1
|
Li X, Xie Z, Wei Y, Li M, Zhang M, Luo S, Xie L. Recombinant Hemagglutinin Protein from H9N2 Avian Influenza Virus Exerts Good Immune Effects in Mice. Microorganisms 2024; 12:1552. [PMID: 39203394 PMCID: PMC11356462 DOI: 10.3390/microorganisms12081552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
The H9N2 subtype of avian influenza virus (AIV) causes enormous economic losses and poses a significant threat to public health; the development of vaccines against avian influenza is ongoing. To study the immunogenicity of hemagglutinin (HA) protein, we constructed a recombinant pET-32a-HA plasmid, induced HA protein expression with isopropyl β-D-1-thiogalactopyranoside (IPTG), verified it by SDS-PAGE and Western blotting, and determined the sensitivity of the recombinant protein to acid and heat. Subsequently, mice were immunized with the purified HA protein, and the immunization effect was evaluated according to the hemagglutination inhibition (HI) titer, serum IgG antibody titer, and cytokine secretion level of the mice. The results showed that the molecular weight of the HA protein was approximately 84 kDa, and the protein existed in both soluble and insoluble forms; in addition, the HA protein exhibited good acid and thermal stability, the HI antibody titer reached 6 log2-8 log2, and the IgG-binding antibody titer was 1:1,000,000. Moreover, the levels of IL-2, IL-4, and IL-5 in the immunized mouse spleen cells were significantly increased compared with those in the control group. However, the levels of IL-1β, IL-6, IL-13, IFN-γ, IL-18, TNF-α, and GM-CSF were decreased in the immunized group. The recombinant HA protein utilized in this study exhibited good stability and exerted beneficial immune effects, providing a theoretical basis for further research on influenza vaccines.
Collapse
Affiliation(s)
- Xiaofeng Li
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Zhixun Xie
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - You Wei
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Meng Li
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Minxiu Zhang
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Sisi Luo
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Liji Xie
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| |
Collapse
|
2
|
Khachab Y, Saab A, El Morr C, El-Lahib Y, Sokhn ES. Identifying the panorama of potential pandemic pathogens and their key characteristics: a systematic scoping review. Crit Rev Microbiol 2024:1-21. [PMID: 38900695 DOI: 10.1080/1040841x.2024.2360407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
The globe has recently seen several terrifying pandemics and outbreaks, underlining the ongoing danger presented by infectious microorganisms. This literature review aims to explore the wide range of infections that have the potential to lead to pandemics in the present and the future and pave the way to the conception of epidemic early warning systems. A systematic review was carried out to identify and compile data on infectious agents known to cause pandemics and those that pose future concerns. One hundred and fifteen articles were included in the review. They provided insights on 25 pathogens that could start or contribute to creating pandemic situations. Diagnostic procedures, clinical symptoms, and infection transmission routes were analyzed for each of these pathogens. Each infectious agent's potential is discussed, shedding light on the crucial aspects that render them potential threats to the future. This literature review provides insights for policymakers, healthcare professionals, and researchers in their quest to identify potential pandemic pathogens, and in their efforts to enhance pandemic preparedness through building early warning systems for continuous epidemiological monitoring.
Collapse
Affiliation(s)
- Yara Khachab
- Laboratory Department, Lebanese Hospital Geitaoui-University Medical Center, Beirut, Lebanon
| | - Antoine Saab
- Quality and Safety Department, Lebanese Hospital Geitaoui-UMC, Beirut, Lebanon
| | - Christo El Morr
- School of Health Policy and Management, York University, Toronto, Canada
| | - Yahya El-Lahib
- Faculty of Social Work, University of Calgary, Calgary, Canada
| | - Elie Salem Sokhn
- Laboratory Department, Lebanese Hospital Geitaoui-University Medical Center, Beirut, Lebanon
- Molecular Testing Laboratory, Medical Laboratory Department, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
3
|
Ingrao F, Ngabirano E, Rauw F, Dauphin G, Lambrecht B. Immunogenicity and protective efficacy of a multivalent herpesvirus vectored vaccine against H9N2 low pathogenic avian influenza in chicken. Vaccine 2024; 42:3410-3419. [PMID: 38641498 DOI: 10.1016/j.vaccine.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
The application of recombinant herpesvirus of turkey, expressing the H9 hemagglutinin gene from low pathogenic avian influenza virus (LPAIV) H9N2 and the avian orthoavulavirus-1 (AOAV-1) (commonly known as Newcastle Disease virus (NDV)) fusion protein (F) as an rHVT-H9-F vaccine, is an alternative to currently used classical vaccines. This study investigated H9- and ND-specific humoral and mucosal responses, H9-specific cell-mediated immunity, and protection conferred by the rHVT-H9-F vaccine in specific pathogen-free (SPF) chickens. Vaccination elicited systemic NDV F- and AIV H9-specific antibody response but also local antibodies in eye wash fluid and oropharyngeal swabs. The ex vivo H9-specific stimulation of splenic and pulmonary T cells in the vaccinated group demonstrated the ability of vaccination to induce systemic and local cellular responses. The clinical protection against a challenge using a LPAIV H9N2 strain of the G1 lineage isolated in Morocco in 2016 was associated with a shorter duration of shedding along with reduced viral genome load in the upper respiratory tract and reduced cloacal shedding compared to unvaccinated controls.
Collapse
MESH Headings
- Animals
- Influenza A Virus, H9N2 Subtype/immunology
- Influenza A Virus, H9N2 Subtype/genetics
- Chickens/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/immunology
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Virus Shedding/immunology
- Specific Pathogen-Free Organisms
- Newcastle disease virus/immunology
- Newcastle disease virus/genetics
- Poultry Diseases/prevention & control
- Poultry Diseases/immunology
- Poultry Diseases/virology
- Immunity, Cellular
- Herpesvirus 1, Meleagrid/immunology
- Herpesvirus 1, Meleagrid/genetics
- Vaccination/methods
- Immunity, Humoral
- Genetic Vectors/immunology
- Immunogenicity, Vaccine
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
Collapse
Affiliation(s)
- Fiona Ingrao
- Service of Avian Virology and Immunology, Sciensano, 1180 Brussels, Belgium.
