1
|
Lorente L, Martín MM, González-Rivero AF, Pérez-Cejas A, Ramos-Gómez L, Solé-Violán J, Cáceres JJ, Ferrer-Moure C, Jiménez A. Association between serum concentrations of anti-apoptotic B-cell lymphoma-2 protein and traumatic brain injury mortality. Expert Rev Mol Diagn 2021; 22:125-129. [PMID: 34878357 DOI: 10.1080/14737159.2022.2016394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND There are scarce and contradictory data existing about B-cell lymphoma 2 (Bcl2), one of the Bcl2 family of anti-apoptotic proteins, in traumatic brain injury (TBI) patients. Thus, the objective of this study was to analyze whether blood concentrations of Bcl2 are associated with mortality. METHODS Patients with isolated and severe TBI, defined as <10 points of the Injury Severity Score (ISS) in non-cranial aspects and <9 points in Glasgow Coma Scale (GCS), were included. This was an observational and prospective study carried out in five Intensive Care Units. Serum Bcl2 concentrations on day 1 of TBI were determined. RESULTS Serum Bcl2 concentrations were lower (p < 0.001) in surviving patients (n = 59) compared to non-survivors (n = 24). We found an association between serum Bcl2 levels and mortality controlling for age and GCS (OR = 1.149; 95% CI = 1.056-1.251; p = 0.001) and controlling for computer tomography findings (OR = 1.147; 95% CI = 1.056-1.246; p = 0.001). CONCLUSIONS This study reports for the first time an association between serum Bcl2 levels and 30-day mortality in TBI patients.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit. Hospital Universitario de Canarias. Ofra, Santa Cruz de Tenerife, Spain
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | | | - Luis Ramos-Gómez
- Intensive Care Unit, Hospital General de La Palma, Breña Alta, La Palma, Spain
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín. CIBERES, Las Palmas de Gran Canaria, Spain
| | - Juan J Cáceres
- Intensive Care Unit, Hospital Insular, Las Palmas de Gran Canaria, Spain
| | - Carmen Ferrer-Moure
- Laboratory Department, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| |
Collapse
|
2
|
Fedorov VN, Koroleva SV, Zubova TA, Andreeva LA, Myasoedov NF. Preparations Based on Regulatory Peptides—a New Class of Medicines. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420040121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Deng H, Yue JK, Zusman BE, Nwachuku EL, Abou-Al-Shaar H, Upadhyayula PS, Okonkwo DO, Puccio AM. B-Cell Lymphoma 2 (Bcl-2) and Regulation of Apoptosis after Traumatic Brain Injury: A Clinical Perspective. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E300. [PMID: 32570722 PMCID: PMC7353854 DOI: 10.3390/medicina56060300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Background and Objectives: The injury burden after head trauma is exacerbated by secondary sequelae, which leads to further neuronal loss. B-cell lymphoma 2 (Bcl-2) is an anti-apoptotic protein and a key modulator of the programmed cell death (PCD) pathways. The current study evaluates the clinical evidence on Bcl-2 and neurological recovery in patients after traumatic brain injury (TBI). Materials and Methods: All studies in English were queried from the National Library of Medicine PubMed database using the following search terms: (B-cell lymphoma 2/Bcl-2/Bcl2) AND (brain injury/head injury/head trauma/traumatic brain injury) AND (human/patient/subject). There were 10 investigations conducted on Bcl-2 and apoptosis in TBI patients, of which 5 analyzed the pericontutional brain tissue obtained from surgical decompression, 4 studied Bcl-2 expression as a biomarker in the cerebrospinal fluid (CSF), and 1 was a prospective randomized trial. Results: Immunohistochemistry (IHC) in 94 adults with severe TBI showed upregulation of Bcl-2 in the pericontusional tissue. Bcl-2 was detected in 36-75% of TBI patients, while it was generally absent in the non-TBI controls, with Bcl-2 expression increased 2.9- to 17-fold in TBI patients. Terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick-end labeling (TUNEL) positivity for cell death was detected in 33-73% of TBI patients. CSF analysis in 113 TBI subjects (90 adults, 23 pediatric patients) showed upregulation of Bcl-2 that peaked on post-injury day 3 and subsequently declined after day 5. Increased Bcl-2 in the peritraumatic tissue, rising CSF Bcl-2 levels, and the variant allele of rs17759659 are associated with improved mortality and better outcomes on the Glasgow Outcome Score (GOS). Conclusions: Bcl-2 is upregulated in the pericontusional brain and CSF in the acute period after TBI. Bcl-2 has a neuroprotective role as a pro-survival protein in experimental models, and increased expression in patients can contribute to improvement in clinical outcomes. Its utility as a biomarker and therapeutic target to block neuronal apoptosis after TBI warrants further evaluation.
