1
|
Jubayar AM, Khan S, Sadi J, Uddin N, Goni O, Khatun M, Siddique AE, Kabir E, Rimi RK, Beauty SA, Rossi KN, Abedin F, Sarder SJ, Islam MS, Sarker MK, Hossain S, Sumi D, Saud ZA, Barchowsky A, Wahed AS, Himeno S, Hossain K. Novel evidence of arsenic-related excess adiposity and its implication in the risk of cardiometabolic diseases. ENVIRONMENTAL RESEARCH 2025; 271:121059. [PMID: 39922254 DOI: 10.1016/j.envres.2025.121059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Arsenic exposure is associated with obesity- or excess adiposity-related disorders, including cardiometabolic diseases. Previously, many human studies attempted to establish the association of arsenic exposure with obesity, mainly through body mass index (BMI) but failed to provide any concrete evidence. Our study aimed to investigate the arsenic-related adiposity and its relationship with cardiometabolic diseases. Of the 524 participants, 126 and 398, respectively, were chosen from low- and high-arsenic exposure areas in Bangladesh. Obesity or body fat (adiposity) of the participants was measured by anthropometric measures [BMI, waist circumference (WC), and triceps skinfold thickness (TSFT)] and a serum biomarker, leptin. Sarcopenic characteristics were assessed by lean body mass (LBM) and serum creatinine levels. Insulin resistance, as measured by Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), hypertension, and hyperglycemia, were considered as the risk factors for cardiometabolic diseases. There were significant positive associations between drinking water, hair, and nail arsenic concentrations and the levels of WC and TSFT after adjusting for potential confounders. However, there were no significant associations with BMI. Increased arsenic exposure levels were associated with increased leptin levels [(Regression coefficient (β) = 1.00, 95% confidence interval (CI): 0.53, 1.46) for water, (β = 1.44, 95% CI: 0.42, 2.46) for hair, and (β = 1.47, 95% CI: 0.32, 2.61) for nail arsenic]. Notably, leptin levels had inverse associations with LBM (β = -7.87, 95% CI: -13.30, -2.45) and creatinine levels (β = -15.65, 95% CI: -21.50, -9.81). Furthermore, the elevated leptin levels associated with arsenic exposure were connected to higher HOMA-IR levels (β = 0.19, 95% CI: 0.14, 0.24), higher odds of hypertension [Odds ratio (OR) = 1.31, 95% CI: 1.12, 1.53], and hyperglycemia (OR = 1.30, 95% CI: 1.13, 1.47). Taken together, the results of this study demonstrated a unique association between arsenic exposure and adiposity, which could promote arsenic-induced cardiometabolic disorders by mirroring the distinctive characteristics of age-associated sarcopenic obesity.
Collapse
Affiliation(s)
- Ahsanul Mahbub Jubayar
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shuchismita Khan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Junayed Sadi
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Nesar Uddin
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Osman Goni
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Moriom Khatun
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Abu Eabrahim Siddique
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, 52242, Iowa, USA
| | - Ehsanul Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Rajoana Karim Rimi
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Sharmin Akter Beauty
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Kamrun Nahar Rossi
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Faysal Abedin
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Sharon Jahan Sarder
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Shofikul Islam
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, 7003, Bangladesh
| | | | - Shakhawoat Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Daigo Sumi
- Laboratory of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Abdus S Wahed
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Seiichiro Himeno
- Laboratory of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan; Division of Health Chemistry, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
2
|
Lai C, Chen L, Zhong X, Tian X, Zhang B, Li H, Zhang G, Wang L, Sun Y, Guo L. Long-term arsenic exposure decreases mice body weight and liver lipid droplets. ENVIRONMENT INTERNATIONAL 2024; 192:109025. [PMID: 39317010 DOI: 10.1016/j.envint.2024.109025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Arsenic (As) is a widespread global pollutant, and there is significant controversy surrounding its complex relationship with obesity, primarily focused on short-term exposure. Recognizing the prolonged nature of dietary arsenic exposure, this study involved feeding mice with arsenic-contained food for 14 months. The results showed that mice exposed to arsenic developed a non-alcoholic fatty liver condition, characterized by a light-yellow hue on the liver surface and various pathological alterations in the liver cells, including enlarged nuclei, cellular necrosis, inflammatory infiltration, dysfunctional mitochondria, and endoplasmic reticulum disorganization. There were also disruptions in biochemistry indices, with a significant increase in total cholesterol (TC) level and a decrease in high-density lipoprotein (HDL) level. However, some contradictory observations occurred, such as a significant decrease in body weight, triglyceride (TG) level, and the numbers of lipid droplets. Several genes related to lipid metabolism were tested, and a model was used to explain these discrepancies. Besides, examinations of the colon revealed compromised intestinal barrier function and signs of inflammation. Fecal 16S rRNA sequencing and pseudo-targeted metabolomics revealed disruptions in internal homeostasis, such as modules, nodes, connections, and lipid-related KEGG pathways. Fecal targeted metabolomics analyses of short-chain fatty acids (SCFAs) and bile acids (BAs) demonstrated a significant upregulation in three primary bile acids (CA, CDCA, TCDCA), four secondary bile acids (TUDCA, DCA, LCA, GUDCA), and total SCFAs level. Oxidative stress and inflammation were also evident. Additionally, based on correlation analysis and mediation analysis, it was assumed that changes in the microbiota (e.g., Dubosiella) can impact the liver metabolites (e.g., TGs) through alterations in fecal metabolites (e.g., LPCs). These findings provide a theoretical reference for the long-term effect of arsenic exposure on liver lipid metabolism.