| | - Eva Ngabirano
- Service of Avian Virology and Immunology, Sciensano, 1180 Brussels, Belgium
| | - Fabienne Rauw
- Service of Avian Virology and Immunology, Sciensano, 1180 Brussels, Belgium
| | - Gwenaëlle Dauphin
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500 Libourne, France
| | | |
Collapse
|
4
|
Wang X, Liu K, Guo Y, Pei Y, Chen X, Lu X, Gao R, Chen Y, Gu M, Hu J, Liu X, Hu S, Jiao XA, Liu X, Wang X. Emergence of a new designated clade 16 with significant antigenic drift in hemagglutinin gene of H9N2 subtype avian influenza virus in eastern China. Emerg Microbes Infect 2023; 12:2249558. [PMID: 37585307 PMCID: PMC10467529 DOI: 10.1080/22221751.2023.2249558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
H9N2 avian influenza viruses (AIVs) pose an increasing threat to the poultry industry worldwide and have pandemic potential. Vaccination has been principal prevention strategy to control H9N2 in China since 1998, but vaccine effectiveness is persistently challenged by the emergence of the genetic and/or antigenic variants. Here, we analysed the genetic and antigenic characteristics of H9N2 viruses in China, including 70 HA sequences of H9N2 isolates from poultry, 7358 from online databases during 2010-2020, and 15 from the early reference strains. Bayesian analyses based on hemagglutinin (HA) gene revealed that a new designated clade16 emerged in April 2012, and was prevalent and co-circulated with clade 15 since 2013 in China. Clade 16 viruses exhibited decreased cross-reactivity with those from clade 15. Antigenic Cartography analyses showed represent strains were classified into three antigenic groups named as Group1, Group2 and Group3, and most of the strains in Group 3 (15/17, 88.2%) were from Clade 16 while most of the strains in Group2 (26/29, 89.7%) were from Clade 15. The mean distance between Group 3 and Group 2 was 4.079 (95%CI 3.605-4.554), revealing that major switches to antigenic properties were observed over the emergence of clade 16. Genetic analysis indicated that 11 coevolving amino acid substitutions primarily at antigenic sites were associated with the antigenic differences between clade 15 and clade 16. These data highlight complexities of the genetic evolution and provide a framework for the genetic basis and antigenic characterization of emerging clade 16 of H9N2 subtype avian influenza virus.
Collapse
Affiliation(s)
- Xiyue Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Kaituo Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yaqian Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yuru Pei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xia Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xiaolong Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
| | - Ruyi Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
| | - Yu Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
| | - Jiao Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
| | - Xiaowen Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
| | - Xin-an Jiao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
5
|
Huang X, Yin G, Cai Y, Hu J, Huang J, Liu Q, Feng X. Identification of Unique and Conserved Neutralizing Epitopes of Vestigial Esterase Domain in HA Protein of the H9N2 Subtype of Avian Influenza Virus. Viruses 2022; 14:2739. [PMID: 36560743 PMCID: PMC9787348 DOI: 10.3390/v14122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The H9N2 subtype of avian influenza virus (AIV) has been reported to infect not only birds, but also humans. The hemagglutinin (HA) protein is the main surface antigen of AIV and plays an important role in the viral infection. For treatment strategies and vaccine development, HA protein has been an important target for the development of broadly neutralizing antibodies against influenza A virus. To investigate the vital target determinant cluster in HA protein in this work, HA gene was cloned and expressed in the prokaryotic expression vector pET28a. The spleen lymphocytes from BALC/c mice immunized with the purified recombinant HA protein were fused with SP2/0 cells. After Hypoxanthine-Aminopterin-Thymidine (HAT) medium screening and indirect ELISA detection, six hybridoma cell lines producing anti-HA monoclonal antibodies were screened. The gradually truncated HA gene expression and western blotting were used to identify their major locations in epitopes specific to these monoclonal antibodies. It was found that the epitopes were located in three areas: 112NVENLEEL119, 117EELRSLFS124, and 170PIQDAQ175. Epitope 112NVENLEEL119 has a partial amino acid crossover with 117EELRSLFS124, which is located in the vestigial esterase domain "110-helix" of HA, and the monoclonal antibody recognizing these epitopes showed the neutralizing activity, suggesting that the region 112NVENLEELRSLFS124 might be a novel neutralizing epitope. The results of the homology analysis showed that these three epitopes were generally conserved in H9N2 subtype AIV, and will provide valuable insights into H9N2 vaccine design and improvement, as well as antibody-based therapies for treatment of H9N2 AIV infection.
Collapse
Affiliation(s)
- Xiangyu Huang
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guihu Yin
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqin Cai
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianing Hu
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingwen Huang
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingtao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiuli Feng
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Motamedi Sedeh F, Khalili I, Wijewardana V, Unger H, Shawrang P, Behgar M, Moosavi SM, Arbabi A, Hosseini SM. Improved Whole Gamma Irradiated Avian Influenza Subtype H9N2 Virus Vaccine Using Trehalose and Optimization of Vaccination Regime on Broiler Chicken. Front Vet Sci 2022; 9:907369. [PMID: 35903140 PMCID: PMC9315219 DOI: 10.3389/fvets.2022.907369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Gamma (γ)-radiation can target viral genome replication and preserve viral structural proteins compared to formalin inactivation. Thus, a stronger immunity could be induced after the inoculation of the irradiated virus. In this study, γ-irradiated low-pathogenic avian influenza virus-H9N2 (LPAIV-H9N2) was used to immunize the broiler chicken in two formulations, including γ-irradiated LPAIV-H9N2 with 20% Trehalose intranasally (IVT.IN) or γ-irradiated LPAIV-H9N2 plus Montanide oil adjuvant ISA70 subcutaneously (IV+ISA.SC) in comparison with formalin-inactivated LPAIV-H9N2 vaccine intranasally (FV.IN) or formalin-inactivated LPAIV-H9N2 plus ISA70 subcutaneously (FV+ISA.SC). Two vaccination regimes were employed; the first one was primed on day 1 and boosted on day 15 (early regime), and the second one was primed on day 11 and boosted on day 25 (late regime). A challenge test was performed with a live homologous subtype virus. Virus shedding was monitored by quantifying the viral load via RT-qPCR on tracheal and cloacal swabs. Hemagglutination inhibition (HI) antibody titration and stimulation index (SI) of the splenic lymphocyte proliferation were measured, respectively, by HI test and Cell Proliferation assay. Cytokine assay was conducted by the RT-qPCR on antigen-stimulated spleen cells. The results of the HI test showed significant increases in antibody titer in all vaccinated groups, but it was more evident in the IVT late vaccination regime, reaching 5.33 log2. The proliferation of stimulated spleen lymphocytes was upregulated more in the IVT.IN vaccine compared to other vaccines. The mRNA transcription levels of T-helper type 1 cytokines such as interferon-gamma (IFN-γ) and interleukin 2 (IL-2) were upregulated in all vaccinated groups at the late regime. Moreover, IL-6, a pro-inflammatory cytokine was upregulated as well. However, upregulation was more noticeable in the early vaccination than the late vaccination (p< 0.05). After the challenge, the monitoring of virus shedding for the H9 gene represented an extremely low viral load. The body weight loss was not significant (p > 0.05) among the vaccinated groups. In addition, the viral load of <100.5 TCID50/ml in the vaccinated chicken indicated the protective response for all the vaccines. Accordingly, the IVT vaccine is a good candidate for the immunization of broiler chicken via the intranasal route at late regime.
