1
|
Antonova VV, Silachev DN, Plotnikov EY, Pevzner IB, Ivanov ME, Boeva EA, Kalabushev SN, Yadgarov MY, Cherpakov RA, Grebenchikov OA, Kuzovlev AN. Positive Effects of Argon Inhalation After Traumatic Brain Injury in Rats. Int J Mol Sci 2024; 25:12673. [PMID: 39684384 DOI: 10.3390/ijms252312673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The noble gas argon is one of the most promising neuroprotective agents for hypoxic-reperfusion injuries of the brain. However, its effect on traumatic injuries has been insufficiently studied. The aim of this study was to analyze the effect of the triple inhalation of the argon-oxygen mixture Ar 70%/O2 30% on physical and neurological recovery and the degree of brain damage after traumatic brain injury and to investigate the possible molecular mechanisms of the neuroprotective effect. The experiments were performed in male Wistar rats. A controlled brain injury model was used to investigate the effects of argon treatment and the underlying molecular mechanisms. The results of the study showed that animals with craniocerebral injuries that were treated with argon inhalation exhibited better physical recovery rates, better neurological status, and less brain damage. Argon treatment significantly reduced the expression of the proinflammatory markers TNFα and CD68 caused by TBI, increased the expression of phosphorylated protein kinase B (pAKT), and promoted the expression of the transcription factor Nrf2 in intact animals. Treatment with an argon-oxygen breathing mixture after traumatic brain injury has a neuroprotective effect by suppressing the inflammatory response and activating the antioxidant and anti-ischemic system.
Collapse
Affiliation(s)
- Viktoriya V Antonova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Denis N Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Irina B Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Mikhail E Ivanov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ekaterina A Boeva
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Sergey N Kalabushev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Mikhail Ya Yadgarov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Rostislav A Cherpakov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Oleg A Grebenchikov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Artem N Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| |
Collapse
|
2
|
Merigo G, Florio G, Madotto F, Magliocca A, Silvestri I, Fumagalli F, Cerrato M, Motta F, De Giorgio D, Panigada M, Zanella A, Grasselli G, Ristagno G. Treatment with inhaled Argon: a systematic review of pre-clinical and clinical studies with meta-analysis on neuroprotective effect. EBioMedicine 2024; 103:105143. [PMID: 38691938 PMCID: PMC11070688 DOI: 10.1016/j.ebiom.2024.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Argon (Ar) has been proposed as a potential therapeutic agent in multiple clinical conditions, specifically in organ protection. However, conflicting data on pre-clinical models, together with a great variability in Ar administration protocols and outcome assessments, have been reported. The aim of this study was to review evidence on treatment with Ar, with an extensive investigation on its neuroprotective effect, and to summarise all tested administration protocols. METHODS Using the PubMed database, all existing pre-clinical and clinical studies on the treatment with Ar were systematically reviewed (registration: https://doi.org/10.17605/OSF.IO/7983D). Study titles and abstracts were screened, extracting data from relevant studies post full-text review. Exclusion criteria included absence of full text and non-English language. Furthermore, meta-analysis was also performed to assess Ar potential as neuroprotectant agent in different clinical conditions: cardiac arrest, traumatic brain injury, ischemic stroke, perinatal hypoxic-ischemic encephalopathy, subarachnoid haemorrhage. Standardised mean differences for neurological, cognitive and locomotor, histological, and physiological measures were evaluated, through appropriate tests, clinical, and laboratory variables. In vivo studies were evaluated for risk of bias using the Systematic Review Center for Laboratory Animal Experimentation tool, while in vitro studies underwent assessment with a tool developed by the Office of Health Assessment and Translation. FINDINGS The systematic review detected 60 experimental studies (16 in vitro, 7 ex vivo, 31 in vivo, 6 with both in vitro and in vivo) investigating the role of Ar. Only one clinical study was found. Data from six in vitro and nineteen in vivo studies were included in the meta-analyses. In pre-clinical models, Ar administration resulted in improved neurological, cognitive and locomotor, and histological outcomes without any change in physiological parameters (i.e., absence of adverse events). INTERPRETATION This systematic review and meta-analysis based on experimental studies supports the neuroprotective effect of Ar, thus providing a rationale for potential translation of Ar treatment in humans. Despite adherence to established guidelines and methodologies, limitations in data availability prevented further analyses to investigate potential sources of heterogeneity due to study design. FUNDING This study was funded in part by Italian Ministry of Health-Current researchIRCCS and by Ministero della Salute Italiano, Ricerca Finalizzata, project no. RF 2019-12371416.