Collapse
Affiliation(s)
- Chengze Lai
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China; The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Linkang Chen
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoting Zhong
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xianbing Tian
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Bin Zhang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Hao Li
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Guiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518000.China
| | - Liping Wang
- School of Nursing, Guangdong Medical University, Dongguan 523808, China
| | - Yanqin Sun
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China; The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
3
|
Mahadik SR, Reddy ART, Choudhary K, Nama L, Jamdade MS, Singh S, Murti K, Kumar N. Arsenic induced cardiotoxicity: An approach for molecular markers, epigenetic predictors and targets. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104558. [PMID: 39245244 DOI: 10.1016/j.etap.2024.104558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Arsenic, a ubiquitous environmental toxicant, has been acknowledged as a significant issue for public health due to its widespread pollution of drinking water and food supplies. The present review aimed to study the toxicity associated with the cardiac system. Prolonged exposure to arsenic has been associated with several harmful health outcomes, especially cardiotoxicity. Arsenic-induced cardiotoxicity encompasses a range of cardiovascular abnormalities, including cardiac arrhythmias, ischemic heart disease, and cardiomyopathy. To tackle this toxicity, understanding the molecular markers, epigenetic predictors, and targets involved in arsenic-induced cardiotoxicity is essential for creating preventative and therapeutic approaches. For preventive measures against this heavy metal poisoning of groundwater, it is crucial to regularly monitor water quality, re-evaluate scientific findings, and educate the public about the possible risks. This review thoroughly summarised what is currently known in this field, highlighting the key molecular markers, epigenetic modifications, and potential therapeutic targets associated with arsenic-induced cardiotoxicity.
Collapse
Affiliation(s)
- Sakshi Ramesh Mahadik
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Annem Ravi Teja Reddy
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Khushboo Choudhary
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Lokesh Nama
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Mohini Santosh Jamdade
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| |
Collapse
|
4
|
Dong H, Song H, Liu Y, Zou H. Zinc-Mediated Endoplasmic Reticulum Stress and Metallothionein Alleviate Arsenic-Induced Cardiotoxicity in Cyprinus Carpio. Biol Trace Elem Res 2024; 202:4203-4215. [PMID: 38032437 DOI: 10.1007/s12011-023-03975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Arsenic (As) is a natural component of the Earth's crust, and its inorganic form is highly toxic. The problem of As pollution in water is extremely urgent, and its impact on aquatic organisms should be widely considered. Here, 120 common carp were selected as the test subjects and were exposed to environmentally relevant concentrations of As (2.83 mg L- 1) for 30 days. Histomorphological observations showed the adverse effects of As on the heart: irregular arrangement of myocardial fibers, rupture of muscle fiber bundles, inflammatory infiltration, and hemorrhages. Mechanistically, abnormal expression of factors related to As-induced inflammation (TLR4/MYD88/NF-κB pathway), endoplasmic reticulum stress (CHOP, GRP78, ATF6, PERK, IRE1) and oxidative stress (SOD, CAT, Nrf2, HO-1) was observed. Then, we tried to find a protective agent against As-induced myocardial injury. As one of the important metal elements for maintaining cell growth and immunity, zinc (Zn, 1 mg L- 1) significantly alleviated the pathological abnormalities induced by As, and the changes in physiological and biochemical indices in response to As exposure were significantly alleviated by Zn administration, which was accompanied by the restoration of metallothionein (ZIP8, Znt1, Znt5, Znt7) and heat shock protein (HSP60, HSP70, HSP90) expression. These results suggest for the possibilty of developing Zn as a candidate therapeutic agent for As induced aquatic toxicology.
Collapse
Affiliation(s)
- Haiyan Dong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Hongwei Song
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Hongfei Zou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
5
|
Vadizadeh A, Salehcheh M, Kalantar H, Khorsandi L, Rashno M, Mahdavinia M. Cannabidiol attenuates arsenic-induced nephrotoxicity via the NOX4 and NF-κB pathways in mice. Res Pharm Sci 2024; 19:447-458. [PMID: 39399730 PMCID: PMC11468165 DOI: 10.4103/rps.rps_51_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/16/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024] Open
Abstract
Background and purpose Cannabidiol (CBD) is a phenolic terpene compound with anticancer, antioxidant, anti-inflammatory, antibacterial, neuroprotective, and anticonvulsant properties. Since the effects of CBD on sodium arsenite (As)-induced nephrotoxicity have not been fully determined, this study investigated the effect of CBD on As-induced nephrotoxicity by evaluating the NOX4 and NF-kB pathways in mice. Experimental approach 48 male mice were divided into six groups (8 each) including group 1, receiving saline for 14 days; group 2, receiving CBD (10 mg/kg, intraperitoneally) from the 7th to the 14th day; group 3, receiving As (10 mg/kg) for 14 days by gavage; and treatment groups 4-6, receiving CBD (2.5, 5, and 10 mg/kg, i.p.) 1.5 h before As (10 mg/kg by gavage, for 14 days) from the 7th to the 14th day. Mice were anesthetized after overnight fasting on day 15, and the blood sample was collected from their hearts. The level of antioxidants and pro-inflammatory factors, the expression of ROS and TNF-α, NF-kB, NOX4, iNOS, cleaved PARP, and caspase-3 proteins were measured and histological studies were performed. Findings/Results Exposure to As significantly increased kidney markers, oxidative stress, apoptosis, and inflammation in mice kidney tissue, and pretreatment with CBD reversed these changes. In addition, CBD significantly decreased the expression of NF-kB and NOX4, and the levels of pro-inflammatory factors and the expression of cleaved PARP and increased the level of antioxidants. Conclusion and implications CBD ameliorated As-induced nephrotoxicity related to inhibiting oxidative stress, inflammation, and apoptosis, potentially through the NF-kB/Nox4 pathway.
Collapse
Affiliation(s)
- Ali Vadizadeh
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Maryam Salehcheh
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Kalantar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Seong SM, Go RE, Lee HK, Choi KC. Fludioxonil induces cardiotoxicity via mitochondrial dysfunction and oxidative stress in two cardiomyocyte models. ENVIRONMENTAL TOXICOLOGY 2024; 39:2993-3002. [PMID: 38314641 DOI: 10.1002/tox.24176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
Fludioxonil (Flu) is a phenylpyrrole fungicide and is currently used in over 900 agricultural products globally. Flu possesses endocrine-disrupting chemical-like properties and has been shown to mediate various physiological and pathological changes, such as apoptosis and differentiation, in diverse cell lines. However, the effects of Flu on cardiomyocytes have not been studied so far. The present study investigated the effects of Flu on mitochondria in AC16 human cardiomyocytes and H9c2 rat cardiomyoblasts. Flu decreased cell viability in a water-soluble tetrazolium assay and mediated morphological changes suggestive of apoptosis in AC16 and H9c2 cells. We confirmed that annexin V positive cells were increased by Flu through annexin V/propidium iodide staining. This suggests that the decrease in cell viability due to Flu may be associated with increased apoptotic changes. Flu consistently increased the expression of pro-apoptotic markers such as Bcl-2-associated X protein (Bax) and cleaved-caspase 3. Further, Flu reduced the oxygen consumption rate (OCR) in AC16 and H9c2 cells, which is associated with decreased mitochondrial membrane potential (MMP) as observed through JC-1 staining. In addition, Flu augmented the production of mitochondrial reactive oxygen species, which can trigger oxidative stress in cardiomyocytes. Taken together, these results indicate that Flu induces mitochondrial dysregulation in cardiomyocytes via the downregulation of the OCR and MMP and upregulation of the oxidative stress, consequently resulting in the apoptosis of cardiomyocytes. This study provides evidence of the risk of Flu toxicity on cardiomyocytes leading to the development of cardiovascular diseases and suggests that the use of Flu in agriculture should be done with caution and awareness of the probable health consequences of exposure to Flu.