Collapse
Affiliation(s)
- Farahnaz Motamedi Sedeh
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
- *Correspondence: Farahnaz Motamedi Sedeh ;
| | - Iraj Khalili
- Quality Control Department, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Viskam Wijewardana
- Animal Production and Health Section, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Hermann Unger
- Animal Production and Health Section, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Parvin Shawrang
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Mehdi Behgar
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Sayed Morteza Moosavi
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Arash Arbabi
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
7
|
Huang X, Huang J, Yin G, Cai Y, Chen M, Hu J, Feng X. Identification of NP Protein-Specific B-Cell Epitopes for H9N2 Subtype of Avian Influenza Virus. Viruses 2022; 14:v14061172. [PMID: 35746647 PMCID: PMC9228734 DOI: 10.3390/v14061172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Avian Influenza (AI) caused by the H9N2 subtype of the avian influenza virus (AIV) poses a serious threat to both the poultry industry and to public health safety. NP is one of the major structural proteins in influenza viruses. B-cell determinants located on NP proteins have attracted increasing attention. In this study, based on the NP sequence of the H9N2 (A/chicken/Shandong/LY1/2017) strain, the truncated NP gene (71 AA–243 AA) was cloned and prokaryotically expressed in a pET-28a (+) vector. BALB/c mice were immunized with a purified recombinant of an NP protein to prepare a monoclonal antibody against NP proteins. The prokaryotic expression of four overlapping fragments, NP-N-96, NP-C-103, NP-C-54 and NP-C-49, were used to recognize an antigenic epitope of the NP protein. The results show that, after cell fusion, one hybridoma cell clone secreted the antibody specific to the NP protein, following screening with ELISA and indirect immunofluorescence, which is named the 4F5 monoclonal antibody (mAb). Western blotting on the overlapping fragments showed that the 230FQTAAQRA237 motif was identified as the minimal motif recognized by 4F5mAb, which was represented as the linear B-cell epitope of the NP protein. Homology analysis of this epitope shows that it was highly conserved in 18 AIVs analyzed in this study, and the epitope prediction results indicate that the epitope may be located on the surface of the NP protein. These results provide a strong experimental basis for studying the function of the NP protein of the H9N2 AIV and also strong technical support for the development of a universal assay based on an anti-NP monoclonal antibody.
Collapse
Affiliation(s)
- Xiangyu Huang
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (J.H.); (G.Y.); (Y.C.); (M.C.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingwen Huang
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (J.H.); (G.Y.); (Y.C.); (M.C.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guihu Yin
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (J.H.); (G.Y.); (Y.C.); (M.C.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqin Cai
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (J.H.); (G.Y.); (Y.C.); (M.C.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengli Chen
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (J.H.); (G.Y.); (Y.C.); (M.C.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianing Hu
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (J.H.); (G.Y.); (Y.C.); (M.C.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuli Feng
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (J.H.); (G.Y.); (Y.C.); (M.C.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-25-8439-6028
| |
Collapse
|
8
|
Spatiotemporal Dynamics, Evolutionary History and Zoonotic Potential of Moroccan H9N2 Avian Influenza Viruses from 2016 to 2021. Viruses 2022; 14:v14030509. [PMID: 35336916 PMCID: PMC8951762 DOI: 10.3390/v14030509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
The H9N2 virus continues to spread in wild birds and poultry worldwide. At the beginning of 2016, the H9N2 Avian influenza virus (AIV) was detected in Morocco for the first time; despite the implementation of vaccination strategies to control the disease, the virus has become endemic in poultry in the country. The present study was carried out to investigate the origins, zoonotic potential, as well as the impact of vaccination on the molecular evolution of Moroccan H9N2 viruses. Twenty-eight (28) H9N2 viruses collected from 2016 to 2021 in Moroccan poultry flocks were isolated and their whole genomes sequenced. Phylogenetic and evolutionary analyses showed that Moroccan H9N2 viruses belong to the G1-like lineage and are closely related to viruses isolated in Africa and the Middle East. A high similarity among all the 2016–2017 hemagglutinin sequences was observed, while the viruses identified in 2018–2019 and 2020–2021 were separated from their 2016–2017 ancestors by long branches. Mutations in the HA protein associated with antigenic drift and increased zoonotic potential were also found. The Bayesian phylogeographic analyses revealed the Middle East as being the region where the Moroccan H9N2 virus may have originated, before spreading to the other African countries. Our study is the first comprehensive analysis of the evolutionary history of the H9N2 viruses in the country, highlighting their zoonotic potential and pointing out the importance of implementing effective monitoring systems.