Collapse
Affiliation(s)
- Giulia Merigo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gaetano Florio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Fabiana Madotto
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Aurora Magliocca
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Ivan Silvestri
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Francesca Fumagalli
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marianna Cerrato
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca Motta
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Daria De Giorgio
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mauro Panigada
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Zanella
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giacomo Grasselli
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giuseppe Ristagno
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Silachev DN, Boeva EA, Yakupova EI, Milovanova MA, Varnakova LA, Kalabushev SN, Antonova VV, Cherpakov RA, Ryzhkov IA, Lapin KN, Lyubomudrov MA, Grebenchikov OA. Positive Neuroprotective Effect of Argon Inhalation after Photochemically Induced Ischemic Stroke Model in Rats. Bull Exp Biol Med 2023; 176:143-149. [PMID: 38189873 DOI: 10.1007/s10517-024-05984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 01/09/2024]
Abstract
We studied the effect of 2-h inhalation of argon-oxygen mixture (Ar 70%/O2 30%) after photochemically induced stroke and on days 2 and 3 after stroke modeling on the severity of neurological deficit and brain damage (by MRI data) in Wistar rats. Neurological deficit was assessed within 14 days using the limb placement test. MRI and histological study of the brain with an assessment of the size of damage were performed on day 14 after ischemia. Significant differences were obtained in limb placement scores on days 3, 7, and 14, as well as in the volume of ischemic focus by MRI in comparison with the control (ischemia+N2 70%/O2 30%). Inhalation of argon-oxygen mixture for 2 h a day over 3 days after photoinduced stroke decreased the volume of brain damage by 2 times and reduced the severity of neurological deficit.
Collapse
Affiliation(s)
- D N Silachev
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia.
| | - E A Boeva
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - E I Yakupova
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - M A Milovanova
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - L A Varnakova
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - S N Kalabushev
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - V V Antonova
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - R A Cherpakov
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - I A Ryzhkov
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - K N Lapin
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - M A Lyubomudrov
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - O A Grebenchikov
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| |
Collapse
|
4
|
Davis JA, Grau JW. Protecting the injured central nervous system: Do anesthesia or hypothermia ameliorate secondary injury? Exp Neurol 2023; 363:114349. [PMID: 36775099 DOI: 10.1016/j.expneurol.2023.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Traumatic injury to the central nervous system (CNS) and stroke initiate a cascade of processes that expand the area of tissue loss. The current review considers recent studies demonstrating that the induction of an anesthetic state or cooling the affected tissue (hypothermia) soon after injury can have a therapeutic effect. We first provide an overview of the neurobiological processes that fuel tissue loss after traumatic brain injury (TBI), spinal cord injury (SCI) and stroke. We then examine the rehabilitative effectiveness of therapeutic anesthesia across a variety of drug categories through a systematic review of papers in the PubMed database. We also review the therapeutic benefits hypothermia, another treatment that quells neural activity. We conclude by considering factors related to the safety, efficacy and timing of treatment, as well as the mechanisms of action. Clinical implications are also discussed.
Collapse
Affiliation(s)
- Jacob A Davis
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Yin H, Chen Z, Zhao H, Huang H, Liu W. Noble gas and neuroprotection: From bench to bedside. Front Pharmacol 2022; 13:1028688. [PMID: 36532733 PMCID: PMC9750501 DOI: 10.3389/fphar.2022.1028688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/03/2022] [Indexed: 07/26/2023] Open
Abstract
In recent years, inert gases such as helium, argon, and xenon have gained considerable attention for their medical value. Noble gases present an intriguing scientific paradox: although extremely chemically inert, they display a remarkable spectrum of clinically useful biological properties. Despite a relative paucity of knowledge about their mechanisms of action, some noble gases have been used successfully in clinical practice. The neuroprotection elicited by these noble gases has been investigated in experimental animal models of various types of brain injuries, such as traumatic brain injury, stroke, subarachnoid hemorrhage, cerebral ischemic/reperfusion injury, and neurodegenerative diseases. Collectively, these central nervous system injuries are a leading cause of morbidity and mortality every year worldwide. Treatment options are presently limited to thrombolytic drugs and clot removal for ischemic stroke, or therapeutic cooling for other brain injuries before the application of noble gas. Currently, there is increasing interest in noble gases as novel treatments for various brain injuries. In recent years, neuroprotection elicited by particular noble gases, xenon, for example, has been reported under different conditions. In this article, we have reviewed the latest in vitro and in vivo experimental and clinical studies of the actions of xenon, argon, and helium, and discuss their potential use as neuroprotective agents.
