, Protasova E, Grigor’eva E, Butorina N, Kuziaeva V, Antonov D, Melnikova V, Medvedev S, Lyadova I. The Generation of Genetically Engineered Human Induced Pluripotent Stem Cells Overexpressing IFN-β for Future Experimental and Clinically Oriented Studies. Int J Mol Sci 2024; 25:12456. [PMID: 39596521 PMCID: PMC11595023 DOI: 10.3390/ijms252212456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) can be generated from various adult cells, genetically modified and differentiated into diverse cell populations. Type I interferons (IFN-Is) have multiple immunotherapeutic applications; however, their systemic administration can lead to severe adverse outcomes. One way of overcoming the limitation is to introduce cells able to enter the site of pathology and to produce IFN-Is locally. As a first step towards the generation of such cells, here, we aimed to generate human iPSCs overexpressing interferon-beta (IFNB, IFNB-iPSCs). IFNB-iPSCs were obtained by CRISPR/Cas9 editing of the previously generated iPSC line K7-4Lf. IFNB-iPSCs overexpressed IFNB RNA and produced a functionally active IFN-β. The cells displayed typical iPSC morphology and expressed pluripotency markers. Following spontaneous differentiation, IFNB-iPSCs formed embryoid bodies and upregulated endoderm, mesoderm, and some ectoderm markers. However, an upregulation of key neuroectoderm markers, PAX6 and LHX2, was compromised. A negative effect of IFN-β on iPSC neuroectoderm differentiation was confirmed in parental iPSCs differentiated in the presence of a recombinant IFN-β. The study describes new IFN-β-producing iPSC lines suitable for the generation of various types of IFN-β-producing cells for future experimental and clinical applications, and it unravels an inhibitory effect of IFN-β on stem cell neuroectoderm differentiation.
Collapse
Affiliation(s)
- Olga Sheveleva
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia; (E.P.); (N.B.); (V.K.); (D.A.)
| | - Elena Protasova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia; (E.P.); (N.B.); (V.K.); (D.A.)
| | - Elena Grigor’eva
- Laboratory of Developmental Epigenetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (E.G.); (S.M.)
| | - Nina Butorina
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia; (E.P.); (N.B.); (V.K.); (D.A.)
| | - Valeriia Kuziaeva
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia; (E.P.); (N.B.); (V.K.); (D.A.)
| | - Daniil Antonov
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia; (E.P.); (N.B.); (V.K.); (D.A.)
| | - Victoria Melnikova
- Laboratory of Comparative Developmental Physiology, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia;
| | - Sergey Medvedev
- Laboratory of Developmental Epigenetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (E.G.); (S.M.)
| | - Irina Lyadova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia; (E.P.); (N.B.); (V.K.); (D.A.)
| |
Collapse
|
2
|
C Sekhar V, Gulia KK, Deepti A, Chakrapani PSB, Baby S, Viswanathan G. Protection by Nano-Encapsulated Bacoside A and Bacopaside I in Seizure Alleviation and Improvement in Sleep- In Vitro and In Vivo Evidences. Mol Neurobiol 2024; 61:3296-3313. [PMID: 37987958 DOI: 10.1007/s12035-023-03741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Therapeutic options to contain seizures, a transitional stage of many neuropathologies, are limited due to the blood-brain barrier (BBB). Herbal nanoparticle formulations can be employed to enhance seizure prognosis. Bacoside A (BM3) and bacopaside I (BM4) were isolated from Bacopa monnieri and synthesized as nanoparticles (BM3NP and BM4NP, respectively) for an effective delivery system to alleviate seizures and associated conditions. After physicochemical characterization, cell viability was assessed on mouse neuronal stem cells (mNSC) and neuroblastoma cells (N2a). Thereafter, anti-seizure effects, mitochondrial membrane potential (MMP), apoptosis, immunostaining and epileptic marker mRNA expression were determined in vitro. The seizure-induced changes in the cortical electroencephalogram (EEG), electromyography (EMG), Non-Rapid Eye Movement (NREM) and Rapid Eye Movement (REM) sleep were monitored in vivo in a kainic acid (KA)-induced rat seizure model. The sizes of BM3NPs and BM4NPs were 165.5 nm and 689.6 nm, respectively. They were biocompatible and also aided in neuroplasticity in mNSC. BM3NPs and BM4NPs depicted more than 50% cell viability in N2a cells, with IC50 values of 1609 and 2962 µg/mL, respectively. Similarly, these nanoparticles reduced the cytotoxicity of N2a cells upon KA treatment. Nanoparticles decreased the expression of epileptic markers like fractalkine, HMGB1, FOXO3a and pro-inflammatory cytokines (P < 0.05). They protected neurons from apoptosis and restored MMP. After administration of BM3NPs and BM4NPs, KA-treated rats attained a significant reduction in the epileptic spikes, sleep latency and an increase in NREM sleep duration. Results indicate the potential of BM3NPs and BM4NPs in neutralizing the KA-induced excitotoxic seizures in neurons.