Collapse
|
9
|
Zhang X, Li Y, Jin S, Wang T, Sun W, Zhang Y, Li F, Zhao M, Sun L, Hu X, Feng N, Xie Y, Zhao Y, Yang S, Xia X, Gao Y. H9N2 influenza virus spillover into wild birds from poultry in China bind to human-type receptors and transmit in mammals via respiratory droplets. Transbound Emerg Dis 2022; 69:669-684. [PMID: 33566453 DOI: 10.1111/tbed.14033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/30/2021] [Accepted: 02/07/2021] [Indexed: 12/30/2022]
Abstract
H9N2 influenza virus has been reported worldwide for several decades, and it has evolved into multiple genotypes among domestic poultry. However, the study involving ecology and evolution of low pathogenic avian influenza virus H9N2 in wild birds in China is limited. Here, we carried out surveillance of avian influenza virus H9N2 in wild birds along with the East Asian-Australian migratory flyway in China in 2017. To estimate the prevalence of H9N2 avian virus in wild birds, information on exposure of wild bird populations to H9N2 viruses using serology, in addition to virology, would greatly improve monitoring capabilities. In this study, we also present serological data of H9N2 among wild birds in China during 2013-2016. We report the identification of poultry-derived H9N2 isolates from asymptomatic infected multispecies wild birds such as Common kestrel (Falco tinnunculus), Northern goshawk (Accipiter gentilis), Little owl (Athene noctua) and Ring-necked Pheasant (Phasianus colchicus) in North China in June 2017. Phylogenetic analysis demonstrated that Tianjin H9N2 isolates belong to the G81 and carry internal genes highly homologous to human H10N8 and H7N9. The isolates could directly infect mice without adaptation but were restricted to replicate in the respiratory system. Glycan-binding preference analyses suggested that the H9N2 isolates have acquired a binding affinity for the human-like receptor. Notably, results from transmission experiment in guinea pigs and ferrets demonstrated the wild birds-derived H9N2 influenza virus exhibits efficient transmission phenotypes in mammalian models via respiratory droplets. Our results indicate that the H9N2 AIVs continued to circulate extensively in wild bird populations and migratory birds play an important role in the spread and genetic diversification of H9N2 AIVs. The pandemic potential of H9N2 viruses demonstrated by aerosol transmission in mammalian models via respiratory droplets highlights the importance of monitoring influenza viruses in these hosts.
Collapse
Affiliation(s)
- Xinghai Zhang
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuanguo Li
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Song Jin
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Weiyang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Yiming Zhang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Fangxu Li
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Menglin Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Leiyun Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Xinyu Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Ying Xie
- Hebei Key Lab of Laboratory Animal Science, Department of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Xianzhu Xia
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
10
|
Kong L, You R, Zhang D, Yuan Q, Xiang B, Liang J, Lin Q, Ding C, Liao M, Chen L, Ren T. Infectious Bronchitis Virus Infection Increases Pathogenicity of H9N2 Avian Influenza Virus by Inducing Severe Inflammatory Response. Front Vet Sci 2022; 8:824179. [PMID: 35211536 PMCID: PMC8860976 DOI: 10.3389/fvets.2021.824179] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022] Open
Abstract
Infectious bronchitis virus (IBV) and H9N2 avian influenza virus (AIV) are frequently identified in chickens with respiratory disease. However, the role and mechanism of IBV and H9N2 AIV co-infection remain largely unknown. Specific-pathogen-free (SPF) chickens were inoculated with IBV 2 days before H9N2 virus inoculation (IBV/H9N2); with IBV and H9N2 virus simultaneously (IBV+H9N2); with H9N2 virus 2 days before IBV inoculation (H9N2/IBV); or with either IBV or H9N2 virus alone. Severe respiratory signs, pathological damage, and higher morbidity and mortality were observed in the co-infection groups compared with the IBV and H9N2 groups. In general, a higher virus load and a more intense inflammatory response were observed in the three co-infection groups, especially in the IBV/H9N2 group. The same results were observed in the transcriptome analysis of the trachea of the SPF chickens. Therefore, IBV might play a major role in the development of respiratory disease in chickens, and secondary infection with H9N2 virus further enhances the pathogenicity by inducing a severe inflammatory response. These findings may provide a reference for the prevention and control of IBV and H9N2 AIV in the poultry industry and provide insight into the molecular mechanisms of IBV and H9N2 AIV co-infection in chickens.
Collapse
Affiliation(s)
- Lingchen Kong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Renrong You
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Dianchen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Qingli Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Bin Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jianpeng Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Chan Ding
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- *Correspondence: Libin Chen
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Tao Ren
| |
Collapse
|
11
|
Abstract
Avian influenza viruses pose a continuous threat to both poultry and human health, with significant economic impact. The ability of viruses to reassort and jump the species barrier into mammalian hosts generates a constant pandemic threat. H10Nx avian viruses have been shown to replicate in mammalian species without prior adaptation and have caused significant human infection and fatalities. They are able to rapidly reassort with circulating poultry strains and go undetected due to their low pathogenicity in chickens. Novel detections of both human reassortant strains and increasing endemicity of H10Nx poultry infections highlight the increasing need for heightened surveillance and greater understanding of the distribution, tropism, and infection capabilities of these viruses. In this minireview, we highlight the gap in the current understanding of this subtype and its prevalence across a vast range of host species and geographical locations.
Collapse
|
12
|
Zhang RR, Yang X, Shi CW, Yu LJ, Lian YB, Huang HB, Wang JZ, Jiang YL, Cao X, Zeng Y, Yang GL, Yang WT, Wang CF. Improved pathogenicity of H9N2 subtype of avian influenza virus induced by mutations occurred after serial adaptations in mice. Microb Pathog 2021; 160:105204. [PMID: 34562554 DOI: 10.1016/j.micpath.2021.105204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 02/05/2023]
Abstract
H9N2 subtype, a low pathogenic avian influenza virus, is emerging as a major causative agent circulating poultry workplaces across China and other Asian countries. Increasing case number of interspecies transmissions to mammals reported recently provoked a great concern about its risks inducing global pandemics. In an attempt to understand the underlying mechanism of how the H9N2 virus disrupts the interspecies segregation to transmit to mammals. A mutant H9N2 strain was obtained by passaging the wildtype H9N2 A/chicken/Hong Kong/G9/1997 eight times from lung to lung in BALB/c mice. Our finding revealed that mice manifested severe clinical symptoms including losses of body weight, pathological damages in pulmonary sites and all died within two weeks after infected with the mutated H9N2, whereas all mice survived upon infected with wildtype strain in comparison, which suggested increased pathogenicity of the mutant strain. In addition, mice showed enhanced levels of proinflammatory cytokines in sera, including IL-6, TNF-α and IL-1β compared to those subjected to wildtype viral infections. Sequence analysis showed that five amino acid substitutions occurred at PB2627, HA87, HA234, NP387 and M156, and a deletion mutation happened in the M gene (M157). Of these mutations, PB2 E627K played key roles in modulating lethality in mice. Taken together, the mutant H9N2 strain obtained by serial passaging of its wildtype in mice significantly increased its virulence leading to death of mice, which might be associated the accumulated mutations occurred on its genome.