Collapse
Affiliation(s)
- Haiying Yin
- Department of Anesthesiology and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zijun Chen
- Department of Anesthesiology and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hailin Zhao
- Division of Anesthetics, Department of Surgery and Cancer, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Han Huang
- Department of Anesthesiology and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenwen Liu
- Department of Anesthesia Nursing, West China Second University Hospital, Sichuan University/West China School of Nursing, Ministry of Education, Sichuan University and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, China
| |
Collapse
|
6
|
He J, Xue K, Liu J, Gu JH, Peng B, Xu L, Wang G, Jiang Z, Li X, Zhang Y. Timely and Appropriate Administration of Inhaled Argon Provides Better Outcomes for tMCAO Mice: A Controlled, Randomized, and Double-Blind Animal Study. Neurocrit Care 2022; 37:91-101. [PMID: 35137354 DOI: 10.1007/s12028-022-01448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Inhaled argon (iAr) has shown promising therapeutic efficacy for acute ischemic stroke and has exhibited impressive advantages over other inert gases as a neuroprotective agent. However, the optimal dose, duration, and time point of iAr for acute ischemic stroke are unknown. Here, we explored variable iAr schedules and evaluated the neuroprotective effects of acute iAr administration on lesion volume, brain edema, and neurological function in a mouse model of cerebral ischemic/reperfusion injury. METHODS Adult ICR (Institute of Cancer Research) mice were randomly subjected to sham, moderate (1.5 h), or severe (3 h) transient middle cerebral artery occlusion (tMCAO). One hour after tMCAO, the mice were randomized to variable iAr protocols or air. General and focal deficit scores were assessed during double-blind treatment. Infarct volume, overall recovery, and brain edema were analyzed 24 h after cerebral ischemic/reperfusion injury. RESULTS Compared with those in the tMCAO-only group, lesion volume (p < 0.0001) and neurologic outcome (general, p < 0.0001; focal, p < 0.0001) were significantly improved in the group administered iAr 1 h after stroke onset (during ischemia). Short-term argon treatment (1 or 3 h) significantly improved the infarct volume (1 vs. 24 h, p < 0.0001; 3 vs. 24 h, p < 0.0001) compared with argon inhalation for 24 h. The concentration of iAr was confirmed to be a key factor in improving focal neurological outcomes relative to that in the tMCAO group, with higher concentrations of iAr showing better effects. Additionally, even though ischemia research has shown an increase in cerebral damage proportional to the ischemia time, argon administration showed significant neuroprotective effects on infarct volume (p < 0.0001), neurological deficits (general, p < 0.0001; focal, p < 0.0001), weight recovery (p < 0.0001), and edema (p < 0.0001) in general, particularly in moderate stroke. CONCLUSIONS Timely iAr administration during ischemia showed optimal neurological outcomes and minimal infarct volumes. Moreover, an appropriate duration of argon administration was important for better neuroprotective efficacy. These findings may provide vital guidance for using argon as a neuroprotective agent and moving to clinical trials in acute ischemic stroke.
Collapse
Affiliation(s)
- Juan He
- Stroke Center and Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226019, Jiangsu, China
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Ke Xue
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jiayi Liu
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jin-Hua Gu
- Stroke Center and Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226019, Jiangsu, China
| | - Bin Peng
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Lihua Xu
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Guohua Wang
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhenglin Jiang
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Xia Li
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China.
| | - Yunfeng Zhang
- Stroke Center and Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226019, Jiangsu, China.