Collapse
Affiliation(s)
- Vini C Sekhar
- Phytochemistry and Phytopharmacology Division, KSCSTE-Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram, 695562, Kerala, India
- University of Kerala, Thiruvananthapuram, 695034, Kerala, India
| | - Kamalesh K Gulia
- Division of Sleep Research, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, India
| | - Ayswaria Deepti
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India
| | - P S Baby Chakrapani
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India
| | - Sabulal Baby
- Phytochemistry and Phytopharmacology Division, KSCSTE-Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram, 695562, Kerala, India
| | - Gayathri Viswanathan
- Phytochemistry and Phytopharmacology Division, KSCSTE-Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram, 695562, Kerala, India.
| |
Collapse
|
3
|
Dwivedi I, Haddad GG. Investigating the neurobiology of maternal opioid use disorder and prenatal opioid exposure using brain organoid technology. Front Cell Neurosci 2024; 18:1403326. [PMID: 38812788 PMCID: PMC11133580 DOI: 10.3389/fncel.2024.1403326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Over the past two decades, Opioid Use Disorder (OUD) among pregnant women has become a major global public health concern. OUD has been characterized as a problematic pattern of opioid use despite adverse physical, psychological, behavioral, and or social consequences. Due to the relapsing-remitting nature of this disorder, pregnant mothers are chronically exposed to exogenous opioids, resulting in adverse neurological and neuropsychiatric outcomes. Collateral fetal exposure to opioids also precipitates severe neurodevelopmental and neurocognitive sequelae. At present, much of what is known regarding the neurobiological consequences of OUD and prenatal opioid exposure (POE) has been derived from preclinical studies in animal models and postnatal or postmortem investigations in humans. However, species-specific differences in brain development, variations in subject age/health/background, and disparities in sample collection or storage have complicated the interpretation of findings produced by these explorations. The ethical or logistical inaccessibility of human fetal brain tissue has also limited direct examinations of prenatal drug effects. To circumvent these confounding factors, recent groups have begun employing induced pluripotent stem cell (iPSC)-derived brain organoid technology, which provides access to key aspects of cellular and molecular brain development, structure, and function in vitro. In this review, we endeavor to encapsulate the advancements in brain organoid culture that have enabled scientists to model and dissect the neural underpinnings and effects of OUD and POE. We hope not only to emphasize the utility of brain organoids for investigating these conditions, but also to highlight opportunities for further technical and conceptual progress. Although the application of brain organoids to this critical field of research is still in its nascent stages, understanding the neurobiology of OUD and POE via this modality will provide critical insights for improving maternal and fetal outcomes.
Collapse
Affiliation(s)
- Ila Dwivedi
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Gabriel G. Haddad
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Rady Children’s Hospital, San Diego, CA, United States
| |
Collapse
|
4
|
Salimando GJ, Tremblay S, Kimmey BA, Li J, Rogers SA, Wojick JA, McCall NM, Wooldridge LM, Rodrigues A, Borner T, Gardiner KL, Jayakar SS, Singeç I, Woolf CJ, Hayes MR, De Jonghe BC, Bennett FC, Bennett ML, Blendy JA, Platt ML, Creasy KT, Renthal WR, Ramakrishnan C, Deisseroth K, Corder G. Human OPRM1 and murine Oprm1 promoter driven viral constructs for genetic access to μ-opioidergic cell types. Nat Commun 2023; 14:5632. [PMID: 37704594 PMCID: PMC10499891 DOI: 10.1038/s41467-023-41407-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
With concurrent global epidemics of chronic pain and opioid use disorders, there is a critical need to identify, target and manipulate specific cell populations expressing the mu-opioid receptor (MOR). However, available tools and transgenic models for gaining long-term genetic access to MOR+ neural cell types and circuits involved in modulating pain, analgesia and addiction across species are limited. To address this, we developed a catalog of MOR promoter (MORp) based constructs packaged into adeno-associated viral vectors that drive transgene expression in MOR+ cells. MORp constructs designed from promoter regions upstream of the mouse Oprm1 gene (mMORp) were validated for transduction efficiency and selectivity in endogenous MOR+ neurons in the brain, spinal cord, and periphery of mice, with additional studies revealing robust expression in rats, shrews, and human induced pluripotent stem cell (iPSC)-derived nociceptors. The use of mMORp for in vivo fiber photometry, behavioral chemogenetics, and intersectional genetic strategies is also demonstrated. Lastly, a human designed MORp (hMORp) efficiently transduced macaque cortical OPRM1+ cells. Together, our MORp toolkit provides researchers cell type specific genetic access to target and functionally manipulate mu-opioidergic neurons across a range of vertebrate species and translational models for pain, addiction, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gregory J Salimando
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sébastien Tremblay
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Blake A Kimmey
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jia Li
- Dept. of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sophie A Rogers
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica A Wojick
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nora M McCall
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa M Wooldridge
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amrith Rodrigues
- Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tito Borner
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristin L Gardiner
- Dept. of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selwyn S Jayakar
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ilyas Singeç
- Stem Cell Translation Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthew R Hayes
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Bart C De Jonghe
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - F Christian Bennett
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurology, Dept. of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mariko L Bennett
- Division of Neurology, Dept. of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julie A Blendy
- Dept. of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Platt
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kate Townsend Creasy
- Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - William R Renthal
- Dept. of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Karl Deisseroth
- CNC Program, Stanford University, Stanford, CA, USA.
- Dept. of Bioengineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Dept. of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA.
| | - Gregory Corder
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Abstract
Cryopreservation of cells and biologics underpins all biomedical research from routine sample storage to emerging cell-based therapies, as well as ensuring cell banks provide authenticated, stable and consistent cell products. This field began with the discovery and wide adoption of glycerol and dimethyl sulfoxide as cryoprotectants over 60 years ago, but these tools do not work for all cells and are not ideal for all workflows. In this Review, we highlight and critically review the approaches to discover, and apply, new chemical tools for cryopreservation. We summarize the key (and complex) damage pathways during cellular cryopreservation and how each can be addressed. Bio-inspired approaches, such as those based on extremophiles, are also discussed. We describe both small-molecule-based and macromolecular-based strategies, including ice binders, ice nucleators, ice nucleation inhibitors and emerging materials whose exact mechanism has yet to be understood. Finally, looking towards the future of the field, the application of bottom-up molecular modelling, library-based discovery approaches and materials science tools, which are set to transform cryopreservation strategies, are also included.
Collapse
Affiliation(s)
| | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, Coventry, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|