Collapse
Affiliation(s)
- Rong-Rong Zhang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ling-Jiao Yu
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yi-Bing Lian
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Wen-Tao Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
13
|
Yehia N, Eldemery F, Arafa AS, Abd El Wahed A, El Sanousi A, Weidmann M, Shalaby M. Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid Detection of Avian Influenza Virus H9N2 HA Gene. Vet Sci 2021; 8:vetsci8070134. [PMID: 34357927 PMCID: PMC8310249 DOI: 10.3390/vetsci8070134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
The H9N2 subtype of avian influenza A virus (aIAV) is circulating among birds worldwide, leading to severe economic losses. H9N2 cocirculation with other highly pathogenic aIAVs has the potential to contribute to the rise of new strains with pandemic potential. Therefore, rapid detection of H9 aIAVs infection is crucial to control virus spread. A qualitative reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of aIAV subtype H9N2 was developed. All results were compared to the gold standard (real-time reverse transcription polymerase chain reaction (RT-PCR)). The RT-RPA assay was designed to detect the hemagglutinin (HA) gene of H9N2 by testing three pairs of primers and a probe. A serial concentration between 106 and 100 EID50 (50% embryo infective dose)/mL was applied to calculate the analytical sensitivity. The H9 RT-RPA assay was highly sensitive as the lowest concentration point of a standard range at one EID50/mL was detected after 5 to 8 min. The H9N2 RT-RPA assay was highly specific as nucleic acid extracted from H9 negative samples and from other avian pathogens were not cross detected. The diagnostic sensitivity when testing clinical samples was 100% for RT-RPA and RT-PCR. In conclusion, H9N2 RT-RPA is a rapid sensitive and specific assay that easily operable in a portable device for field diagnosis of aIAV H9N2.
Collapse
Affiliation(s)
- Nahed Yehia
- National Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt; (N.Y.); (A.-S.A.)
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Abdel-Satar Arafa
- National Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt; (N.Y.); (A.-S.A.)
| | - Ahmed Abd El Wahed
- Division of Microbiology and Animal Hygiene, Faculty of Agricultural Sciences, University of Goettingen, 7077 Goettingen, Germany
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
- Correspondence: or ; Tel.: +49-176-613-603-25
| | - Ahmed El Sanousi
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt; (A.E.S.); (M.S.)
| | - Manfred Weidmann
- Institute of Microbiology & Virology, Brandenburg Medical School, 01968 Senftenberg, Germany;
| | - Mohamed Shalaby
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt; (A.E.S.); (M.S.)
| |
Collapse
|
14
|
El-Sayed MM, Arafa AS, Abdelmagid M, Youssef AI. Epidemiological surveillance of H9N2 avian influenza virus infection among chickens in farms and backyards in Egypt 2015-2016. Vet World 2021; 14:949-955. [PMID: 34083945 PMCID: PMC8167522 DOI: 10.14202/vetworld.2021.949-955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/02/2021] [Indexed: 11/29/2022] Open
Abstract
Background and Aim: LPAI H9N2 infection among the poultry population in Egypt constitutes an additional risk factor in the poultry industry. This study aimed to determine the prevalence of H9N2 avian influenza virus (AIV) in commercial and backyard chickens in Egypt. A 2-year survey of H9N2 AIV in chickens in farms and backyards was carried out in 2015 and 2016. Materials and Methods: Direct detection of H9N2 AIV was performed by detecting the virus in tracheal and cloacal swabs using real-time polymerase chain reaction assays. A total of 20,421 samples were collected from chickens in farms and backyards in 26 Egyptian governorates. Results: In 2015, cases positive for H9N2 AIV numbered 388 (3.9%) out of 10,016 examined cases. However, in 2016, the total positive cases numbered 447 (4.3%) out of 10,405 examined cases. The prevalence of H9N2 AIV among chickens on commercial farms was 4.6% out of the 16,666 chickens examined. The rates of positive cases in 2015 and 2016 were 4.4% (349/7884) and 4.7% (417/8782), respectively. The prevalence of H9N2 AIV in backyard chickens was 1.8% (69/3755). The rates of positive cases in backyard chickens were 1.8% (39/2132) in 2015 and again 1.8% (30/1623) in 2016. The highest positivity rate of H9N2 in chicken farms was in Beni-Suef (61.5%) (8/13), whereas the highest positivity rate in backyard chickens was in Fayoum (8.2%) (8/97). Conclusion: The analysis of H9N2 infections among chicken farms and in backyard chickens in the different governorates of Egypt over 2 years indicated widespread infection throughout the country. Thus, continuous surveillance and implementation of control programs are warranted.
Collapse
Affiliation(s)
- Moataz Mohamed El-Sayed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264, Dokki, Giza 12618, Egypt
| | - Abdel Satar Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264, Dokki, Giza 12618, Egypt
| | - Marwa Abdelmagid
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264, Dokki, Giza 12618, Egypt
| | - Ahmed Ibrahim Youssef
- Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
15
|
Chen S, Quan K, Wang H, Li S, Xue J, Qin T, Chu D, Fan G, Du Y, Peng D. A Live Attenuated H9N2 Avian Influenza Vaccine Prevents the Viral Reassortment by Exchanging the HA and NS1 Packaging Signals. Front Microbiol 2021; 11:613437. [PMID: 33613465 PMCID: PMC7890077 DOI: 10.3389/fmicb.2020.613437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
The H9N2 avian influenza virus is not only an important zoonotic pathogen, it can also easily recombine with other subtypes to generate novel reassortments, such as the H7N9 virus. Although H9N2 live attenuated vaccines can provide good multiple immunities, including humoral, cellular, and mucosal immunity, the risk of reassortment between the vaccine strain and wild-type virus is still a concern. Here, we successfully rescued an H9N2 live attenuated strain [rTX-NS1-128 (mut)] that can interdict reassortment, which was developed by exchanging the mutual packaging signals of HA and truncated NS1 genes and confirmed by RT-PCR and sequencing. The dynamic growth results showed that rTX-NS1-128 (mut) replication ability in chick embryos was not significantly affected by our construction strategy compared to the parent virus rTX strain. Moreover, rTX-NS1-128 (mut) had good genetic stability after 15 generations and possessed low pathogenicity and no contact transmission characteristics in chickens. Furthermore, chickens were intranasally immunized by rTX-NS1-128 (mut) with a single dose, and the results showed that the hemagglutination inhibition (HI) titers peaked at 3 weeks after vaccination and lasted at least until 11 weeks. The cellular immunity (IL-6 and IL-12) and mucosal immunity (IgA and IgG) in the nasal and trachea samples were significantly increased compared to inactivated rTX. Recombinant virus provided a good cross-protection against homologous TX strain (100%) and heterologous F98 strain (80%) challenge. Collectively, these data indicated that rTX-NS1-128(mut) lost the ability for independent reassortment of HA and NS1-128 and will be expected to be used as a potential live attenuated vaccine against H9N2 subtype avian influenza.