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
7
|
Zhang J, Liu W, Bi M, Xu J, Yang H, Zhang Y. Noble Gases Therapy in Cardiocerebrovascular Diseases: The Novel Stars? Front Cardiovasc Med 2022; 9:802783. [PMID: 35369316 PMCID: PMC8966230 DOI: 10.3389/fcvm.2022.802783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiocerebrovascular diseases (CCVDs) are the leading cause of death worldwide; therefore, to deeply explore the pathogenesis of CCVDs and to find the cheap and efficient strategies to prevent and treat CCVDs, these are of great clinical and social significance. The discovery of nitric oxide (NO), as one of the endothelium-derived relaxing factors and its successful utilization in clinical practice for CCVDs, provides new ideas for us to develop drugs for CCVDs: “gas medicine” or “medical gases.” The endogenous gas molecules such as carbon monoxide (CO), hydrogen sulfide (H2S), sulfur dioxide (SO2), methane (CH4), and hydrogen (H2) have essential biological effects on modulating cardiocerebrovascular homeostasis and CCVDs. Moreover, it has been shown that noble gas atoms such as helium (He), neon (Ne), argon (Ar), krypton (Kr), and xenon (Xe) display strong cytoprotective effects and therefore, act as the exogenous pharmacologic preventive and therapeutic agents for CCVDs. Mechanistically, besides the competitive inhibition of N-methyl-D-aspartate (NMDA) receptor in nervous system by xenon, the key and common mechanisms of noble gases are involved in modulation of cell death and inflammatory or immune signals. Moreover, gases interaction and reduction in oxidative stress are emerging as the novel biological mechanisms of noble gases. Therefore, to investigate the precise actions of noble gases on redox signals, gases interaction, different cell death forms, and the emerging field of gasoimmunology, which focus on the effects of gas atoms/molecules on innate immune signaling or immune cells under both the homeostatic and perturbed conditions, these will help us to uncover the mystery of noble gases in modulating CCVDs.
Collapse
Affiliation(s)
- Jiongshan Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Centre for Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingmin Bi
- Department of Otorhinolaryngology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jinwen Xu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Centre for Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Centre for Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW To summarize the current data on neuroprotection derived by noble gas treatment focusing on xenon and argon. RECENT FINDINGS Both xenon and argon have demonstrated neuroprotective properties in an array of disease models. However, current data for argon after traumatic brain injury (TBI) is conflicting. Recent human data is only available for xenon showing some beneficial aspects (fewer adverse events) but no effect on outcomes, such as incidence of postoperative delirium. SUMMARY Promising results are available for neuroprotection derived by noble gas treatment. Results for xenon are more consistent than those for argon. The mechanism of action of xenon (noncompetitive NMDA-receptor inhibition) is also better understood compared with that of argon. The evidence for argon's neuroprotective actions (particularly after TBI) remains uncertain.
Collapse
Affiliation(s)
- Anke Höllig
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen
| | - Mark Coburn
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
9
|
Shin SS, Hwang M, Diaz-Arrastia R, Kilbaugh TJ. Inhalational Gases for Neuroprotection in Traumatic Brain Injury. J Neurotrauma 2021; 38:2634-2651. [PMID: 33940933 PMCID: PMC8820834 DOI: 10.1089/neu.2021.0053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite multiple prior pharmacological trials in traumatic brain injury (TBI), the search for an effective, safe, and practical treatment of these patients remains ongoing. Given the ease of delivery and rapid absorption into the systemic circulation, inhalational gases that have neuroprotective properties will be an invaluable resource in the clinical management of TBI patients. In this review, we perform a systematic review of both pre-clinical and clinical reports describing inhalational gas therapy in the setting of TBI. Hyperbaric oxygen, which has been investigated for many years, and some of the newest developments are reviewed. Also, promising new therapies such as hydrogen gas, hydrogen sulfide gas, and nitric oxide are discussed. Moreover, novel therapies such as xenon and argon gases and delivery methods using microbubbles are explored.