Collapse
Affiliation(s)
- Su-Min Seong
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
7
|
Dresler SR, Pinto BI, Salanga MC, Propper CR, Berry SR, Kellar RS. Arsenic Impairs Wound Healing Processes in Dermal Fibroblasts and Mice. Int J Mol Sci 2024; 25:2161. [PMID: 38396835 PMCID: PMC10888720 DOI: 10.3390/ijms25042161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Inorganic arsenic (NaAsO2) is a naturally occurring metalloid found in water resources globally and in the United States at concentrations exceeding the U.S. Environmental Protection Agency Maximum Contamination Level of 10 ppb. While exposure to arsenic has been linked to cancer, cardiovascular disease, and skin lesions, the impact of arsenic exposure on wound healing is not fully understood. Cultured dermal fibroblasts exposed to NaAsO2 displayed reduced migration (scratch closure), proliferation, and viability with a lowest observable effect level (LOEL) of 10 µM NaAsO2 following 24 h exposure. An enrichment of Matrix Metalloproteinase 1 (MMP1) transcripts was observed at a LOEL of 1 µM NaAsO2 and 24 h exposure. In vivo, C57BL/6 mice were exposed to 10 µM NaAsO2 in their drinking water for eight weeks, then subjected to two full thickness dorsal wounds. Wounds were evaluated for closure after 6 days. Female mice displayed a significant reduction in wound closure and higher erythema levels, while males showed no effects. Gene expression analysis from skin excised from the wound site revealed significant enrichment in Arsenic 3-Methyltransferase (As3mt) and Estrogen Receptor 2 (Esr2) mRNA in the skin of female mice. These results indicate that arsenic at environmentally relevant concentrations may negatively impact wound healing processes in a sex-specific manner.
Collapse
Affiliation(s)
- Sara R. Dresler
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Bronson I. Pinto
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Matthew C. Salanga
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Catherine R. Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Savannah R. Berry
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Robert S. Kellar
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
- Center for Materials Interfaces in Research & Applications, ¡MIRA!, Flagstaff, AZ 86011, USA
| |
Collapse
|
8
|
Wang W, Zhang Y, Geng X, Li H, Wang X, Zhang Y, Zhao H. Zinc attenuates arsenic overdose-induced brain damage via PERK/ATF6 and TLR/MyD88/NF-κB pathways. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109806. [PMID: 38042229 DOI: 10.1016/j.cbpc.2023.109806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Exposure to arsenic (As), a widespread non-metallic toxicant in nature, often results in neurotoxicity, although the exact mechanism is unknown. Zinc (Zn) is a powerful nutrient often thought to be beneficial for growth, development and immunity. Whether Zn can rescue brain damage caused by As contamination remains to be demonstrated. Therefore, in this study, a 30-day model of As poisoning (2.83 mg/L) in carp was established and treated with Zn (1 mg/L) to investigate the detoxification mechanism involved. Histological observations showed that As induced the loosening of the molecular layer structure of the cerebellum and the dissolution or even disappearance of nuclei, accompanied by the occurrence of microthrombi in the granular layer, and the addition of Zn attenuated such As-induced damage. Further mechanistic studies indicated that Zn ameliorated As exposure-induced abnormalities in antioxidant capacity (decreased CAT and Cu/Zn-SOD), activation of the Nrf2/keap1 pathway and endoplasmic reticulum stress (ERs), which is a key factor in As-induced brain damage. ERs (high expression of PERK, ATF6, CHOP, eiF2α and GRP78) and inflammation (overexpression of TLR2, TLR4, MyD88, IKK, NF-κB, IL-1β and IL-6 and low expression of IκBα and IL-10). We suggest that Zn can alleviate excessive As-induced brain damage by attenuating As-induced oxidative stress, PERK/ATF6 and TLR/MyD88/NF-κB pathways. The present study fills in the preventive mechanism of As injury in fish and provides the possibility of prevention and control of As pollution-induced brain tissue injury by Zn rescue.
Collapse
Affiliation(s)
- Weijun Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xiren Geng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hong Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xuehuan Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yingzi Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
9
|
Su Q, Li M, Yang L, Fan L, Liu P, Ying X, Zhao Y, Tian X, Tian F, Zhao Q, Li B, Gao Y, Qiu Y, Song G, Yan X. ASC/Caspase-1-activated endothelial cells pyroptosis is involved in vascular injury induced by arsenic combined with high-fat diet. Toxicology 2023; 500:153691. [PMID: 38042275 DOI: 10.1016/j.tox.2023.153691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Environmental arsenic (As) or high-fat diet (HFD) exposure alone are risk factors for the development of cardiovascular disease (CVDs). However, the effects and mechanisms of co-exposure to As and HFD on the cardiovascular system remain unclear. The current study aimed to investigate the combined effects of As and HFD on vascular injury and shed some light on the underlying mechanisms. The results showed that co-exposure to As and HFD resulted in a significant increase in serum lipid levels and significant lipid accumulation in the aorta of rats compared with exposure to As or HFD alone. Meanwhile, the combined exposure altered blood pressure and disrupted the morphological structure of the abdominal aorta in rats. Furthermore, As combined with HFD exposure upregulated the expression of vascular endothelial cells pyroptosis-related proteins (ASC, Pro-caspase-1, Caspase-1, IL-18, IL-1β), as well as the expression of vascular endothelial adhesion factors (VCAM-1 and ICAM-1). More importantly, we found that with increasing exposure time, vascular injury-related indicators were significantly higher in the combined exposure group compared with exposure to As or HFD alone, and the vascular injury was more severe in female rats compared with male rats. Taken together, these results suggested that the combination of As and HFD induced vascular endothelial cells pyroptosis through activation of the ASC/Caspase-1 pathway. Therefore, vascular endothelial cells pyroptosis may be a potential molecular mechanism for vascular injury induced by As combined with HFD exposure.