Collapse
Affiliation(s)
- Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Keji Quan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hui Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jing Xue
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Dianfeng Chu
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Qingdao Yibang Biological Engineering Co., Ltd., Qingdao, China
| | - Gencheng Fan
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Qingdao Yibang Biological Engineering Co., Ltd., Qingdao, China
| | - Yuanzhao Du
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Qingdao Yibang Biological Engineering Co., Ltd., Qingdao, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| |
Collapse
|
16
|
Mirzaiee K, Shoushtari A, Bokaie S, Fallah Mehrabadi MH, Peighambari SM. Trend of Changes in the Titer of Antibody against Avian Influenza Virus H9n2 during Raising Period in Vaccinated and Unvaccinated Broiler Farms in Qazvin Province, Iran: A Cohort Study. ARCHIVES OF RAZI INSTITUTE 2020; 75:9-16. [PMID: 32291997 DOI: 10.22092/ari.2018.120089.1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 04/15/2018] [Indexed: 09/30/2022]
Abstract
Avian influenza virus (AIV) H9N2 is endemic in Iran and its large-scale circulation in the poultry industry of the country is devastating. This virus was first reported in the industrial poultry populations of Iran in July 1998. Some of the published studies showed that inactivated avian influenza (AI) vaccines are capable of inducing an immune response and providing protection against morbidity and mortality in different countries (Vasfi et al., 2002; Tavakkoli et al., 2011). Low pathogenicity avian influenza subtype H9N2 virus has been reported to have a zoonotic potential and widespread distribution in Iran. Therefore, water-in-oil emulsion vaccines are employed to control the disease in chickens (Nili and Asasi, 2003). This cohort study was conducted during July 2016-November 2017 in broiler chicken farms of Qazvin province, Iran to investigate the serological change trends in broiler chickens in this region. Level of immunity against the H9N2 virus was evaluated by hemagglutination inhibition assay. Fifteen farms out of thirty enrolled units used AI H9N2 killed vaccines. The minimum of mean antibody titers (MATs) was 4.54-2.42 and the maximum of MATs was 4.54+2.42 on day 3. In addition, the minimum and maximum MATs on day 50 were 0.4-0.64 and 0.4+0.064, respectively. The transfer rate of H9N2 AIV antibodies from the serum of breeders to the serum of chickens was calculated as 60.35% in our study. A significant difference was revealed between the maternal mean antibody titers (MMATs) and the MATs on day 3 (P&lt;0.001). In addition, the difference between the MATs on day 3 and the MATs on day 10 was found to be significant (P&lt;0.01). Moreover, MATs were significantly different between the vaccinated and unvaccinated herds on day 40 (P&lt;0.05), while no significant difference was observed on days 3, 10, 20, and 30 (P&gt;0.05). According to the results of this study, antibody titers in the vaccinated farms did not reach the protective level until the end of the rearing period. Most of the unvaccinated herds experienced a spurt in antibody titers due to exposure to the virus. Consequently, biosecurity measures must be implemented more seriously and strictly in broiler farms.
Collapse
Affiliation(s)
- K Mirzaiee
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - A Shoushtari
- Department of Poultry Diseases, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - S Bokaie
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - M H Fallah Mehrabadi
- Department of Poultry Diseases, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - S M Peighambari
- Department of Avian Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Li YT, Linster M, Mendenhall IH, Su YCF, Smith GJD. Avian influenza viruses in humans: lessons from past outbreaks. Br Med Bull 2019; 132:81-95. [PMID: 31848585 PMCID: PMC6992886 DOI: 10.1093/bmb/ldz036] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Human infections with avian influenza viruses (AIV) represent a persistent public health threat. The principal risk factor governing human infection with AIV is from direct contact with infected poultry and is primarily observed in Asia and Egypt where live-bird markets are common. AREAS OF AGREEMENT Changing patterns of virus transmission and a lack of obvious disease manifestations in avian species hampers early detection and efficient control of potentially zoonotic AIV. AREAS OF CONTROVERSY Despite extensive studies on biological and environmental risk factors, the exact conditions required for cross-species transmission from avian species to humans remain largely unknown. GROWING POINTS The development of a universal ('across-subtype') influenza vaccine and effective antiviral therapeutics are a priority. AREAS TIMELY FOR DEVELOPING RESEARCH Sustained virus surveillance and collection of ecological and physiological parameters from birds in different environments is required to better understand influenza virus ecology and identify risk factors for human infection.
Collapse
Affiliation(s)
- Yao-Tsun Li
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Martin Linster
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Ian H Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Yvonne C F Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Gavin J D Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
- SingHealth Duke-NUS Global Health Institute, 31 Third Hospital Ave, Singapore 168753
- Duke Global Health Institute, Duke University, 310 Trent Drive, Durham, NC 27710, USA
| |
Collapse
|
18
|
Nikbakht R, Baneshi MR, Bahrampour A, Hosseinnataj A. Comparison of methods to Estimate Basic Reproduction Number ( R 0) of influenza, Using Canada 2009 and 2017-18 A (H1N1) Data. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2019; 24:67. [PMID: 31523253 PMCID: PMC6670001 DOI: 10.4103/jrms.jrms_888_18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/13/2019] [Accepted: 05/17/2019] [Indexed: 12/29/2022]
Abstract
Background The basic reproduction number (R 0) has a key role in epidemics and can be utilized for preventing epidemics. In this study, different methods are used for estimating R 0's and their vaccination coverage to find the formula with the best performance. Materials and Methods We estimated R 0 for cumulative cases count data from April 18 to July 6, 2009 and 35-2017 to 34-2018 weeks in Canada: maximum likelihood (ML), exponential growth rate (EG), time-dependent reproduction numbers (TD), attack rate (AR), gamma-distributed generation time (GT), and the final size of the epidemic. Gamma distribution with mean and standard deviation 3.6 ± 1.4 is used as GT. Results The AR method obtained a R 0 (95% confidence interval [CI]) value of 1.116 (1.1163, 1.1165) and an EG (95%CI) value of 1.46 (1.41, 1.52). The R 0 (95%CI) estimate was 1.42 (1.27, 1.57) for the obtained ML, 1.71 (1.12, 2.03) for the obtained TD, 1.49 (1.0, 1.97) for the gamma-distributed GT, and 1.00 (0.91, 1.09) for the final size of the epidemic. The minimum and maximum vaccination coverage were related to AR and TD methods, respectively, where the TD method has minimum mean squared error (MSE). Finally, the R 0 (95%CI) for 2018 data was 1.52 (1.11, 1.94) by TD method, and vaccination coverage was estimated as 34.2%. Conclusion For the purposes of our study, the estimation of TD was the most useful tool for computing the R 0, because it has the minimum MSE. The estimation R 0 > 1 indicating that the epidemic has occurred. Thus, it is required to vaccinate at least 41.5% to prevent and control the next epidemic.