Collapse
Affiliation(s)
- Samuel S. Shin
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Misun Hwang
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Creed J, Cantillana-Riquelme V, Yan BH, Ma S, Chu D, Wang H, Turner DA, Laskowitz DT, Hoffmann U. Argon Inhalation for 24 h After Closed-Head Injury Does not Improve Recovery, Neuroinflammation, or Neurologic Outcome in Mice. Neurocrit Care 2021; 34:833-843. [PMID: 32959200 DOI: 10.1007/s12028-020-01104-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND/OBJECTIVE In recent years, the noble gas argon (Ar) has been extensively studied for its organ protection properties. While mounting in vitro and in vivo evidence indicates that argon provides neuroprotection in ischemic brain injury, its neuroprotective potential in traumatic brain injury (TBI) has not been evaluated in vivo. We tested the hypothesis that prolonged inhalation of 70% or 79% argon for 24 h after closed-head injury (CHI) improves neurologic outcome and overall recovery at 36 days post-injury. We also compared effects of the 30% or 21% residual oxygen on argon's potential neuroprotective capacity. METHODS Adult male C57/black mice (n = 240) were subjected to closed-head traumatic brain injury, followed by inhalation of 70% argon or nitrogen (30% oxygen), or 79% argon or nitrogen (21% oxygen) for 24 h. Neurologic outcome (rotarod, neuroscore, and Morris water maze) was evaluated for up to 36 days post-injury. Histologic parameters of neurologic degeneration (Fluoro-Jade staining) and inflammation (F4/80 microglia immunostaining) were assessed in subgroups at 24 h and on post-injury day 7. RESULTS Our CHI protocol consistently resulted in significant brain injury. After argon inhalation for 24 h at either concentration, mice did not show significant improvement with regard to neuroscores, rotarod performance, Morris water maze performance, or overall recovery (body weight), compared to nitrogen controls, up to 36 days. At 7 days post-injury, histologic markers of neurodegeneration and inflammation, particularly in the hippocampus, consistently demonstrated significant injury. Notably, recovery was reduced in mice treated with the higher oxygen concentration (30%) after CHI compared to 21%. CONCLUSIONS Prolonged argon treatment did not improve neurologic outcome, overall recovery (weight), nor markers of neurodegeneration or neuroinflammation after significant CHI compared to nitrogen. While neuroprotective in predominately ischemic injury, argon did not provide protection after TBI in this model, highlighting the crucial importance of assessing argon's strengths and weaknesses in preclinical models to fully understand its organ protective potential in different pathologies and gas mixtures.
Collapse
Affiliation(s)
- Jennifer Creed
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | | | - Bai Hui Yan
- Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an JiaoTong University, Xi'an, ShaanXi Province, China
| | - Shuang Ma
- Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liao Ning, China
| | - Dongmei Chu
- Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Department of Pediatrics, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Haichen Wang
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Dennis A Turner
- Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
- Departments of Neurosurgery, Neurobiology, and Biomedical Engineering, Duke University Medical Center, Durham, NC, USA
| | - Daniel T Laskowitz
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke University Medical Center, Box 3094, Durham, NC, 27710, USA
| | - Ulrike Hoffmann
- Department of Anesthesiology, Center for Perioperative Organ Protection (CPOP), Duke University Medical Center, Box 3094, Durham, NC, 27710, USA.
| |
Collapse
|
11
|
Failed Neuroprotection of Combined Inhibition of L-Type and ASIC1a Calcium Channels with Nimodipine and Amiloride. Int J Mol Sci 2020; 21:ijms21238921. [PMID: 33255506 PMCID: PMC7727815 DOI: 10.3390/ijms21238921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 01/15/2023] Open
Abstract
Effective pharmacological neuroprotection is one of the most desired aims in modern medicine. We postulated that a combination of two clinically used drugs-nimodipine (L-Type voltage-gated calcium channel blocker) and amiloride (acid-sensing ion channel inhibitor)-might act synergistically in an experimental model of ischaemia, targeting the intracellular rise in calcium as a pathway in neuronal cell death. We used organotypic hippocampal slices of mice pups and a well-established regimen of oxygen-glucose deprivation (OGD) to assess a possible neuroprotective effect. Neither nimodipine (at 10 or 20 µM) alone or in combination with amiloride (at 100 µM) showed any amelioration. Dissolved at 2.0 Vol.% dimethyl-sulfoxide (DMSO), the combination of both components even increased cell damage (p = 0.0001), an effect not observed with amiloride alone. We conclude that neither amiloride nor nimodipine do offer neuroprotection in an in vitro ischaemia model. On a technical note, the use of DMSO should be carefully evaluated in neuroprotective experiments, since it possibly alters cell damage.
Collapse
|
12
|
Nespoli F, Redaelli S, Ruggeri L, Fumagalli F, Olivari D, Ristagno G. A complete review of preclinical and clinical uses of the noble gas argon: Evidence of safety and protection. Ann Card Anaesth 2020; 22:122-135. [PMID: 30971592 PMCID: PMC6489383 DOI: 10.4103/aca.aca_111_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The noble gas argon (Ar) is a "biologically" active element and has been extensively studied preclinically for its organ protection properties. This work reviews all preclinical studies employing Ar and describes the clinical uses reported in literature, analyzing 55 pertinent articles found by means of a search on PubMed and Embase. Ventilation with Ar has been tested in different models of acute disease at concentrations ranging from 20% to 80% and for durations between a few minutes up to days. Overall, lesser cell death, smaller infarct size, and better functional recovery after ischemia have been repeatedly observed. Modulation of the molecular pathways involved in cell survival, with resulting anti-apoptotic and pro-survival effects, appeared as the determinant mechanism by which Ar fulfills its protective role. These beneficial effects have been reported regardless of onset and duration of Ar exposure, especially after cardiac arrest. In addition, ventilation with Ar was safe both in animals and humans. Thus, preclinical and clinical data support future clinical studies on the role of inhalatory Ar as an organ protector.