Collapse
Affiliation(s)
- Qiang Su
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Changzhi Maternal and Child Health Hospital, Changzhi, Shanxi 046000, China
| | - Lingling Yang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Linhua Fan
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qian Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ben Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yi Gao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Guohua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
10
|
Aja PM, Ogwoni HA, Agu PC, Ekpono EU, Awoke JN, Ukachi OU, Orji OU, Ale BA, Nweke CP, Igwenyi IO, Alum EU, Chukwu DC, Offor CE, Asuk AA, Eze ED, Yakubu OE, Akobi JB, Ani OG, Awuchi CG. Cucumeropsis mannii seed oil protects against Bisphenol A-induced testicular mitochondrial damages. Food Sci Nutr 2023; 11:2631-2641. [PMID: 37324897 PMCID: PMC10261808 DOI: 10.1002/fsn3.3260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 09/20/2024] Open
Abstract
There has been increasing search for the ameliorative properties of seed oils against toxicants. bisphenol A acts as an estrogenic endocrine-disrupting chemical capable of causing male infertility. This study aimed to explore Cucumeropsis mannii seed oil effects against mitochondrial damage in rats using bisphenol A. Forty-eight rats were randomly assigned to six groups (n = 6) of eight rats each and fed the same food and water for 6 weeks. The group A rats were given 1 mL olive oil, while the ones in group B were given bisphenol A at 100 mL/kg body weight via oral route. Group C received C. mannii seed oil 7.5 mL/kg body weight C. mannii seed oil, while group D, group E, and group F were pre-administered bisphenol A at 100 mL/kg body weight, followed by treatment with C. mannii seed oil at 7.5, 5, and 2.5 mL/kg body weight, respectively. Antioxidant enzymes, glutathione, reactive oxygen species, testicular volume, malondialdehyde, body weight, and testicular studies were done using standard methods. The results of the bisphenol A-administered group showed a significant decrease in the antioxidant enzymes, glutathione, body weight, and testicular volume with elevation in the levels of reactive oxygen species, malondialdehyde, and testicular indices. BPA + CMSO-treated group showed a significant increase in GPx activity compared with BPA-exposed rats. CMSO treatment significantly increased catalase activity in comparison with that of rats exposed to BPA. Remarkably, C. mannii seed oil and bisphenol A co-administration significantly reversed the abnormalities observed in the dysregulated biochemical biomarkers. Our findings suggest that C. mannii seed oil has considerable antioxidant potential which can be explored in therapeutic development against systemic toxicity induced by exposure to bisphenol A. Cucumeropsis mannii seed oil protects against bisphenol A-induced testicular mitochondria damages.
Collapse
Affiliation(s)
- Patrick Maduabuchi Aja
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
- Department of BiochemistryKampala International UniversityBushenyiUganda
- Department of BiochemistryMbarara University of Science and TechnologyMbararaUganda
| | | | | | | | | | | | - Obasi Uche Orji
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | | | | | | | - Esther Ugo Alum
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | | | | | - Atamgba Agbor Asuk
- Department of Medical BiochemistryCross River University of Technology (CRUTECH)CalabarNigeria
| | | | | | - J. B. Akobi
- Department of Medical BiochemistryCross River University of Technology (CRUTECH)CalabarNigeria
| | | | - Chinaza Godswill Awuchi
- Department of BiochemistryKampala International UniversityBushenyiUganda
- School of Natural and Applied SciencesKampala International UniversityKampalaUganda
| |
Collapse
|
11
|
Calderón-DuPont D, Romero-Córdoba S, Tello JK, Espinosa A, Guerrero B, Contreras AV, Morán-Ramos S, Díaz-Villaseñor A. Impaired white adipose tissue fatty acid metabolism in mice fed a high-fat diet worsened by arsenic exposure, primarily affecting retroperitoneal adipose tissue. Toxicol Appl Pharmacol 2023; 468:116428. [PMID: 36801214 DOI: 10.1016/j.taap.2023.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Fatty acid (FA) metabolism dysfunction of white adipose tissue (WAT) underlies obesity and insulin resistance in response to high calorie intake and/or endocrine-disrupting chemicals (EDCs), among other factors. Arsenic is an EDC that has been associated with metabolic syndrome and diabetes. However, the combined effect of a high-fat diet (HFD) and arsenic exposure on WAT FA metabolism has been little studied. FA metabolism was evaluated in visceral (epididymal and retroperitoneal) and subcutaneous WAT of C57BL/6 male mice fed control or HFD (12 and 40% kcal fat, respectively) for 16 weeks together with an environmentally relevant chronic arsenic exposure through drinking water (100 μg/l) during the second half of the study. In mice fed HFD, arsenic potentiated the increase of serum markers of selective insulin resistance in WAT and fatty acid re-esterification and the decrease in the lipolysis index. Retroperitoneal was the WAT most affected, where the combination of arsenic and HFD in contrast to HFD, generated higher weight, larger adipocytes, increased triglyceride content, and decreased fasting stimulated lipolysis evidenced by lower phosphorylation of HSL and perilipin. At the transcriptional level, arsenic in mice fed either diet downregulated genes involved in fatty acid uptake (LPL, CD36), oxidation (PPARα, CPT1), lipolysis (ADRß3) and glycerol transport (AQP7 and AQP9). Additionally, arsenic potentiated hyperinsulinemia induced by HFD, despite a slight increase in weight gain and food efficiency. Thus, the second hit of arsenic in sensitized mice by HFD worsens fatty acid metabolism impairment in WAT, mainly retroperitoneal, along with an exacerbated insulin resistance phenotype.