Collapse
Affiliation(s)
- Roya Nikbakht
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Department of Biostatistics and Epidemiology, Faculty of Health Kerman, Iran
| | - Mohammad Reza Baneshi
- Department of Biostatistics and Epidemiology, Faculty of Health, Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Bahrampour
- Department of Biostatistics and Epidemiology, Faculty of Health, Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Abolfazl Hosseinnataj
- Department of Biostatistics and Epidemiology, Faculty of Health, Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
19
|
Novianti AN, Rahardjo K, Prasetya RR, Nastri AM, Dewantari JR, Rahardjo AP, Estoepangestie ATS, Shimizu YK, Poetranto ED, Soegiarto G, Mori Y, Shimizu K. Whole-Genome Sequence of an Avian Influenza A/H9N2 Virus Isolated from an Apparently Healthy Chicken at a Live-Poultry Market in Indonesia. Microbiol Resour Announc 2019; 8:e01671-18. [PMID: 31023807 PMCID: PMC6486264 DOI: 10.1128/mra.01671-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/25/2019] [Indexed: 11/21/2022] Open
Abstract
We isolated an avian influenza A/H9N2 virus from an apparently healthy chicken at a live-poultry market in January 2018. This is the first report of a whole-genome sequence of A/H9N2 virus in Indonesia. Phylogenetic analyses indicated that intrasubtype reassortment of genome segments is involved in the genesis of the A/H9N2 virus.
Collapse
Affiliation(s)
| | - Krisnoadi Rahardjo
- Indonesia-Japan Collaborative Research Center, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Rima R Prasetya
- Indonesia-Japan Collaborative Research Center, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Aldise M Nastri
- Indonesia-Japan Collaborative Research Center, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Jezzy R Dewantari
- Indonesia-Japan Collaborative Research Center, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Adi P Rahardjo
- Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| | | | - Yohko K Shimizu
- Indonesia-Japan Collaborative Research Center, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Emmanuel D Poetranto
- Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
- Indonesia-Japan Collaborative Research Center, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Gatot Soegiarto
- Indonesia-Japan Collaborative Research Center, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Yasuko Mori
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazufumi Shimizu
- Indonesia-Japan Collaborative Research Center, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
20
|
Wang Z, Yang PP, Zhang YH, Tian KY, Bian CZ, Zhao J. Development of a reverse transcription recombinase polymerase amplification combined with lateral-flow dipstick assay for avian influenza H9N2 HA gene detection. Transbound Emerg Dis 2018; 66:546-551. [PMID: 30403438 DOI: 10.1111/tbed.13063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/11/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022]
Abstract
H9N2 avian influenza viruses (AIVs) have been detected from wild birds and domestic poultry worldwide. Serious diseases combined with secondary infection have caused high mortality and great economic losses to poultry industry. Therefore, simple, rapid, sensitive and accurate methods suitable for field detection of H9N2 AIVs are crucial to efficiently control virus infection and spread in time. In this study, an isothermal reverse transcription recombinase polymerase amplification with lateral-flow dipstick (RT-RPA-LFD) assay for detection of hemagglutinin (HA) gene of H9 subtype influenza viruses was developed. The optimal forward and reverse primers targeting HA gene of H9 subtype influenza viruses were labeled with fluorescein isothiocyanate (FITC) and biotin at the 5'-end, respectively. The amplification reaction could be finished in 20 min at a wide temperature range of 30-42°C, and then the products could be visualized with naked eyes. The developed H9 RT-RPA-LFD was able to detect 0.15 pg of H9N2 AIV RNA, which was 10 times more sensitive than that of conventional RT-PCR. The H9 RT-RPA-LFD assay did not detect nucleic acids extracted from H9 negative samples or from other poultry respiratory pathogens. The clinical performance of H9 RT-RPA-LFD was determined by testing 120 cloacal samples collected from chickens with respiratory syndromes. The coincidence rate of the detection results between RT-RPA-LFD and conventional RT-PCR was 95.8%. Therefore, the developed RT-RPA-LFD assay provides a rapid, reliable and sensitive method for field diagnosis of H9 subtype AIVs.
Collapse
Affiliation(s)
- Zeng Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Pan-Pan Yang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yu-Han Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Kai-Yue Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chuan-Zhou Bian
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Jun Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
21
|
Gonzales JL, Roberts H, Smietanka K, Baldinelli F, Ortiz-Pelaez A, Verdonck F. Assessment of low pathogenic avian influenza virus transmission via raw poultry meat and raw table eggs. EFSA J 2018; 16:e05431. [PMID: 32625713 PMCID: PMC7009628 DOI: 10.2903/j.efsa.2018.5431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A rapid qualitative assessment has been done by performing a theoretical analysis on the transmission of low pathogenic avian influenza (LPAI) via fresh meat from poultry reared or kept in captivity for the production of meat (raw poultry meat) or raw table eggs. A predetermined transmission pathway followed a number of steps from a commercial or non-commercial poultry establishment within the EU exposed to LPAI virus (LPAIV) to the onward virus transmission to animals and humans. The combined probability of exposure and subsequent LPAIV infection via raw poultry meat containing LPAIV is negligible for commercial poultry and humans exposed via consumption whereas it is very unlikely for non-commercial poultry, wild birds and humans exposed via handling and manipulation. The probability of LPAIV transmission from an individual infected via raw poultry meat containing LPAIV is negligible for commercial poultry and humans, whereas it is very unlikely for non-commercial poultry and wild birds. The combined probability of exposure and subsequent LPAIV infection via raw table eggs containing LPAIV is negligible for commercial poultry and humans and extremely unlikely to negligible for non-commercial poultry and wild birds. The probability of LPAIV transmission from an individual infected via raw table eggs containing LPAIV is negligible for commercial poultry and humans and very unlikely to negligible for non-commercial poultry and wild birds. Although the presence of LPAIV in raw poultry meat and table eggs is very unlikely to negligible, there is in general a high level of uncertainty on the estimation of the subsequent probabilities of key steps of the transmission pathways for poultry and wild birds, mainly due to the limited number of studies available, for instance on the viral load required to infect a bird via raw poultry meat or raw table eggs containing LPAIV.