Collapse
Affiliation(s)
- Francesca Nespoli
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Simone Redaelli
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Ruggeri
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca Fumagalli
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Davide Olivari
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giuseppe Ristagno
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
13
|
Grüßer L, Blaumeiser-Debarry R, Rossaint R, Krings M, Kremer B, Höllig A, Coburn M. A 6-Step Approach to Gain Higher Quality Results From Organotypic Hippocampal Brain Slices in a Traumatic Brain Injury Model. Basic Clin Neurosci 2020; 10:485-498. [PMID: 32284838 PMCID: PMC7149959 DOI: 10.32598/bcn.9.10.235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/27/2018] [Accepted: 03/22/2019] [Indexed: 01/20/2023] Open
Abstract
Introduction Organotypic Hippocampal Brain Slices (OHBS) provide an advantageous alternative to in vivo models to scrutinize Traumatic Brain Injury (TBI). We followed a well-established TBI protocol, but noticed that several factors may influence the results in such a setup. Here, we describe a structured approach to generate more comparable results and discuss why specific eligibility criteria should be applied. Methods We defined necessary checkpoints and developed inclusion and exclusion criteria that take the observed variation in such a model into consideration. Objective measures include the identification and exclusion of pre-damaged slices and outliers. Six steps were outlined in this study. Results A six-step approach to enhance comparability is proposed and summarized in a flowchart. We applied the suggested measures to data derived from our TBI-experiments examining the impact of three different interventions in 1459 OHBS. Our exemplary results show that through equal requirements set for all slices more precise findings are ensured. Conclusion Results in a TBI experiment on OHBS should be analyzed critically as inhomogeneities may occur. In order to ensure more precise findings, a structured approach of comparing the results should be followed. Further research is recommended to confirm and further develop this framework.
Collapse
Affiliation(s)
- Linda Grüßer
- Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Rolf Rossaint
- Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Matthias Krings
- Department of Anesthesiology and Intensive Care, Medizinisches Zentrum StaedteRegion Aachen, Aachen, Germany
| | - Benedikt Kremer
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Anke Höllig
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Mark Coburn
- Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
14
|
Anna R, Rolf R, Mark C. Update of the organoprotective properties of xenon and argon: from bench to beside. Intensive Care Med Exp 2020; 8:11. [PMID: 32096000 PMCID: PMC7040108 DOI: 10.1186/s40635-020-0294-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023] Open
Abstract
The growth of the elderly population has led to an increase in patients with myocardial infarction and stroke (Wajngarten and Silva, Eur Cardiol 14: 111–115, 2019). Patients receiving treatment for ST-segment-elevation myocardial infarction (STEMI) highly profit from early reperfusion therapy under 3 h from the onset of symptoms. However, mortality from STEMI remains high due to the increase in age and comorbidities (Menees et al., N Engl J Med 369: 901–909, 2013). These factors also account for patients with acute ischaemic stroke. Reperfusion therapy has been established as the gold standard within the first 4 to 5 h after onset of symptoms (Powers et al., Stroke 49: e46-e110, 2018). Nonetheless, not all patients are eligible for reperfusion therapy. The same is true for traumatic brain injury patients. Due to the complexity of acute myocardial and central nervous injury (CNS), finding organ protective substances to improve the function of remote myocardium and the ischaemic penumbra of the brain is urgent. This narrative review focuses on the noble gases argon and xenon and their possible cardiac, renal and neuroprotectant properties in the elderly high-risk (surgical) population. The article will provide an overview of the latest experimental and clinical studies. It is beyond the scope of this review to give a detailed summary of the mechanistic understanding of organ protection by xenon and argon.
Collapse
Affiliation(s)
- Roehl Anna
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany.
| | - Rossaint Rolf
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany
| | - Coburn Mark
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany
| |
Collapse
|