Collapse
Affiliation(s)
- Hansen Deng
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (B.E.Z.); (E.L.N.); (H.A.-A.-S.); (D.O.O.); (A.M.P.)
- Neurotrauma Clinical Trials Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - John K. Yue
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94110, USA;
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Benjamin E. Zusman
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (B.E.Z.); (E.L.N.); (H.A.-A.-S.); (D.O.O.); (A.M.P.)
| | - Enyinna L. Nwachuku
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (B.E.Z.); (E.L.N.); (H.A.-A.-S.); (D.O.O.); (A.M.P.)
- Neurotrauma Clinical Trials Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Hussam Abou-Al-Shaar
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (B.E.Z.); (E.L.N.); (H.A.-A.-S.); (D.O.O.); (A.M.P.)
| | - Pavan S. Upadhyayula
- Department of Neurological Surgery, University of California Diego, San Diego, CA 92093, USA;
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (B.E.Z.); (E.L.N.); (H.A.-A.-S.); (D.O.O.); (A.M.P.)
- Neurotrauma Clinical Trials Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Ava M. Puccio
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (B.E.Z.); (E.L.N.); (H.A.-A.-S.); (D.O.O.); (A.M.P.)
- Neurotrauma Clinical Trials Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Lucke-Wold BP, Naser ZJ, Logsdon AF, Turner RC, Smith KE, Robson MJ, Bailes JE, Lee JM, Rosen CL, Huber JD. Amelioration of nicotinamide adenine dinucleotide phosphate-oxidase mediated stress reduces cell death after blast-induced traumatic brain injury. Transl Res 2015; 166:509-528.e1. [PMID: 26414010 DOI: 10.1016/j.trsl.2015.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/29/2015] [Accepted: 08/12/2015] [Indexed: 02/08/2023]
Abstract
A total of 1.7 million traumatic brain injuries (TBIs) occur each year in the United States, but available pharmacologic options for the treatment of acute neurotrauma are limited. Oxidative stress is an important secondary mechanism of injury that can lead to neuronal apoptosis and subsequent behavioral changes. Using a clinically relevant and validated rodent blast model, we investigated how nicotinamide adenine dinucleotide phosphate oxidase (Nox) expression and associated oxidative stress contribute to cellular apoptosis after single and repeat blast injuries. Nox4 forms a complex with p22phox after injury, forming free radicals at neuronal membranes. Using immunohistochemical-staining methods, we found a visible increase in Nox4 after single blast injury in Sprague Dawley rats. Interestingly, Nox4 was also increased in postmortem human samples obtained from athletes diagnosed with chronic traumatic encephalopathy. Nox4 activity correlated with an increase in superoxide formation. Alpha-lipoic acid, an oxidative stress inhibitor, prevented the development of superoxide acutely and increased antiapoptotic markers B-cell lymphoma 2 (t = 3.079, P < 0.05) and heme oxygenase 1 (t = 8.169, P < 0.001) after single blast. Subacutely, alpha-lipoic acid treatment reduced proapoptotic markers Bax (t = 4.483, P < 0.05), caspase 12 (t = 6.157, P < 0.001), and caspase 3 (t = 4.573, P < 0.01) after repetitive blast, and reduced tau hyperphosphorylation indicated by decreased CP-13 and paired helical filament staining. Alpha-lipoic acid ameliorated impulsive-like behavior 7 days after repetitive blast injury (t = 3.573, P < 0.05) compared with blast exposed animals without treatment. TBI can cause debilitating symptoms and psychiatric disorders. Oxidative stress is an ideal target for neuropharmacologic intervention, and alpha-lipoic acid warrants further investigation as a therapeutic for prevention of chronic neurodegeneration.
Collapse
Affiliation(s)
- Brandon P Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WVa; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa
| | - Zachary J Naser
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WVa; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa; Department of Medicine, Professional Studies in Health Sciences, Drexel University College of Medicine, Philadelphia, PA
| | - Aric F Logsdon
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa; Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WVa
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WVa; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa
| | - Kelly E Smith
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa; Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WVa
| | - Matthew J Robson
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WVa; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tenn
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University HealthSystem, University of Chicago Pritzker School of Medicine, Evanston, Ill
| | - John M Lee
- Department of Pathology, NorthShore University HealthSystem, University of Chicago Pritzker School of Medicine, Evanston, Ill
| | - Charles L Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WVa; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa
| | - Jason D Huber
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa; Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WVa.
| |
Collapse
|