Collapse
|
22
|
Goneau LW, Mehta K, Wong J, L'Huillier AG, Gubbay JB. Zoonotic Influenza and Human Health-Part 1: Virology and Epidemiology of Zoonotic Influenzas. Curr Infect Dis Rep 2018; 20:37. [PMID: 30069735 DOI: 10.1007/s11908-018-0642-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Zoonotic influenza viruses are those that cross the animal-human barrier and can cause disease in humans, manifesting from minor respiratory illnesses to multiorgan dysfunction. They have also been implicated in the causation of deadly pandemics in recent history. The increasing incidence of infections caused by these viruses worldwide has necessitated focused attention to improve both diagnostic as well as treatment modalities. In this first part of a two-part review, we describe the structure of zoonotic influenza viruses, the relationship between mutation and pandemic capacity, pathogenesis of infection, and also discuss history and epidemiology. RECENT FINDINGS We are currently witnessing the fifth and the largest wave of the avian influenza A(H7N9) epidemic. Also in circulation are a number of other zoonotic influenza viruses, including avian influenza A(H5N1) and A(H5N6); avian influenza A(H7N2); and swine influenza A(H1N1)v, A(H1N2)v, and A(H3N2)v viruses. Most recently, the first human case of avian influenza A(H7N4) infection has been documented. By understanding the virology and epidemiology of emerging zoonotic influenzas, we are better prepared to face a new pandemic. However, continued effort is warranted to build on this knowledge in order to efficiently combat the constant threat posed by the zoonotic influenza viruses.
Collapse
Affiliation(s)
- L W Goneau
- Public Health Ontario Laboratory, 661 University Avenue, Suite 1701, Toronto, ON, M5G 1M1, Canada.,University of Toronto, 27 King's College Circle, Toronto, ON, M5S 1A1, Canada
| | - K Mehta
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - J Wong
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada.,Department of Paediatrics, North York General Hospital, Toronto, ON, Canada
| | - A G L'Huillier
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - J B Gubbay
- Public Health Ontario Laboratory, 661 University Avenue, Suite 1701, Toronto, ON, M5G 1M1, Canada. .,University of Toronto, 27 King's College Circle, Toronto, ON, M5S 1A1, Canada. .,Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
23
|
Isakova-Sivak I, Korenkov D, Smolonogina T, Kotomina T, Donina S, Matyushenko V, Mezhenskaya D, Krammer F, Rudenko L. Broadly protective anti-hemagglutinin stalk antibodies induced by live attenuated influenza vaccine expressing chimeric hemagglutinin. Virology 2018; 518:313-323. [PMID: 29574336 DOI: 10.1016/j.virol.2018.03.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 12/31/2022]
Abstract
The development of influenza vaccines that can provide broad protection against all drifted seasonal virus variants, zoonotic infections and emerging pandemic strains, has been a priority for two decades. Here we propose a strategy of inducing broadly-reactive anti-stalk antibody by sequential immunizations with live attenuated influenza vaccines (LAIVs) expressing chimeric HAs (cHAs). These vaccines are designed to contain identical hemagglutinin stalk domains from H1N1 virus but antigenically unrelated globular head domains from avian influenza virus subtypes H5, H8 and H9. Mouse experiments demonstrated enhanced cross-protection of cHA-containing LAIVs compared to the relevant vaccine viruses expressing natural HAs, and this enhanced protection was driven by stalk-HA-reactive IgG antibodies. The establishment of fully functional cross-protective immunity after two doses of cHA LAIV vaccination in naïve animals suggests that a similar effect might be expected after a single cHA LAIV dose in primed individuals, or after two to three doses in naïve children.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St Petersburg, Russia.
| | - Daniil Korenkov
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St Petersburg, Russia
| | - Tatiana Smolonogina
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St Petersburg, Russia
| | - Tatiana Kotomina
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St Petersburg, Russia
| | - Svetlana Donina
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St Petersburg, Russia
| | - Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St Petersburg, Russia
| | - Daria Mezhenskaya
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St Petersburg, Russia
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St Petersburg, Russia
| |
Collapse
|
24
|
Gu M, Xu L, Wang X, Liu X. Current situation of H9N2 subtype avian influenza in China. Vet Res 2017; 48:49. [PMID: 28915920 PMCID: PMC5603032 DOI: 10.1186/s13567-017-0453-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/18/2017] [Indexed: 11/12/2022] Open
Abstract
In China, H9N2 subtype avian influenza outbreak is firstly reported in Guangdong province in 1992. Subsequently, the disease spreads into vast majority regions nationwide and has currently become endemic there. Over vicennial genetic evolution, the viral pathogenicity and transmissibility have showed an increasing trend as year goes by, posing serious threat to poultry industry. In addition, H9N2 has demonstrated significance to public health as it could not only directly infect mankind, but also donate partial or even whole cassette of internal genes to generate novel human-lethal reassortants like H5N1, H7N9, H10N8 and H5N6 viruses. In this review, we mainly focused on the epidemiological dynamics, biological characteristics, molecular phylogeny and vaccine strategy of H9N2 subtype avian influenza virus in China to present an overview of the situation of H9N2 in China.
Collapse
Affiliation(s)
- Min Gu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lijun Xu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Yangzhou Entry-Exit Inspection and Quarantine Bureau, Yangzhou, 225009, Jiangsu, China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
25
|
EMERGING RESPIRATORY DISEASE - INFLUENZA INFLUENZA VIRUS OVERVIEW. Dis Mon 2017; 63:248-251. [PMID: 29737281 DOI: 10.1016/j.disamonth.2017.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
MESH Headings
- Animals
- Antiviral Agents/therapeutic use
- Birds
- Communicable Diseases, Emerging/physiopathology
- Communicable Diseases, Emerging/therapy
- Communicable Diseases, Emerging/transmission
- Communicable Diseases, Emerging/virology
- Humans
- Influenza A Virus, H7N2 Subtype
- Influenza A Virus, H7N9 Subtype
- Influenza A Virus, H9N2 Subtype
- Influenza in Birds/transmission
- Influenza in Birds/virology
- Influenza, Human/physiopathology
- Influenza, Human/therapy
- Influenza, Human/transmission
- Influenza, Human/virology
- Respiratory Tract Infections/physiopathology
- Respiratory Tract Infections/therapy
- Respiratory Tract Infections/transmission
- Respiratory Tract Infections/virology
Collapse
|
26
|
|