Collapse
Affiliation(s)
- Diana Calderón-DuPont
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Sandra Romero-Córdoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14000, Mexico
| | - Jessica K Tello
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Maestría en Nutrición Clínica, Universidad Anáhuac Campus Norte, Estado de México 52786, Mexico
| | - Aranza Espinosa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Brenda Guerrero
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Alejandra V Contreras
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genόmica (INMEGEN), Mexico City 14609, Mexico; Translational Molecular Biomarkers, Merck & Co., Inc, Rahway, NJ, USA
| | - Sofia Morán-Ramos
- Unidad de Genόmica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genόmica (INMEGEN), Mexico City 14609, Mexico; Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Andrea Díaz-Villaseñor
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico.
| |
Collapse
|
12
|
Lénárt Z, Bartha A, Abonyi-Tóth Z, Lehel J. Monitoring of metal content in the tissues of wild boar (Sus scrofa) and its food safety aspect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15899-15910. [PMID: 36178655 PMCID: PMC9908636 DOI: 10.1007/s11356-022-23329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The study was performed on 10 female and 10 male wild boars (Sus scrofa) after shooting during the regular hunting season to investigate the concentration of metals in the muscle and fat tissue. The concentrations of essential and non-essential elements were determined (arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), manganese (Mn), mercury (Hg), and zinc (Zn)) using inductively coupled plasma optical emission spectrometry. The concentrations of As, Hg, and Cd were below the limit of detection (As, Hg: < 0.5 mg/kg, Cd: < 0.05 mg/kg) in every tissue sample of both sexes. The lead was detected as 0.36 ± 0.16 mg/kg and 0.22 ± 0.06 mg/kg in the muscle of females and males, respectively, showing a significant difference between the sexes (p = 0.0184). The measured concentration of Cr was 0.14 ± 0.08 mg/kg and 0.13 ± 0.06 mg/kg, and that of copper was 1.22 ± 0.14 mg/kg and 1.06 ± 0.16 mg/kg in the muscle of females and males, respectively. The same tendency was observed in the case of copper content of fat tissues (female: 0.13 ± 0.10 mg/kg; male: 0.13 ± 0.04 mg/kg; p = 0.2707). Manganese concentration of muscle was 0.45 ± 0.30 mg/kg (female) and 1.36 ± 0.96 mg/kg (male), and that of fat tissue was 0.32 ± 0.22 mg/kg (female) and 0.74 ± 0.75 mg/kg (male). The Zn was detected as 56.75 ± 7.86 mg/kg and 1.83 ± 0.76 mg/kg in the muscle and fat of females and 52.12 ± 11.51 mg/kg and 1.94 ± 0.57 mg/kg in males, respectively. Based on data, the consumption of fat and muscle tissues of the wild boars tested can be food toxicologically objectionable, mainly due to the lead content, and thus pose a risk to frequent consumers of this type of game meat.
Collapse
Affiliation(s)
- Zoltán Lénárt
- Department of Food Hygiene, University of Veterinary Medicine, István u. 2, 1078, Budapest, Hungary
| | - András Bartha
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, István u. 2, 1078, Budapest, Hungary
| | - Zsolt Abonyi-Tóth
- Department of Biomathematics and Informatics, University of Veterinary Medicine, István u. 2, 1078, Budapest, Hungary
| | - József Lehel
- Department of Food Hygiene, University of Veterinary Medicine, István u. 2, 1078, Budapest, Hungary.
| |
Collapse
|
13
|
He Z, Xu Y, Ma Q, Zhou C, Yang L, Lin M, Deng P, Yang Z, Gong M, Zhang H, Lu M, Li Y, Gao P, Lu Y, He M, Zhang L, Pi H, Zhang K, Qin S, Yu Z, Zhou Z, Chen C. SOX2 modulated astrocytic process plasticity is involved in arsenic-induced metabolic disorders. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128942. [PMID: 35468398 DOI: 10.1016/j.jhazmat.2022.128942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Metabolic disorders induced by arsenic exposure have attracted great public concern. However, it remains unclear whether hypothalamus-based central regulation mechanisms are involved in this process. Here, we exposed mice to 100 μg/L arsenic in drinking water and established a chronic arsenic exposure model. Our study revealed that chronic arsenic exposure caused metabolic disorders in mice including impaired glucose metabolism and decreased energy expenditure. Arsenic exposure also impaired glucose sensing and the activation of proopiomelanocortin (POMC) neurons in the hypothalamus. In particular, arsenic exposure damaged the plasticity of hypothalamic astrocytic process. Further research revealed that arsenic exposure inhibited the expression of sex-determining region Y-Box 2 (SOX2), which decreased the expression level of insulin receptors (INSRs) and the phosphorylation of AKT. The conditional deletion of astrocytic SOX2 exacerbated arsenic-induced effects on metabolic disorders, the impairment of hypothalamic astrocytic processes, and the inhibition of INSR/AKT signaling. Furthermore, the arsenic-induced impairment of astrocytic processes and inhibitory effects on INSR/AKT signaling were reversed by SOX2 overexpression in primary hypothalamic astrocytes. Together, we demonstrated here that chronic arsenic exposure caused metabolic disorders by impairing SOX2-modulated hypothalamic astrocytic process plasticity in mice. Our study provides evidence of novel central regulatory mechanisms underlying arsenic-induced metabolic disorders and emphasizes the crucial role of SOX2 in regulating the process plasticity of adult astrocytes.
Collapse
Affiliation(s)
- Zhixin He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Yudong Xu
- Department of Environmental Medicine, School of Public Health, and Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qinlong Ma
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Chao Zhou
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China; Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University, Shigatse 857099, China
| | - Lingling Yang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Min Lin
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Zhiqi Yang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Mingyue Gong
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Huijie Zhang
- School of Medicine, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Muxue Lu
- School of Medicine, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Yanqi Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Peng Gao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Yonghui Lu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Mindi He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Lei Zhang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Song Qin
- Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Zhou Zhou
- Department of Environmental Medicine, School of Public Health, and Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Chunhai Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
14
|
King DR, Hardin KM, Hoeker GS, Poelzing S. Re-evaluating methods reporting practices to improve reproducibility: an analysis of methodological rigor for the Langendorff whole-heart technique. Am J Physiol Heart Circ Physiol 2022; 323:H363-H377. [PMID: 35749719 PMCID: PMC9359653 DOI: 10.1152/ajpheart.00164.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent decades, the scientific community has seen an increased interest in rigor and reproducibility. In 2017, concerns of methodological thoroughness and reporting practices were implicated as significant barriers to reproducibility within the preclinical cardiovascular literature, particularly in studies employing animal research. The Langendorff, whole-heart technique has proven to be an invaluable research tool, being modified in a myriad of ways to probe questions across the spectrum of physio- and pathophysiologic function of the heart. As a result, significant variability in the application of the Langendorff technique exists. This literature review quantifies the different methods employed in the implementation of the Langendorff technique and provides brief examples of how individual parametric differences can impact the outcomes and interpretation of studies. From 2017-2020, significant variability of animal models, anesthesia, cannulation time, and perfusate composition, pH, and temperature demonstrate that the technique has diversified to meet new challenges and answer different scientific questions. The review also reveals which individual methods are most frequently reported, even if there is no explicit agreement upon which parameters should be reported. The analysis of methods related to the Langendorff technique suggests a framework for considering methodological approach when interpreting seemingly contradictory results, rather than concluding that results are irreproducible.
Collapse
Affiliation(s)
- D Ryan King
- Translational Biology, Medicine, and Health Graduate Program. Virginia Polytechnic Institute and State University. Blacksburg, Virginia.,Dorothy M. Davis Heart and Lunch Research Institute, College of Medicine, The Ohio State University Wexner Medical Center. Columbus, Ohio
| | - Kathryn M Hardin
- Virginia Tech Carilion School of Medicine. Roanoke, Virginia.,Center for Heart and Reparative Medicine Research. Fralin Biomedical Research Institute at Virginia Tech Carilion. Roanoke, Virginia
| | - Gregory S Hoeker
- Center for Heart and Reparative Medicine Research. Fralin Biomedical Research Institute at Virginia Tech Carilion. Roanoke, Virginia
| | - Steven Poelzing
- Virginia Tech Carilion School of Medicine. Roanoke, Virginia.,Center for Heart and Reparative Medicine Research. Fralin Biomedical Research Institute at Virginia Tech Carilion. Roanoke, Virginia.,Department of Biomedical Engineering and Mechanics. Virginia Polytechnic Institute and State University. Blacksburg, Virginia
| |
Collapse
|
15
|
Yue Y, Nair N, Quinones S, Kordas K, Desai G. Associations of total urinary arsenic with total cholesterol and high-density lipoprotein among 12-17-year-old participants from the 2009-2016 NHANES cycles: A cross-sectional study. Int J Hyg Environ Health 2022; 242:113950. [PMID: 35298926 DOI: 10.1016/j.ijheh.2022.113950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Hypertension and diabetes are highly prevalent among US adults. Arsenic exposure is associated with these cardiometabolic morbidities but the relationship between arsenic exposure and cholesterol markers of cardiometabolic disease has not been elucidated, especially at younger ages, when many chronic diseases may initiate. This study examined the association of total urinary arsenic with total cholesterol (TC) and high-density lipoprotein cholesterol (HDL) and explored effect modification by weight status. METHODS The study sample consisted of 12-17-year-old participants with complete data from the 2009-2016 National Health and Nutrition Examination Survey cycles. The cross-sectional associations of creatinine-adjusted total urinary arsenic with TC and HDL were assessed using multivariable linear regression models with survey weights. Three models were built, adjusting for varying combinations of age, gender, race/ethnicity, weight status, survey cycle, family income to poverty ratio, reference person education level, arsenobetaine, and dimethylarsinic acid (DMA). Model adjustments for arsenobetaine approximated inorganic arsenic exposure, and further adjustment for DMA approximated unmethylated inorganic arsenic exposure. We also explored weight status (underweight/healthy, overweight, and obese) as a potential effect modifier of these relationships using stratified analyses and interaction tests. RESULTS The final analytical sample consisted of 1,177 12-17-year-old participants. After adjusting for covariates and arsenobetaine, creatinine-adjusted arsenic was positively associated with HDL levels (β = 0.063; 95% CI: 0.007, 0.119). Upon further adjustment for DMA, creatinine-adjusted arsenic was positively associated with HDL levels (β = 0.079; 95% CI: 0.015, 0.143) and TC levels (β = 0.258; 95% CI: 0.002, 0.515). No effect modification by weight status was observed. CONCLUSIONS We found a positive association of approximated unmethylated inorganic arsenic exposure with TC, and contrary to our expectation, with HDL. There was no effect modification by weight status. Our findings should be confirmed by conducting longitudinal studies among adolescents exposed to low-level arsenic and focusing specifically on urinary inorganic arsenic concentrations.
Collapse
Affiliation(s)
- Yihua Yue
- Department of Epidemiology and Environmental Health, University at Buffalo, SUNY, Buffalo, NY, USA.
| | - Nisha Nair
- Department of Epidemiology and Environmental Health, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Sarah Quinones
- Department of Epidemiology and Environmental Health, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Gauri Desai
- Department of Epidemiology and Environmental Health, University at Buffalo, SUNY, Buffalo, NY, USA
| |
Collapse
|
16
|
Pánico P, Velasco M, Salazar AM, Picones A, Ortiz-Huidobro RI, Guerrero-Palomo G, Salgado-Bernabé ME, Ostrosky-Wegman P, Hiriart M. Is Arsenic Exposure a Risk Factor for Metabolic Syndrome? A Review of the Potential Mechanisms. Front Endocrinol (Lausanne) 2022; 13:878280. [PMID: 35651975 PMCID: PMC9150370 DOI: 10.3389/fendo.2022.878280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
Exposure to arsenic in drinking water is a worldwide health problem. This pollutant is associated with increased risk of developing chronic diseases, including metabolic diseases. Metabolic syndrome (MS) is a complex pathology that results from the interaction between environmental and genetic factors. This condition increases the risk of developing type 2 diabetes, cardiovascular diseases, and cancer. The MS includes at least three of the following signs, central obesity, impaired fasting glucose, insulin resistance, dyslipidemias, and hypertension. Here, we summarize the existing evidence of the multiple mechanisms triggered by arsenic to developing the cardinal signs of MS, showing that this pollutant could contribute to the multifactorial origin of this pathology.
Collapse
Affiliation(s)
- Pablo Pánico
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Myrian Velasco
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana María Salazar
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Picones
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosa Isela Ortiz-Huidobro
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Guerrero-Palomo
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Manuel Eduardo Salgado-Bernabé
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Ostrosky-Wegman
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcia Hiriart
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Marcia Hiriart,
| |
Collapse
|
17
|
Carmean CM, Mimoto M, Landeche M, Ruiz D, Chellan B, Zhao L, Schulz MC, Dumitrescu AM, Sargis RM. Dietary Selenium Deficiency Partially Mimics the Metabolic Effects of Arsenic. Nutrients 2021; 13:2894. [PMID: 34445052 PMCID: PMC8398803 DOI: 10.3390/nu13082894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic arsenic exposure via drinking water is associated with diabetes in human pop-ulations throughout the world. Arsenic is believed to exert its diabetogenic effects via multiple mechanisms, including alterations to insulin secretion and insulin sensitivity. In the past, acute arsenicosis has been thought to be partially treatable with selenium supplementation, though a potential interaction between selenium and arsenic had not been evaluated under longer-term exposure models. The purpose of the present study was to explore whether selenium status may augment arsenic's effects during chronic arsenic exposure. To test this possibility, mice were exposed to arsenic in their drinking water and provided ad libitum access to either a diet replete with selenium (Control) or deficient in selenium (SelD). Arsenic significantly improved glucose tolerance and decreased insulin secretion and β-cell function in vivo. Dietary selenium deficiency resulted in similar effects on glucose tolerance and insulin secretion, with significant interactions between arsenic and dietary conditions in select insulin-related parameters. The findings of this study highlight the complexity of arsenic's metabolic effects and suggest that selenium deficiency may interact with arsenic exposure on β-cell-related physiological parameters.
Collapse
Affiliation(s)
- Christopher M. Carmean
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.M.C.); (M.L.); (B.C.); (L.Z.); (M.C.S.)
- Chicago Center for Health and Environment (CACHET), Chicago, IL 60612, USA
| | - Mizuho Mimoto
- Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL 60637, USA; (M.M.); (A.M.D.)
| | - Michael Landeche
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.M.C.); (M.L.); (B.C.); (L.Z.); (M.C.S.)
| | - Daniel Ruiz
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL 60637, USA;
| | - Bijoy Chellan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.M.C.); (M.L.); (B.C.); (L.Z.); (M.C.S.)
| | - Lidan Zhao
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.M.C.); (M.L.); (B.C.); (L.Z.); (M.C.S.)
| | - Margaret C. Schulz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.M.C.); (M.L.); (B.C.); (L.Z.); (M.C.S.)
- Division of Epidemiology and Biostatistics, School of Public Health, Medical Scientist Training Program, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alexandra M. Dumitrescu
- Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL 60637, USA; (M.M.); (A.M.D.)
| | - Robert M. Sargis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.M.C.); (M.L.); (B.C.); (L.Z.); (M.C.S.)
- Chicago Center for Health and Environment (CACHET), Chicago, IL 60612, USA
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Arsenic is associated with cancer, heart disease, diabetes, and other outcomes that are also related to obesity. These similar effects raise the possibility that arsenic plays a role in obesity causation. They also raise the possibility that obesity may be an important effect modifier of arsenic-caused disease. This review summarizes the complex relationship between arsenic and obesity, with an emphasis on current research from human studies. RECENT FINDINGS Experimental studies provide some evidence that arsenic could play a role in obesity pathogenesis. To date, however, these associations have not been confirmed in human studies. In contrast, several epidemiologic studies have shown that the risks of arsenic-caused disease are markedly higher in obese individuals, highlighting obesity as an important susceptibility factor. Arsenic exposure and obesity are prevalent and widespread. Research identifying vulnerable populations, including obese individuals, could lead to new interventions having broad public health effects.
Collapse
Affiliation(s)
- Stephanie M Eick
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Craig Steinmaus
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, 2470 Telegraph Ave., Suite 301, Berkeley, CA, 94704, USA.
| |
Collapse
|
19
|
Carmean CM, Kirkley AG, Landeche M, Ye H, Chellan B, Aldirawi H, Roberts AA, Parsons PJ, Sargis RM. Arsenic Exposure Decreases Adiposity During High-Fat Feeding. Obesity (Silver Spring) 2020; 28:932-941. [PMID: 32196994 PMCID: PMC7180103 DOI: 10.1002/oby.22770] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Arsenic is an endocrine-disrupting chemical associated with diabetes risk. Increased adiposity is a significant risk factor for diabetes and its comorbidities. Here, the impact of chronic arsenic exposure on adiposity and metabolic health was assessed in mice. METHODS Male C57BL/6J mice were provided ad libitum access to a normal or high-fat diet and water +/- 50 mg/L of sodium arsenite. Changes in body weight, body composition, insulin sensitivity, energy expenditure, and locomotor activity were measured. Measures of adiposity were compared with accumulated arsenic in the liver. RESULTS Despite uniform arsenic exposure, internal arsenic levels varied significantly among arsenic-exposed mice. Hepatic arsenic levels in exposed mice negatively correlated with overall weight gain, individual adipose depot masses, and hepatic triglyceride accumulation. No effects were observed in mice on a normal diet. For mice on a high-fat diet, arsenic exposure reduced fasting insulin levels, homeostatic model assessment of insulin resistance and β-cell function, and systemic insulin resistance. Arsenic exposure did not alter energy expenditure or activity. CONCLUSIONS Collectively, these data indicate that arsenic is antiobesogenic and that concentration at the source poorly predicts arsenic accumulation and phenotypic outcomes. In future studies, investigators should consider internal accumulation of arsenic rather than source concentration when assessing the outcomes of arsenic exposure.
Collapse
Affiliation(s)
- Christopher M. Carmean
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, College of Medicine, University of Illinois at Chicago,
Chicago, Illinois
| | - Andrew G. Kirkley
- Committee on Molecular Pathogenesis and Molecular Medicine,
University of Chicago, Chicago, Illinois
| | - Michael Landeche
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, College of Medicine, University of Illinois at Chicago,
Chicago, Illinois
| | - Honggang Ye
- Department of Medicine, University of Chicago, Chicago,
IL
| | - Bijoy Chellan
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, College of Medicine, University of Illinois at Chicago,
Chicago, Illinois
| | - Hani Aldirawi
- Department of Mathematics, Statistics, and Computer
Science, University of Chicago, Chicago, IL
| | - Austin A. Roberts
- Division of Environmental Health Sciences, Wadsworth
Center, New York State Department of Health, Albany, NY, USA
- Department of Environmental Health Sciences, The University
at Albany, State University of New York, Albany, NY, USA
| | - Patrick J. Parsons
- Division of Environmental Health Sciences, Wadsworth
Center, New York State Department of Health, Albany, NY, USA
- Department of Environmental Health Sciences, The University
at Albany, State University of New York, Albany, NY, USA
| | - Robert M. Sargis
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, College of Medicine, University of Illinois at Chicago,
Chicago, Illinois
- Committee on Molecular Pathogenesis and Molecular Medicine,
University of Chicago, Chicago, Illinois
- Chicago Center for Health and Environment (CACHET),
University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
20
|
Mahdavinia M, Ahangarpour A, Zeidooni L, Samimi A, Alizadeh S, Dehghani MA, Alboghobeish S. Protective Effect of Naringin on Bisphenol A-Induced Cognitive Dysfunction and Oxidative Damage in Rats. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:141-153. [PMID: 32215265 DOI: 10.22088/ijmcm.bums.8.2.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/13/2019] [Indexed: 10/31/2022]
Abstract
Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide, which is used in many plastic industries. The present study aimed to evaluate the effect of BPA on cognitive functions and oxidative stress, and determine whether the naringin (NG) co-administration can modify the effect of this compound on cognitive functions and inhibit any possible oxidative stress in the brain tissue of rats. Adult male Wistar rats were divided into six groups. Group I: control, Group II: BPA-treated rats (50 mg/kg/day), Group III, IV, V: BPA+NG (40, 80, 160 mg/kg/day), Group VI: NG (160 mg/kg/day) alone. Cognitive functions were evaluated using step-down latency (SDL) on a passive avoidance apparatus, and transfer latency (TL) in elevated plus-maze. A significant decrease in SDL, prolongation of TL, noticeable oxidative impairment and increase in acetylcholinesterase activity were observed in the BPA-treated in comparison with the control group. Also, the co-administration of NG (160 mg/kg) antagonized the effect of BPA on SDL and TL, attenuated oxidative damage by lowering malondialdehyde and nitrite concentrations and restored superoxide dismutase, catalase, and glutathione S-transferase activities. On the other hand, acetylcholinesterase activity was reduced in the groups co-administred with NG (80 or 160 mg/kg) and BPA in comparison with the BPA alone-treated group. The present study highlighted the therapeutic potential of NG against BPA-induced cognitive impairment and oxidative damage.
Collapse
Affiliation(s)
- Masoud Mahdavinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Health Research Institute, Diabetes Research Center, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Zeidooni
- Department of Toxicology, School of Pharmacy, Student Research Committee of Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azin Samimi
- Department of Toxicology, School of Pharmacy, Student Research Committee of Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Alizadeh
- Department of Toxicology, School of Pharmacy, Student Research Committee of Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Amin Dehghani
- Department of Toxicology, School of Pharmacy, Student Research Committee of Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soheila Alboghobeish
- Department of Pharmacology, School of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
21
|
Zhao H, Wang Y, Liu J, Guo M, Fei D, Yu H, Xing M. The cardiotoxicity of the common carp (Cyprinus carpio) exposed to environmentally relevant concentrations of arsenic and subsequently relieved by zinc supplementation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:741-748. [PMID: 31344536 DOI: 10.1016/j.envpol.2019.07.065] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Waterborne exposure to arsenic trioxide (As2O3) is inevitable due to its widespread industrial and agricultural applications. Oxidative stress and cascaded programmed cell death is now hypothesized to be the dominant mechanisms of arseniasis evidenced in vivo and in vitro. This study aimed to explore the interaction of divalent zinc ion (Zn2+), an efficient reactive oxygen species (ROS) scavenger with arsenite in the heart of common carp, and extensively investigated the exact signaling molecules involved. Significant induction of cardiotoxicity including oxidative stress, apoptosis and autophagy was evident in heart tissues following arsenite exposure (P < 0.05). The dissipation of antioxidant enzymes (SOD and CAT) was induced by ROS burst, leading to oxidative damage and lipid peroxidation (MDA). Arsenite induced classic apoptotic hallmarks, characterized by chromatin degradation and subsequent formation of clumps adjacent, and elevated expression of Bax/Bcl-2 and Caspase family, and also increased autophagic flux evidenced by accelerated formation (LC3) and degradation (p62) of autophagosomes. PI3K/Akt/mTOR pathway was phosphorylated inhibited, while MAPK signaling (p38, ERK and JNK) displayed elevated phosphorylation levels in arsenite-exposed heart tissues. In contrast, above phenomena were effectively inhibited by Zn2+, which supplement attenuated arsenite-induced myocardial toxicity through inhibition of apoptosis and autophagy via PI3K/Akt/mTOR pathway, as well as suppressing intracellular ROS cluster via activating antioxidative system via MAPK pathway. Our results provided experimental explanation and evidences for cardiotoxicity of arsenite. Furthermore, our findings hint that the application of zinc preparations may provide a candidate for the prevention and treatment for arsenic poisoning.
Collapse
Affiliation(s)
- Hongjing Zhao
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Yu Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Juanjuan Liu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Dongxue Fei
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongxian Yu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
22
|
Yang L, Qiu T, Yao X, Jiang L, Wei S, Pei P, Wang Z, Bai J, Liu X, Yang G, Liu S, Sun X. Taurine protects against arsenic trioxide-induced insulin resistance via ROS-Autophagy pathway in skeletal muscle. Int J Biochem Cell Biol 2019; 112:50-60. [DOI: 10.1016/j.biocel.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022]
|
23
|
Khodayar MJ, Kalantari H, Mahdavinia M, Khorsandi L, Alboghobeish S, Samimi A, Alizadeh S, Zeidooni L. Protective effect of naringin against BPA-induced cardiotoxicity through prevention of oxidative stress in male Wistar rats. Drug Chem Toxicol 2018; 43:85-95. [PMID: 30264589 DOI: 10.1080/01480545.2018.1504958] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mohammad Javad Khodayar
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatollah Kalantari
- Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soheila Alboghobeish
- Department of Pharmacology, School of Pharmacy, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azin Samimi
- Department of Toxicology, School of Pharmacy, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Alizadeh
- Department of Toxicology, School of Pharmacy, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Zeidooni
- Department of Toxicology, School of Pharmacy, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
24
|
Alibakhshi T, Khodayar MJ, Khorsandi L, Rashno M, Zeidooni L. Protective effects of zingerone on oxidative stress and inflammation in cisplatin-induced rat nephrotoxicity. Biomed Pharmacother 2018; 105:225-232. [DOI: 10.1016/j.biopha.2018.05.085] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/24/2022] Open
|